Mostrar el registro sencillo del ítem

dc.contributor.authorAlbert-Smet, Ignacio
dc.contributor.authorMarcos-Vidal, Asier
dc.contributor.authorVaquero, Juan José
dc.contributor.authorDesco, Manuel 
dc.contributor.authorMuñoz-Barrutia, Arrate
dc.contributor.authorRipoll, Jorge
dc.date.accessioned2019-02-25T08:16:48Z
dc.date.available2019-02-25T08:16:48Z
dc.date.issued2019
dc.identifier.citationFront Neuroanat. 2019; 13(1):1es_ES
dc.identifier.issn1662-5129es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/7224
dc.description.abstractLight-sheet fluorescence microscopy (LSFM) has been present in cell biology laboratories for quite some time, mainly as custom-made systems, with imaging applications ranging from single cells (in the micrometer scale) to small organisms (in the millimeter scale). Such microscopes distinguish themselves for having very low phototoxicity levels and high spatial and temporal resolution, properties that make them ideal for a large range of applications. These include the study of cellular dynamics, in particular cellular motion which is essential to processes such as tumor metastasis and tissue development. Experimental setups make extensive use of microdevices (bioMEMS) that provide better control over the substrate environment than traditional cell culture experiments. For example, to mimic in vivo conditions, experiment biochemical dynamics, and trap, move or count cells. Microdevices provide a higher degree of empirical complexity but, so far, most have been designed to be imaged through wide-field or confocal microscopes. Nonetheless, the properties of LSFM render it ideal for 3D characterization of active cells. When working with microdevices, confocal microscopy is more widespread than LSFM even though it suffers from higher phototoxicity and slower acquisition speeds. It is sometimes possible to illuminate with a light-sheet microdevices designed for confocal microscopes. However, these bioMEMS must be redesigned to exploit the full potential of LSFM and image more frequently on a wider scale phenomena such as motion, traction, differentiation, and diffusion of molecules. The use of microdevices for LSFM has extended beyond cell tracking studies into experiments regarding cytometry, spheroid cultures and lab-on-a-chip automation. Due to light-sheet microscopy being in its early stages, a setup of these characteristics demands some degree of optical expertise; and designing three-dimensional microdevices requires facilities, ingenuity, and experience in microfabrication. In this paper, we explore different approaches where light-sheet microscopy can achieve single-cell and subcellular resolution within microdevices, and provide a few pointers on how these experiments may be improved.es_ES
dc.description.sponsorshipJR acknowledges funding from EU H2020 FET Open project SENSITIVE, ID 801347 and Spanish Ministry of Economy and Competitiveness (MINECO) Grant FIS2016-77892-R. AM-B acknowledges funding from the MINECO (TEC2013-48552-C2-1-R, TEC2015-73064-EXP, TEC2016-78052-R), Beca Leonardo a Investigadores y Creadores Culturales 2017, Fundación BBVA and EU Open project SENSITIVE. The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades and the ProCNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).es_ES
dc.language.isoenges_ES
dc.publisherFrontiers Media es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSPIMes_ES
dc.subjectCellular imaginges_ES
dc.subjectLight-sheet fluorescence microscopyes_ES
dc.subjectMicrodeviceses_ES
dc.subjectMicrofluidicses_ES
dc.titleApplications of Light-Sheet Microscopy in Microdeviceses_ES
dc.typejournal articlees_ES
dc.rights.licenseAtribución 4.0 Internacional*
dc.identifier.pubmedID3076-0983es_ES
dc.format.volume13es_ES
dc.format.page1es_ES
dc.identifier.doi10.3389/fnana.2019.00001es_ES
dc.contributor.funderUnión Europea. Comisión Europea 
dc.contributor.funderMinisterio de Economía y Competitividad (España) 
dc.contributor.funderFundación BBVA 
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España) 
dc.contributor.funderFundación ProCNIC 
dc.description.peerreviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.3389/fnana.2019.00001es_ES
dc.identifier.journalFrontiers in Neuroanatomyes_ES
dc.repisalud.orgCNICCNIC::Unidades técnicas::Imagen Avanzadaes_ES
dc.repisalud.institucionCNICes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/801347es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/SEV-2015-0505es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/FIS2016-77892-Res_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/TEC2013-48552-C2-1-Res_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/TEC2015-73064-EXPes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/TEC2016-78052-Res_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Atribución 4.0 Internacional