Mostrar el registro sencillo del ítem

dc.contributor.authorAlvarez-Palomo, Ana Belén
dc.contributor.authorRequena-Osete, Jordi
dc.contributor.authorDelgado-Morales, Raul
dc.contributor.authorMoreno-Manzano, Victoria
dc.contributor.authorGrau-Bove, Carme
dc.contributor.authorTejera, Agueda M
dc.contributor.authorOtero, Manel Juan
dc.contributor.authorBarrot, Carme
dc.contributor.authorSantos-Barriopedro, Irene
dc.contributor.authorVaquero, Alejandro
dc.contributor.authorMezquita-Pla, Jovita
dc.contributor.authorMoran, Sebastian
dc.contributor.authorNaya, Carlos Hobeich
dc.contributor.authorGarcia-Martínez, Iris
dc.contributor.authorPérez, Francisco Vidal
dc.contributor.authorBlasco, MA 
dc.contributor.authorEsteller, Manel
dc.contributor.authorEdel, Michael J
dc.date.accessioned2024-03-21T11:18:50Z
dc.date.available2024-03-21T11:18:50Z
dc.date.issued2021-07
dc.identifier.citationStem Cells . 2021;39(7):866-881.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/19030
dc.description.abstractA key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC. We demonstrate that CYCLIN D1 made iPSC have (a) lower multitelomeric signal, (b) reduced double-strand DNA breaks, (c) correct nuclear localization of RAD51 protein expression, and (d) reduced single-nucleotide polymorphism (SNP) changes per chromosome, compared with the classical reprogramming method using C-MYC. CYCLIN D1 iPSC have reduced teratoma Ki67 cell growth kinetics and derived neural stem cells successfully engraft in a hostile spinal cord injury (SCI) microenvironment with efficient survival, differentiation. We demonstrate that CYCLIN D1 promotes double-stranded DNA damage repair predominantly through HR during cell reprogramming to efficiently produce iPSC. CYCLIN D1 reduces general cell stress associated with significantly lower SIRT1 gene expression and can rescue Sirt1 null mouse cell reprogramming. In conclusion, we show synthetic mRNA transfection of CYCLIN D1 repairs DNA during reprogramming resulting in significantly improved genetically stable footprint in human iPSC, enabling a new cell reprogramming method for more accurate and reliable generation of human iPSC for disease modeling and future clinical applications.es_ES
dc.description.sponsorshipConsejo Superior de Investigaciones Cientificas, Grant/Award Numbers: RYC2010-06512, BFU2011-26596, BFU2014-54467-P; TV3 Marato project, Grant/Award Number: FBG309768; European Commission; Generalitat de Catalunya; EU; Worldwide Cancer Research; Banco Santander; Fundacion Botin; European Regional Development Fund; Spanish Ministry of Science and Innovation; Fondo Europeo de Desarrollo Regional; Fundacio La Marato de TV3; Agencia Estatal de Investigacion; Ministerio de Ciencia e Innovacion; FEDER; Fundacio La Marato de TV3; University of Barcelonaes_ES
dc.language.isoenges_ES
dc.publisherOxford University Press es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.meshInduced Pluripotent Stem Cells es_ES
dc.subject.meshAnimals es_ES
dc.subject.meshCell Differentiation es_ES
dc.subject.meshCellular Reprogramming es_ES
dc.subject.meshCyclin D1 es_ES
dc.subject.meshDNA Repair es_ES
dc.subject.meshHumans es_ES
dc.subject.meshMice es_ES
dc.subject.meshRNA, Messenger es_ES
dc.titleA synthetic mRNA cell reprogramming method using CYCLIN D1 promotes DNA repair, generating improved genetically stable human induced pluripotent stem cells.es_ES
dc.typejournal articlees_ES
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.pubmedID33621399es_ES
dc.format.volume39es_ES
dc.format.number7es_ES
dc.format.page866es_ES
dc.identifier.doi10.1002/stem.3358es_ES
dc.contributor.funderFundación La Marató TV3 es_ES
dc.contributor.funderGovernment of Catalonia (España) es_ES
dc.contributor.funderWorldwide Cancer Research es_ES
dc.contributor.funderFundación Banco Santander es_ES
dc.contributor.funderInstituto de Salud Carlos III es_ES
dc.contributor.funderUniversity of Barcelona (España) es_ES
dc.contributor.funderAgencia Estatal de Investigación (España) es_ES
dc.contributor.funderMinisterio de Economía e Innovación (España) es_ES
dc.description.peerreviewedes_ES
dc.identifier.e-issn1549-4918es_ES
dc.relation.publisherversionhttps://doi.org/10.1002/stem.3358es_ES
dc.identifier.journalStem cells (Dayton, Ohio)es_ES
dc.repisalud.institucionCNIOes_ES
dc.repisalud.orgCNIOCNIO::Grupos de investigación::Grupo de Telómeros y Telomerasaes_ES
dc.rights.accessRightsopen accesses_ES
dc.relation.projectFISinfo:eu-repo/grantAgreement/ES/RYC2010-06512es_ES
dc.relation.projectFISinfo:eu-repo/grantAgreement/ES/BFU2011-26596es_ES
dc.relation.projectFISinfo:eu-repo/grantAgreement/ES/BFU2014-54467-Pes_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional