Mostrar el registro sencillo del ítem

dc.contributor.authorPérez-Gallego, Marcelo
dc.contributor.authorTorrens, Gabriel
dc.contributor.authorCastillo-Vera, Jane
dc.contributor.authorMoya, Bartolome
dc.contributor.authorZamorano, Laura
dc.contributor.authorCabot, Gabriel
dc.contributor.authorHultenby, Kjell
dc.contributor.authorAlberti, Sebastian
dc.contributor.authorMellroth, Peter
dc.contributor.authorHenriques-Normark, Birgitta
dc.contributor.authorNormark, Staffan
dc.contributor.authorOliver, Antonio
dc.contributor.authorJuan, Carlos
dc.date.accessioned2024-07-09T09:14:15Z
dc.date.available2024-07-09T09:14:15Z
dc.date.issued2016-09
dc.identifier.citationPerez-Gallego M, Torrens Ribot G, Castillo-Vera J, Moya B, Zamorano Paez L, Cabot G, et al. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?. mBio. 2016 Sep;7(5):e01783-16.en
dc.identifier.issn2150-7511
dc.identifier.otherhttp://hdl.handle.net/20.500.13003/10229
dc.identifier.urihttp://hdl.handle.net/20.500.12105/20283
dc.description.abstractUnderstanding the interplay between antibiotic resistance and bacterial fitness and virulence is essential to guide individual treatments and improve global antibiotic policies. A paradigmatic example of a resistance mechanism is the intrinsic inducible chromosomal beta-lactamase AmpC from multiple Gram-negative bacteria, including Pseudomonas aeruginosa, a major nosocomial pathogen. The regulation of ampC expression is intimately linked to peptidoglycan recycling, and AmpC-mediated beta-lactam resistance is frequently mediated by inactivating mutations in ampD, encoding an N-acetyl-anhydromuramyl-L-alanine amidase, affecting the levels of ampC-activating muropeptides. Here we dissect the impact of the multiple pathways causing AmpC hyperproduction on P. aeruginosa fitness and virulence. Through a detailed analysis, we demonstrate that the lack of all three P. aeruginosa AmpD amidases causes a dramatic effect in fitness and pathogenicity, severely compromising growth rates, motility, and cytotoxicity; the latter effect is likely achieved by repressing key virulence factors, such as protease LasA, phospholipase C, or type III secretion system components. We also show that ampC overexpression is required but not sufficient to confer the growth-motility-cytotoxicity impaired phenotype and that alternative pathways leading to similar levels of ampC hyperexpression and resistance, such as those involving PBP4, had no fitness-virulence cost. Further analysis indicated that fitness-virulence impairment is caused by overexpressing ampC in the absence of cell wall recycling, as reproduced by expressing ampC from a plasmid in an AmpG (muropeptide permease)-deficient background. Thus, our findings represent a major step in the understanding of beta-lactam resistance biology and its interplay with fitness and pathogenesis. IMPORTANCE Understanding the impact of antibiotic resistance mechanisms on bacterial pathogenesis is critical to curb the spread of antibiotic resistance. A particularly noteworthy antibiotic resistance mechanism is the beta-lactamase AmpC, produced by Pseudomonas aeruginosa, a major pathogen causing hospital-acquired infections. The regulation of AmpC is linked to the cell wall recycling pathways, and frequently, resistance to beta-lactams is caused by mutation of several of the components of the cell wall recycling pathways such as AmpD. Here we dissect the impact of the pathways for AmpC hyperproduction on virulence, showing that the lack of all three P. aeruginosa AmpD amidases causes a major effect in fitness and pathogenicity, compromising growth, motility, and cytotoxicity. Further analysis indicated that fitness-virulence impairment is specifically caused by the hyperproduction of AmpC in the absence of cell wall recycling. Our work provides valuable information for delineating future strategies for combating P. aeruginosa infections by simultaneously targeting virulence and antibiotic resistance.en
dc.description.sponsorshipThis work was supported by the Ministerio de Economia y Competitividad of Spain and Instituto de Salud Carlos III, which were cofinanced by European Regional Development Fund A way to achieve Europe ERDF through the Spanish Network for the Research in Infectious Diseases (RD12/0015) and grants CP12/03324, SAF2012-38539, PI12/00103, PI15/00088, and PI15/02212.es_ES
dc.language.isoengen
dc.publisherAmerican Society for Microbiology (ASM) en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshBacterial Proteins *
dc.subject.meshMembrane Transport Proteins *
dc.subject.meshPeptidoglycan *
dc.subject.meshGene Deletion *
dc.subject.meshbeta-Lactamases *
dc.subject.meshN-Acetylmuramoyl-L-alanine Amidase *
dc.subject.meshPseudomonas aeruginosa *
dc.subject.meshCell Wall *
dc.subject.meshVirulence *
dc.titleImpact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?en
dc.typeresearch articleen
dc.rights.licenseAttribution 4.0 International*
dc.identifier.pubmedID27795406es_ES
dc.format.volume7es_ES
dc.format.number5es_ES
dc.format.pagee01783-16es_ES
dc.identifier.doi10.1128/mBio.01783-16
dc.relation.publisherversionhttps://dx.doi.org/10.1128/mBio.01783-16en
dc.identifier.journalmBioes_ES
dc.rights.accessRightsopen accessen
dc.subject.decsPared Celular*
dc.subject.decsN-Acetil Muramoil-L-Alanina Amidasa*
dc.subject.decsVirulencia*
dc.subject.decsPeptidoglicano*
dc.subject.decsProteínas de Transporte de Membrana*
dc.subject.decsProteínas Bacterianas*
dc.subject.decsEliminación de Gen*
dc.subject.decsPseudomonas aeruginosa*
dc.subject.decsbeta-Lactamasas*
dc.identifier.scopus2-s2.0-84995387877
dc.identifier.wos390132900055
dc.identifier.puiL613086829


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Este Item está sujeto a una licencia Creative Commons: Attribution 4.0 International