Please use this identifier to cite or link to this item:http://hdl.handle.net/20.500.12105/7204
Title
Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons
Author(s)
Date issued
2017
Citation
Cell Rep. 2017 ;18(5):1157-1170.
Language
Inglés
Abstract
Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3) as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits.
Subject
Erbb4 | GABA | Cerebral cortex | Cortical plate | Inhibition | Interneuron | Lamination | Migration | Neuregulins | Pyramidal cell
MESH
Animals | Cell Movement | Cerebral Cortex | GABAergic Neurons | Interneurons | Intracellular Signaling Peptides and Proteins | Mice | Mice, Inbred C57BL | Pyramidal Cells | Receptor Protein-Tyrosine Kinases | Receptor, ErbB-4 | Signal Transduction
Online version
DOI
Collections