Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Redondo, Ana B
dc.contributor.authorEsteban, Vanesa 
dc.contributor.authorBriones, Ana M
dc.contributor.authorDíaz Del Campo, Lucía S
dc.contributor.authorGonzález-Amor, María
dc.contributor.authorMendez-Barbero, Nerea 
dc.contributor.authorCampanero, Miguel R
dc.contributor.authorRedondo, Juan Miguel 
dc.contributor.authorSalaices, Mercedes
dc.date.accessioned2020-04-30T12:25:46Z
dc.date.available2020-04-30T12:25:46Z
dc.date.issued2018-07
dc.identifier.citationPharmacol Res. 2018; 133:236-249es_ES
dc.identifier.issn10436618es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/9847
dc.description.abstractCyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1+/+) and Rcan1-deficient (Rcan1-/-) mice untreated or treated with the COX-2 inhibitor rofecoxib were used. Vascular function and structure were analysed by myography. COX-2 and phospo-p65 expression were studied by western blotting and immunohistochemistry and TXA2 production by ELISA. We found that Rcan1 deficiency increases COX-2 and IL-6 expression and NF-κB activation in arteries and vascular smooth muscle cells (VSMC). Adenoviral-mediated re-expression of Rcan1.4 in Rcan1-/- VSMC normalized COX-2 expression. Phenylephrine-induced vasoconstrictor responses were greater in aorta from Rcan1-/- compared to Rcan1+/+ mice. This increased response were diminished by etoricoxib, furegrelate, SQ 29548, cyclosporine A and parthenolide, inhibitors of COX-2, TXA2 synthase, TP receptors, calcineurin and NF-κB, respectively. Endothelial removal and NOS inhibition increased phenylephrine responses only in Rcan1+/+ mice. TXA2 levels were greater in Rcan1-/- mice. In small mesenteric arteries, vascular function and structure were similar in both groups of mice; however, vessels from Rcan1-/- mice displayed an increase in vascular stiffness that was diminished by rofecoxib. In conclusion, our results suggest that Rcan1 might act as endogenous negative modulator of COX-2 expression and activity by inhibiting calcineurin and NF-kB pathways to maintain normal contractility and vascular stiffness in aorta and small mesenteric arteries, respectively. Our results uncover a new role for Rcan1 in vascular contractility and mechanical properties.es_ES
dc.description.sponsorshipThis study was supported by Ministerio de Economia, Industria y Competitividad (MINECO) (SAF2012-36400 and SAF2016-80305-P), Institute de Salud Carlos III (ISCIII) (Red de Investigacion Cardiovascular, RD12/0042/0022 and RD12/0042/0024, CiberCV CB16/11/00286 and CB16/11/00264 and PI13/01488) Fondo Europeo de Desarrollo Regional (FEDER) a way to build Europe, Comunidad de Madrid (B2017/BMD-3676), COST BM1301 and Roche-IdiPaz. VE was supported by the Ramon y Cajal Program (RYC-2013-12880).es_ES
dc.language.isoenges_ES
dc.publisherElsevier es_ES
dc.type.hasVersionAMes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCOX-2es_ES
dc.subjectRcan1es_ES
dc.subjectVascular function and stiffnesses_ES
dc.subject.meshAnimals es_ES
dc.subject.meshAorta, Thoracic es_ES
dc.subject.meshCalcium-Binding Proteins es_ES
dc.subject.meshCells, Cultured es_ES
dc.subject.meshCyclooxygenase 2 es_ES
dc.subject.meshIntracellular Signaling Peptides and Proteins es_ES
dc.subject.meshMale es_ES
dc.subject.meshMesenteric Arteries es_ES
dc.subject.meshMice, Inbred C57BL es_ES
dc.subject.meshMice, Knockout es_ES
dc.subject.meshMuscle Contraction es_ES
dc.subject.meshMuscle Proteins es_ES
dc.subject.meshMuscle, Smooth, Vascular es_ES
dc.subject.meshMyocytes, Smooth Muscle es_ES
dc.titleRegulator of calcineurin 1 modulates vascular contractility and stiffness through the upregulation of COX-2-derived prostanoidses_ES
dc.typejournal articlees_ES
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.pubmedID29309904es_ES
dc.format.volume133es_ES
dc.format.page236-249es_ES
dc.identifier.doi10.1016/j.phrs.2018.01.001es_ES
dc.contributor.funderMinisterio de Economía, Industria y Competitividad (España) 
dc.contributor.funderInstituto de Salud Carlos III 
dc.contributor.funderCentro de Investigación Biomedica en Red - CIBER
dc.contributor.funderUnión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF) 
dc.contributor.funderComunidad de Madrid (España) 
dc.description.peerreviewedes_ES
dc.identifier.e-issn1096-1186es_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.phrs.2018.01.001es_ES
dc.identifier.journalPharmacological researches_ES
dc.repisalud.orgCNICCNIC::Grupos de investigación::Regulación Génica en Remodelado Vascular e Inflamaciónes_ES
dc.repisalud.institucionCNICes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/SAF2012-36400es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/SAF2016-80305-Pes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/RD12/0042/0022es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/RD12/0042/0024es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/CB16/11/00286es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/CB16/11/00264es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/PI13/01488es_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional