Show simple item record

dc.contributor.authorLuque, Daniel 
dc.contributor.authorGómez-Blanco, Josué
dc.contributor.authorGarriga, Damiá
dc.contributor.authorBrilot, Axel F
dc.contributor.authorGonzález, José M
dc.contributor.authorHavens, Wendy M
dc.contributor.authorCarrascosa, José L
dc.contributor.authorTrus, Benes L
dc.contributor.authorVerdaguer, Nuria
dc.contributor.authorGhabrial, Said A
dc.contributor.authorCastón, José R
dc.date.accessioned2020-05-08T12:34:16Z
dc.date.available2020-05-08T12:34:16Z
dc.date.issued2014-05-27
dc.identifier.citationProc Natl Acad Sci U S A. 2014 May 27;111(21):7641-6.es_ES
dc.identifier.issn0027-8424es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/9994
dc.description.abstractViruses evolve so rapidly that sequence-based comparison is not suitable for detecting relatedness among distant viruses. Structure-based comparisons suggest that evolution led to a small number of viral classes or lineages that can be grouped by capsid protein (CP) folds. Here, we report that the CP structure of the fungal dsRNA Penicillium chrysogenum virus (PcV) shows the progenitor fold of the dsRNA virus lineage and suggests a relationship between lineages. Cryo-EM structure at near-atomic resolution showed that the 982-aa PcV CP is formed by a repeated α-helical core, indicative of gene duplication despite lack of sequence similarity between the two halves. Superimposition of secondary structure elements identified a single "hotspot" at which variation is introduced by insertion of peptide segments. Structural comparison of PcV and other distantly related dsRNA viruses detected preferential insertion sites at which the complexity of the conserved α-helical core, made up of ancestral structural motifs that have acted as a skeleton, might have increased, leading to evolution of the highly varied current structures. Analyses of structural motifs only apparent after systematic structural comparisons indicated that the hallmark fold preserved in the dsRNA virus lineage shares a long (spinal) α-helix tangential to the capsid surface with the head-tailed phage and herpesvirus viral lineage.es_ES
dc.description.sponsorshipWe thank N. Grigorieff for continuous technical and intellectual support, stimulating discussions, and critical reading of the manuscript; C. Xu for maintaining the Brandeis EM facility and help with data collection; and C. Mark for editorial assistance. A.F.B. was supported by a grant from the Canadian National Science and Engineering Research Council. The Brandeis EM facility is supported by National Institutes of Health Grant P01 GM62580. This work was supported by Spanish Ministry of Economy and Competitivity Grant BFU 2011-29038 (to J.L.C.), Grant BIO2011-24333 (to N.V.), and Grant BIO BFU2011-25902 (to J.R.C.), and by a grant from the National Institutes of Health Intramural Research Program and the Center for Information Technology (to B.L.T.).es_ES
dc.language.isoenges_ES
dc.publisherNational Academy of Scienceses_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject3D cryo-EMes_ES
dc.subjectchrysoviruses_ES
dc.subjectstructural homologyes_ES
dc.subjectvirus evolutiones_ES
dc.subject.meshAmino Acid Sequence es_ES
dc.subject.meshCapsid Proteins es_ES
dc.subject.meshCryoelectron Microscopy es_ES
dc.subject.meshMolecular Sequence Data es_ES
dc.subject.meshPenicillium chrysogenum es_ES
dc.subject.meshProtein Folding es_ES
dc.subject.meshProtein Structure, Tertiaryes_ES
dc.subject.meshRNA Viruses es_ES
dc.subject.meshRNA, Double-Stranded es_ES
dc.subject.meshSequence Analysis, RNA es_ES
dc.subject.meshEvolution, Moleculares_ES
dc.subject.meshModels, Moleculares_ES
dc.subject.meshNucleic Acid Conformation es_ES
dc.titleCryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineagees_ES
dc.typeArtículoes_ES
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.identifier.pubmedID24821769es_ES
dc.format.volume111es_ES
dc.format.number21es_ES
dc.format.page7641-6es_ES
dc.identifier.doi10.1073/pnas.1404330111es_ES
dc.contributor.funderNational Institutes of Health (United States)es_ES
dc.contributor.funderInstituto de Salud Carlos III - ISCIIIes_ES
dc.description.peerreviewedes_ES
dc.identifier.e-issn1091-6490es_ES
dc.relation.publisherversionhttps://doi.org/10.1073/pnas.1404330111es_ES
dc.identifier.journalProceedings of the National Academy of Sciences of the United States of Americaes_ES
dc.repisalud.centroISCIII::Centro Nacional de Microbiologíaes_ES
dc.repisalud.institucionISCIIIes_ES
dc.relation.projectIDinfo:eu_repo/grantAgreement/ES/P01 GM62580es_ES
dc.relation.projectIDinfo:eu_repo/grantAgreement/ES/BFU 2011-29038es_ES
dc.relation.projectIDinfo:eu_repo/grantAgreement/ES/BIO2011-24333es_ES
dc.relation.projectIDinfo:eu_repo/grantAgreement/ES/BFU2011-25902es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Acceso Abierto
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 Internacional
This item is licensed under a: Atribución-NoComercial-CompartirIgual 4.0 Internacional