Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz-Guerra, Anabel
dc.contributor.authorVillena-Gutierrez, Rocio 
dc.contributor.authorClemente-Moragón, Agustín
dc.contributor.authorGomez, Monica 
dc.contributor.authorOliver, Eduardo 
dc.contributor.authorFernández-Tocino, Miguel
dc.contributor.authorGalan-Arriola, Carlos 
dc.contributor.authorCádiz, Laura
dc.contributor.authorIbáñez, Borja 
dc.date.accessioned2024-06-24T12:16:45Z
dc.date.available2024-06-24T12:16:45Z
dc.date.issued2024-04
dc.identifier.citationJACC CardioOncol. 2024 Apr 16;6(2):217-232.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/19848
dc.description.abstractBACKGROUND Anthracycline-induced cardiotoxicity (AIC) debilitates quality of life in cancer survivors. Serial characterizations are lacking of the molecular processes occurring with AIC. OBJECTIVES The aim of this study was to characterize AIC progression in a mouse model from early (subclinical) to advanced heart failure stages, with an emphasis on cardiac metabolism and mitochondrial structure and function. METHODS CD1 mice received 5 weekly intraperitoneal doxorubicin injections (5 mg/kg) and were followed by serial echocardiography for 15 weeks. At 1, 9, and 15 weeks after the doxorubicin injections, mice underwent fluorodeoxyglucose positron emission tomography, and hearts were extracted for microscopy and molecular analysis. RESULTS Cardiac atrophy was evident at 1 week post-doxorubicin (left ventricular [LV] mass 117 ± 26 mg vs 97 ± 25 mg at baseline and 1 week, respectively; P < 0.001). Cardiac mass nadir was observed at week 3 post-doxorubicin (79 ± 16 mg; P = 0.002 vs baseline), remaining unchanged thereafter. Histology confirmed significantly reduced cardiomyocyte area (167 ± 19 μm2 in doxorubicin-treated mice vs 211 ± 26 μm2 in controls; P = 0.004). LV ejection fraction declined from week 6 post-doxorubicin (49% ± 9% vs 61% ± 9% at baseline; P < 0.001) until the end of follow-up at 15 weeks (43% ± 8%; P < 0.001 vs baseline). At 1 week post-doxorubicin, when LV ejection fraction remained normal, reduced cardiac metabolism was evident from down-regulated markers of fatty acid oxidation and glycolysis. Metabolic impairment continued to the end of follow-up in parallel with reduced mitochondrial adenosine triphosphate production. A transient early up-regulation of nutrient-sensing and mitophagy markers were observed, which was associated with mitochondrial enlargement. Later stages, when mitophagy was exhausted, were characterized by overt mitochondrial fragmentation. CONCLUSIONS Cardiac atrophy, global hypometabolism, early transient-enhanced mitophagy, biogenesis, and nutrient sensing constitute candidate targets for AIC prevention.es_ES
dc.description.sponsorshipDr Ibáñez is supported by the European Commission (grants ERC-CoG 819775 and H2020-HEALTH 945118), the Spanish Ministry of Science, Innovation and Universities (grant PID2022-140176OB-I00), and Comunidad de Madrid through the Red Madrileña de Nanomedicina en Imagen Molecular (grant P2022/BMD-7403 RENIM-CM). Dr DíazGuerra’s PhD fellowship is funded by the Spanish Association Against Cancer. Dr Oliver is a Ramón y Cajal fellow (grant RYC2020-028884-I) funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in Your Future.” Centro Nacional de Investigaciones Cardiovasculares is supported by Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/ 10.13039/501100011033). The authors have reported that they have no relationships relevant to the contents of this paper to disclose.es_ES
dc.language.isoenges_ES
dc.publisherElsevier es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAnthracycline Cardiotoxicity Induces Progressive Changes in Myocardial Metabolism and Mitochondrial Quality Control: Novel Therapeutic Target.es_ES
dc.typejournal articlees_ES
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.pubmedID38774018es_ES
dc.format.volume6es_ES
dc.format.number2es_ES
dc.format.page217es_ES
dc.identifier.doi10.1016/j.jaccao.2024.02.005es_ES
dc.contributor.funderUnión Europea. Comisión Europea. European Research Council (ERC) es_ES
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España) es_ES
dc.contributor.funderComunidad de Madrid (España) es_ES
dc.contributor.funderInstituto de Salud Carlos III es_ES
dc.contributor.funderMinisterio de Ciencia e Innovación (España) es_ES
dc.contributor.funderMinisterio de Ciencia e Innovación. Centro de Excelencia Severo Ochoa (España) es_ES
dc.description.peerreviewedes_ES
dc.identifier.e-issn2666-0873es_ES
dc.relation.publisherversion10.1016/j.jaccao.2024.02.005es_ES
dc.identifier.journalJACC. CardioOncologyes_ES
dc.repisalud.orgCNICCNIC::Grupos de investigación::Laboratorio Traslacional para la Imagen y Terapia Cardiovasculares_ES
dc.repisalud.institucionCNICes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/ERC-CoG/819775es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/d H2020-HEALTH/945118es_ES
dc.rights.accessRightsopen accesses_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/PID2022-140176OB-I00es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/P2022/BMD-7403es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RYC2020-028884-Ies_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/y MICIN/AEI/10.13039/501100011033/CEX2020-001041-Ses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional