Show simple item record

dc.contributor.authorHong, Xiaotong
dc.contributor.authorIsern, Joan 
dc.contributor.authorCampanario, Silvia
dc.contributor.authorPerdiguero, Eusebio
dc.contributor.authorRamírez-Pardo, Ignacio
dc.contributor.authorSegalés, Jessica
dc.contributor.authorHernansanz-Agustín, Pablo
dc.contributor.authorCurtabbi, Andrea
dc.contributor.authorDeryagin, Oleg
dc.contributor.authorPollán, Angela
dc.contributor.authorGonzález-Reyes, José A
dc.contributor.authorVillalba, José M
dc.contributor.authorSandri, Marco
dc.contributor.authorSerrano, Antonio L
dc.contributor.authorEnriquez, Jose Antonio 
dc.contributor.authorMuñoz-Cánoves, Pura
dc.date.accessioned2023-03-17T14:37:08Z
dc.date.available2023-03-17T14:37:08Z
dc.date.issued2022-09-01
dc.identifier.citationCell Stem Cell. 2022 Sep 1;29(9):1298-1314.e10es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/15674
dc.description.abstractSkeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.es_ES
dc.description.sponsorshipWe thank J. M. Ballesteros, L. Ortet, V. Lukesova, E. Andre´ s, V. Moiseeva, A. Navarro, and M. Raya for their technical contributions, L. Garcı´a-Prat for initiating satellite cell/mitophagy studies, and all members of the P.M.C. laboratory for their helpful discussions. We are very grateful to L. Scorrano for the Drp1-floxed (and Opa1-floxed) mouse lines and for reading the manuscript, V. Romanello for help in obtaining mouse lines, F. Sa´ nchez-Cabo and M. J. Go´ - mez for assistance in bioinformatics, and R.I. Klein Geltink and E. Pearce for advice on 3D mitochondria analysis; we also thank M.B. Alvarez-Flores and E. Prieto-Garcı´a (CNIC FACS Facility); V. Caiolfa and V. Labrador-Cantarero (CNIC Advanced Microscopy Facility); A. Dopazo and A. Benguria (CNIC-Genomics Facility); S. Rodrı´guez-Colilla (CNIC-Animal Facility); and Myoage network and tissue bank and Hospital Vall d’Hebron, for human material. We are also indebted to Veronica Raker for excellent editing. Work in the PMC laboratory was supported by Spanish Ministerio de Ciencia e Innovacio´ n (RTI2018-096068 to P.M.-C. and E.P), ERC-2016-AdG-741966, LaCaixa- HEALTH-HR17-00040, MDA, UPGRADE-H2020-825825, AFM-Telethon, DPP-Spain, Fundacio´ La Marato´ TV3-80/19-202021 to P.M.-C; Fundacio´ La Marato´ TV3-137/38-202033 to A.L.S.; partly supported by Milky Way Research Foundation (MWRF) to P.M.-C; Severo Ochoa Program for Centers of Excellence to CNIC (SEV-2015-0505) and Maria de Maeztu Program for Units of Excellence to UPF (MDM-2014-0370). Work in the JAE laboratory was supported by Ministerio de Ciencia e Innovacion (RTI2018-099357-BI00, RED2018-102576-T), Human Frontier Science Program HFSP (RGP0016/2018), Centro de Investigacio´ n Biome´ dica en Red en Fragilidad y Envejecimento Saludable (CIBERFES16/10/00282), and Leduq Foundation award (REDOX-17CVD04). Work in JMV laboratory was supported by the Spanish Ministerio de Ciencia e Innovacio´ n (RTI2018-100695-B-I00), Spanish Junta de Andalucı´a (P18-RT-4264, 1263735-R and BIO-276), the FEDER Funding Program from the European Union, and Universidad de Co´ rdoba. The authors are indebted to the personnel from the Servicio Centralizado de Apoyo a la Investigacio´ n (SCAI; University of Co´ rdoba) for technical support with the transmission electron microscope. Work in MS laboratory was funded by the Italian Assoc. for Cancer Research (AIRC IG-D17388 and ID23257) and ASI (MARS-PRE, project DC-VUM-2017-006). X.H., S.C., I.R.-P, and A.C were supported by Severo Ochoa PFI, PI, FPI, and H2020 Marie Sk1odowska-Curie Actions predoctoral fellowships, respectively. P.H.-A was supported by Juan de la Cierva-Incorporacio´ n fellowship.es_ES
dc.language.isoenges_ES
dc.publisherCell Press es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.meshMitochondrial Dynamics es_ES
dc.subject.meshMitophagy es_ES
dc.subject.meshAged es_ES
dc.subject.meshHumans es_ES
dc.subject.meshMitochondria es_ES
dc.subject.meshMuscle, Skeletales_ES
dc.subject.meshMuscles es_ES
dc.subject.meshStem Cells es_ES
dc.titleMitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy.es_ES
dc.typejournal articlees_ES
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.pubmedID35998641es_ES
dc.format.volume29es_ES
dc.format.number9es_ES
dc.format.page1298es_ES
dc.identifier.doi10.1016/j.stem.2022.07.009es_ES
dc.contributor.funderMinisterio de Ciencia e Innovación (España) es_ES
dc.contributor.funderFundación La Caixa es_ES
dc.contributor.funderFundación La Marató TV3 es_ES
dc.contributor.funderMinisterio de Ciencia e Innovación. Centro de Excelencia Severo Ochoa (España) es_ES
dc.contributor.funderUnión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF) es_ES
dc.contributor.funderRegional Government of Andalusia (España) es_ES
dc.contributor.funderUnión Europea. Comisión Europea. H2020 es_ES
dc.contributor.funderMarie Curie es_ES
dc.description.peerreviewedes_ES
dc.identifier.e-issn1875-9777es_ES
dc.relation.publisherversion10.1016/j.stem.2022.07.009es_ES
dc.identifier.journalCell stem celles_ES
dc.repisalud.orgCNICCNIC::Grupos de investigación::Genética Funcional del Sistema de Fosforilación Oxidativaes_ES
dc.repisalud.institucionCNICes_ES
dc.rights.accessRightsopen accesses_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RTI2018-096068es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/TV3-80/19-202021es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RTI2018-099357-BI00es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RED2018-102576-Tes_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RGP0016/2018es_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/RTI2018-100695-B-I00es_ES


Files in this item

Acceso Abierto
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This item is licensed under a: Attribution-NonCommercial-NoDerivatives 4.0 Internacional