Mostrar el registro sencillo del ítem

dc.contributor.authorJimenez-Carretero, Daniel 
dc.contributor.authorAbrishami, Vahid 
dc.contributor.authorFernandez-de-Manuel, Laura 
dc.contributor.authorPalacios, Irene 
dc.contributor.authorQuilez-Alvarez, Antonio 
dc.contributor.authorDiez-Sanchez, Alberto 
dc.contributor.authordel Pozo, Miguel Angel 
dc.contributor.authorMontoya, Maria 
dc.date.accessioned2019-02-07T13:51:09Z
dc.date.available2019-02-07T13:51:09Z
dc.date.issued2018
dc.identifier.citationPLoS Comput Biol. 2018; 14(11):e1006238es_ES
dc.identifier.issn1553-7358es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/7142
dc.description.abstractToxicity is an important factor in failed drug development, and its efficient identification and prediction is a major challenge in drug discovery. We have explored the potential of microscopy images of fluorescently labeled nuclei for the prediction of toxicity based on nucleus pattern recognition. Deep learning algorithms obtain abstract representations of images through an automated process, allowing them to efficiently classify complex patterns, and have become the state-of-the art in machine learning for computer vision. Here, deep convolutional neural networks (CNN) were trained to predict toxicity from images of DAPI-stained cells pre-treated with a set of drugs with differing toxicity mechanisms. Different cropping strategies were used for training CNN models, the nuclei-cropping-based Tox_CNN model outperformed other models classifying cells according to health status. Tox_CNN allowed automated extraction of feature maps that clustered compounds according to mechanism of action. Moreover, fully automated region-based CNNs (RCNN) were implemented to detect and classify nuclei, providing per-cell toxicity prediction from raw screening images. We validated both Tox_(R)CNN models for detection of pre-lethal toxicity from nuclei images, which proved to be more sensitive and have broader specificity than established toxicity readouts. These models predicted toxicity of drugs with mechanisms of action other than those they had been trained for and were successfully transferred to other cell assays. The Tox_(R)CNN models thus provide robust, sensitive, and cost-effective tools for in vitro screening of drug-induced toxicity. These models can be adopted for compound prioritization in drug screening campaigns, and could thereby increase the efficiency of drug discovery.es_ES
dc.description.sponsorshipThis study was supported by grants BIO2014-62200-EXP and PI16/02132 from the Spanish Ministry of Science, Innovation and Universities (http://www.ciencia.gob.es/portal/site/ MICINN/), and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641639 (https://ec.europa.eu/programmes/ horizon2020/) to MCM. ADS received a fellowship from La Caixa Foundation (https:// obrasociallacaixa.org/es/). AQA was supported by a Marie Curie Initial Training Network (ITN) “BIOPOL” No 641639 (https://ec.europa.eu/ programmes/horizon2020/). Work in the MAdP laboratory was supported by grants SAF201451876-R and SAF2017-83130-R from the Spanish Ministry of Science, Innovation and Universities (http://www.ciencia.gob.es/portal/site/MICINN/) and grant 15-0404 from Worldwide Cancer Research (https://www.worldwidecancerresearch. org/) and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641639 (https://ec.europa.eu/programmes/ horizon2020/). The CNIC is supported by the Spanish Ministry of Science, Innovation and Universities (http://www.ciencia.gob.es/portal/site/ MICINN/) and the Pro CNIC Foundation (https:// www.fundacionprocnic.es/fundacion.php), and is a Severo Ochoa Center of Excellence (SEV-20150505)es_ES
dc.language.isoenges_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleTox_(R)CNN: Deep learning-based nuclei profiling tool for drug toxicity screeninges_ES
dc.typejournal articlees_ES
dc.rights.licenseAtribución 4.0 Internacional*
dc.identifier.pubmedID30500821es_ES
dc.format.volume14es_ES
dc.format.number11es_ES
dc.format.pagee1006238es_ES
dc.identifier.doi10.1371/journal.pcbi.1006238es_ES
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España) 
dc.contributor.funderUnión Europea. Comisión Europea 
dc.contributor.funderFundación ProCNIC 
dc.contributor.funderWorldwide Cancer Research 
dc.contributor.funderFundación La Caixa 
dc.description.peerreviewedes_ES
dc.identifier.e-issn1553-7358es_ES
dc.relation.publisherversionhttps://doi.org/10.1371/journal.pcbi.1006238es_ES
dc.identifier.journalPLoS computational biologyes_ES
dc.repisalud.orgCNICCNIC::Grupos de investigación::Señalización por Integrinases_ES
dc.repisalud.orgCNICCNIC::Unidades técnicas::Celómicaes_ES
dc.repisalud.institucionCNICes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/641639es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/SEV-2015-0505es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/BIO2014-62200-EXPes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/SAF201-451876-Res_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/SAF2017-83130-Res_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Acceso Abierto
Acceso Abierto

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Atribución 4.0 Internacional