Show simple item record

dc.contributor.authorCabezudo, Sofía
dc.contributor.authorSanz-Flores, Maria
dc.contributor.authorCaballero, Alvaro
dc.contributor.authorTasset, Inmaculada
dc.contributor.authorRebollo, Elena
dc.contributor.authorDiaz, Antonio
dc.contributor.authorAragay, Anna M
dc.contributor.authorCuervo, Ana María
dc.contributor.authorMayor, Federico
dc.contributor.authorRibas, Catalina
dc.date.accessioned2021-08-27T10:45:53Z
dc.date.available2021-08-27T10:45:53Z
dc.date.issued2021-07-27
dc.identifier.citationNat Commun.2021;12(1):4540.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/13322
dc.description.abstractThe mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.es_ES
dc.description.sponsorshipWe thank Paula Ramos, Susana Rojo-Berciano, and Laura López for helpful technicalassistance. Dr. Marta Cruces (Universidad Autónoma de Madrid, Spain) for herinvaluable help regarding the liver explants experiments, Dr. Badford Berk (University ofRochester, NY, USA) for providing the GFP-Flag-PB1-p62 plasmid, Drs. Stefan Offer-manns and Nina Wettschureck (Max-Planck-Institute for Heart and Lung Research,Germany) for providing Tie2-CreERT2; Gnaq f/f; Gna11−/−[EC-q/11-KO) mice, andDr. Guzmán Sánchez for scientific advice. We thank also Ricardo Ramos from theGenomic facility of Fundación Parque Científico de Madrid (Universidad Autónoma deMadrid, Spain) and Gemma Rodríguez-Tarduchy from the Genomic facility of theInstituto de Investigaciones Biomédicas“Alberto Sols”for their help with cell linesauthentication. The help from CBMSO Animal Care, Flow Cytometry, Electron andOptical and Confocal Microscopy facilities is also acknowledged. This work was sup-ported by Ministerio de Economía; Industria y Competitividad (MINECO) of Spain(grant SAF2017-84125-R to F.M.), (grant BFU2017-83379-R to A.M.A.), Instituto deSalud Carlos III (PI18/01662 to CR, co-funded with European FEDER contribution),CIBERCV-Instituto de Salud Carlos III, Spain (grant CB16/11/00278 to F.M., co-fundedwith European FEDER contribution), Fundación Ramón Areces (to C.R. and F.M.) andPrograma de Actividades en Biomedicina de la Comunidad de Madrid-B2017/BMD-3671-INFLAMUNE to F.M. and NIH grants AG021904 and AG038072 to A.M.C. Wealso acknowledge the support of a Contrato para la Formación del Profesorado Uni-versitario (FPU13/04341) and (FPU14/06670), an EMBO short-term fellowship (ASTF600-2016). We also acknowledge institutional support to the CBMSO from FundaciónRamón Areces.es_ES
dc.language.isoenges_ES
dc.publisherNature Publishing Group es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject.meshAutophagy es_ES
dc.subject.meshSignal Transduction es_ES
dc.subject.meshAnimals es_ES
dc.subject.meshCHO Cells es_ES
dc.subject.meshCricetulus es_ES
dc.subject.meshFibroblasts es_ES
dc.subject.meshGTP-Binding Protein alpha Subunits, Gq-G11 es_ES
dc.subject.meshHEK293 Cells es_ES
dc.subject.meshHumans es_ES
dc.subject.meshLysosomes es_ES
dc.subject.meshMale es_ES
dc.subject.meshMechanistic Target of Rapamycin Complex 1 es_ES
dc.subject.meshMice es_ES
dc.subject.meshModels, Biologicales_ES
dc.subject.meshPhenotype es_ES
dc.subject.meshProtein Binding es_ES
dc.subject.meshProtein Domains es_ES
dc.subject.meshRats, Wistar es_ES
dc.subject.meshRegulatory-Associated Protein of mTOR es_ES
dc.subject.meshSequestosome-1 Protein es_ES
dc.titleGαq activation modulates autophagy by promoting mTORC1 signaling.es_ES
dc.typejournal articlees_ES
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.identifier.pubmedID34315875es_ES
dc.format.volume12es_ES
dc.format.number1es_ES
dc.format.page4540es_ES
dc.identifier.doi10.1038/s41467-021-24811-4es_ES
dc.contributor.funderMinisterio de Economía, Industria y Competitividad (España) 
dc.contributor.funderInstituto de Salud Carlos III 
dc.contributor.funderUnión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF) 
dc.description.peerreviewedes_ES
dc.identifier.e-issn2041-1723es_ES
dc.relation.publisherversionhttps://doi.org/10.1038/s41467-021-24811-4.es_ES
dc.identifier.journalNature communicationses_ES
dc.repisalud.institucionCNIOes_ES
dc.repisalud.orgCNIOCNIO::Grupos de investigación::Grupo de Biología Computacional Estructurales_ES
dc.rights.accessRightsopen accesses_ES
dc.relation.projectFISinfo:eu-repo/grantAgreement/ES/SAF2017-84125-Res_ES
dc.relation.projectFISinfo:eu-repo/grantAgreement/ES/PI18/01662es_ES


Files in this item

Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 Internacional
This item is licensed under a: Atribución-NoComercial-CompartirIgual 4.0 Internacional