Mostrar el registro sencillo del ítem

dc.contributor.authorBlanco-Menendez, Noelia 
dc.contributor.authordel Fresno, Carlos 
dc.contributor.authorFernandes, Sandra
dc.contributor.authorCalvo, Enrique 
dc.contributor.authorConde-Garrosa, Ruth 
dc.contributor.authorKerr, William G
dc.contributor.authorSancho, David 
dc.date.accessioned2020-04-23T08:37:47Z
dc.date.available2020-04-23T08:37:47Z
dc.date.issued2015-11-01
dc.identifier.citationJ Immunol. 2015; 195(9):4466-78es_ES
dc.identifier.issn0022-1767es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/9706
dc.description.abstractDectin-1 (Clec7a) is a paradigmatic C-type lectin receptor that binds Syk through a hemITAM motif and couples sensing of pathogens such as fungi to induction of innate responses. Dectin-1 engagement triggers a plethora of activating events, but little is known about the modulation of such pathways. Trying to define a more precise picture of early Dectin-1 signaling, we explored the interactome of the intracellular tail of the receptor in mouse dendritic cells. We found unexpected binding of SHIP-1 phosphatase to the phosphorylated hemITAM. SHIP-1 colocalized with Dectin-1 during phagocytosis of zymosan in a hemITAM-dependent fashion. Moreover, endogenous SHIP-1 relocated to live or heat-killed Candida albicans-containing phagosomes in a Dectin-1-dependent manner in GM-CSF-derived bone marrow cells (GM-BM). However, SHIP-1 absence in GM-BM did not affect activation of MAPK or production of cytokines and readouts dependent on NF-κB and NFAT. Notably, ROS production was enhanced in SHIP-1-deficient GM-BM treated with heat-killed C. albicans, live C. albicans, or the specific Dectin-1 agonists curdlan or whole glucan particles. This increased oxidative burst was dependent on Dectin-1, Syk, PI3K, phosphoinositide-dependent protein kinase 1, and NADPH oxidase. GM-BM from CD11c∆SHIP-1 mice also showed increased killing activity against live C. albicans that was dependent on Dectin-1, Syk, and NADPH oxidase. These results illustrate the complexity of myeloid C-type lectin receptor signaling, and how an activating hemITAM can also couple to intracellular inositol phosphatases to modulate selected functional responses and tightly regulate processes such as ROS production that could be deleterious to the host.es_ES
dc.description.sponsorshipentro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); Spanish Ministry of Economy and Competitiveness [SAF-2013-42920R]; European Research Council Starting Independent Researcher Grant [ERC-2010-StG 260414]; Pro-CNIC Foundation; National Institutes of Health [R01 HL72523, R01 HL085580, R01 HL107127]; Paige Arnold Butterfly Runes_ES
dc.language.isoenges_ES
dc.publisherAmerican Association of Immunologists (AAI) es_ES
dc.type.hasVersionAMes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.meshAmino Acid Motifs es_ES
dc.subject.meshAmino Acid Sequence es_ES
dc.subject.meshAnimals es_ES
dc.subject.meshBlotting, Westernes_ES
dc.subject.meshBone Marrow Cells es_ES
dc.subject.meshCandida albicans es_ES
dc.subject.meshDendritic Cells es_ES
dc.subject.meshGranulocyte-Macrophage Colony-Stimulating Factor es_ES
dc.subject.meshHost-Pathogen Interactions es_ES
dc.subject.meshInositol Polyphosphate 5-Phosphatases es_ES
dc.subject.meshLectins, C-Type es_ES
dc.subject.meshMacrophages es_ES
dc.subject.meshMice, Knockout es_ES
dc.subject.meshMicroscopy, Confocal es_ES
dc.subject.meshMolecular Sequence Data es_ES
dc.subject.meshNF-kappa B es_ES
dc.subject.meshNFATC Transcription Factors es_ES
dc.subject.meshPhagocytosis es_ES
dc.subject.meshPhagosomes es_ES
dc.subject.meshPhosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases es_ES
dc.subject.meshPhosphoric Monoester Hydrolases es_ES
dc.subject.meshProtein Binding es_ES
dc.subject.meshReactive Oxygen Species es_ES
dc.subject.meshSignal Transduction es_ES
dc.titleSHIP-1 Couples to the Dectin-1 hemITAM and Selectively Modulates Reactive Oxygen Species Production in Dendritic Cells in Response to Candida albicanses_ES
dc.typejournal articlees_ES
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.pubmedID26416276es_ES
dc.format.volume195es_ES
dc.format.number9es_ES
dc.format.page4466-4478es_ES
dc.identifier.doi10.4049/jimmunol.1402874es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España) 
dc.contributor.funderUnión Europea. Comisión Europea. European Research Council (ERC) 
dc.contributor.funderFundación ProCNIC 
dc.contributor.funderNational Institutes of Health (Estados Unidos) 
dc.description.peerreviewedes_ES
dc.identifier.e-issn1550-6606es_ES
dc.relation.publisherversionhttps://doi.org/10.4049/jimmunol.1402874es_ES
dc.identifier.journalJournal of immunology (Baltimore, Md. : 1950)es_ES
dc.repisalud.orgCNICCNIC::Grupos de investigación::Inmunobiologíaes_ES
dc.repisalud.orgCNICCNIC::Unidades técnicas::Proteómica / Metabolómica
dc.repisalud.institucionCNICes_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional