Please use this identifier to cite or link to this item:http://hdl.handle.net/20.500.12105/7808
Title
Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation
Author(s)
Date issued
2019-03-11
Citation
J Transl Med. 201;17(1):75.
Language
Inglés
Abstract
BACKGROUND: Extracellular vesicles (EVs) are small membrane-bound vesicles which play an important role in cell-to-cell communication. Their molecular cargo analysis is presented as a new source for biomarker detection, and it might provide an alternative to traditional solid biopsies. However, the most effective approach for EV isolation is not yet well established. RESULTS: Here, we study the efficiency of the most common EV isolation methods-ultracentrifugation, Polyethlyene glycol and two commercial kits, Exoquick® and PureExo®. We isolated circulating EVs from the bloodstream of healthy donors, characterized the size and yield of EVs and analyzed their protein profiles and concentration. Moreover, we have used for the first time Digital-PCR to identify and detect specific gDNA sequences, which has several implications for diagnostic and monitoring many types of diseases. CONCLUSIONS: Our findings present Polyethylene glycol precipitation as the most feasible and less cost-consuming EV isolation technique.
Subject
ExoQuick® | Extracellular vesicles | Liquid biopsy | Polyethylene glycol | PureExo® | Ultracentrifugation
Online version
DOI
Collections