Mostrar el registro sencillo del ítem

dc.contributor.authorRiera-Ferrer, Enrique
dc.contributor.authorMazanec, Hynek
dc.contributor.authorMladineo, Ivona
dc.contributor.authorKonik, Peter
dc.contributor.authorPiazzon, M Carla
dc.contributor.authorKuchta, Roman
dc.contributor.authorPalenzuela, Oswaldo
dc.contributor.authorEstensoro, Itziar
dc.contributor.authorSotillo, Javier 
dc.contributor.authorSitjà-Bobadilla, Ariadna
dc.date.accessioned2024-07-02T12:49:41Z
dc.date.available2024-07-02T12:49:41Z
dc.date.issued2024-04-03
dc.identifier.citationParasit Vectors. 2024 Apr 3;17(1):175.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/19910
dc.description.abstractBackground: Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. Methods: To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. Results: Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. Conclusions: We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the Spanish Ministry of Science and Innovation (MICIN) through the projectsSpariControl(RTI2018-098664-B-I00), with AEI/FEDER; the ThinkInAzul programme supported by MICIN with funding from NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana (THINKINAZUL/2021/022); the Generatitat Valenciana AICO2023 funding (CIA ICO/2022/144); the Czech Science Foundation (grant no. 23-07990S); and by MEYS CR through the Czech-BioImaging large RI project (LM2023050 and OP VVV CZ.02.1.01/0.0/0.0/18_046/0016045). ERF was supported by an FPI contract PRE2019-087409 (MCIN/AEI/https://doi.org/10.13039/501100011033), JS was supported by a Ramón y Cajal fellowship (RYC2021-032443-I) and MCP by a Ramón y Cajal fellowship (RYC2021-2018-024049-I), all funded by MICIN. The authors acknowledged support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).es_ES
dc.language.isoenges_ES
dc.publisherBioMed Central (BMC) es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMonogeneaes_ES
dc.subjectPolyopisthocotylaes_ES
dc.subjectExosomeses_ES
dc.subjectEctosomeses_ES
dc.subjectElectron microscopyes_ES
dc.subjectDrug target candidateses_ES
dc.subjectProphylactic target candidateses_ES
dc.subjectPeptidaseses_ES
dc.subject.meshPlatyhelminths es_ES
dc.subject.meshTrematoda es_ES
dc.subject.meshExtracellular Vesicles es_ES
dc.subject.meshSea Bream es_ES
dc.subject.meshAnimals es_ES
dc.subject.meshProteomics es_ES
dc.titleAn inside out journey: biogenesis, ultrastructure and proteomic characterisation of the ectoparasitic flatworm Sparicotyle chrysophrii extracellular vesicleses_ES
dc.typeresearch articlees_ES
dc.rights.licenseAtribución 4.0 Internacional*
dc.identifier.pubmedID38570784es_ES
dc.format.volume17es_ES
dc.format.number1es_ES
dc.format.page175es_ES
dc.identifier.doi10.1186/s13071-024-06257-xes_ES
dc.contributor.funderConsejo Superior de Investigaciones Científicas (España) es_ES
dc.contributor.funderConferencia de Rectores de las Universidades Españolas es_ES
dc.contributor.funderMinisterio de Ciencia e Innovación (España) es_ES
dc.contributor.funderAgencia Estatal de Investigación (España) es_ES
dc.contributor.funderUnión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF) es_ES
dc.contributor.funderUnión Europea. Comisión Europea. NextGenerationEU es_ES
dc.contributor.funderGeneralitat Valenciana (España) es_ES
dc.contributor.funderCzech Science Foundation es_ES
dc.description.peerreviewedes_ES
dc.identifier.e-issn1756-3305es_ES
dc.relation.publisherversionhttps://doi.org/10.1186/s13071-024-06257-xes_ES
dc.identifier.journalParasites & vectorses_ES
dc.repisalud.centroISCIII::Centro Nacional de Microbiologíaes_ES
dc.repisalud.institucionISCIIIes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/PRTR-C17.I1es_ES
dc.rights.accessRightsopen accesses_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RTI2018-098664-B-I00es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/PRE2019-087409es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RYC2021-032443-Ies_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RYC2021-2018-024049-Ies_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail
Acceso Abierto
Acceso Abierto
Acceso Abierto
Acceso Abierto
Acceso Abierto

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Atribución 4.0 Internacional