Show simple item record

dc.contributor.authorLopez-Montes, Alejandro
dc.contributor.authorGalve, Pablo
dc.contributor.authorUdias, Jose Manuel
dc.contributor.authorCal-Gonzalez, Jacobo
dc.contributor.authorVaquero, Juan Jose
dc.contributor.authorDesco, Manuel 
dc.contributor.authorHerraiz, Joaquin L
dc.identifier.citationAppl Sci. 2020; 10(8):18es_ES
dc.description.abstractReal-time positron emission tomography (PET) may provide information from first-shot images, enable PET-guided biopsies, and allow awake animal studies. Fully-3D iterative reconstructions yield the best images in PET, but they are too slow for real-time imaging. Analytical methods such as Fourier back projection (FBP) are very fast, but yield images of poor quality with artifacts due to noise or data incompleteness. In this work, an image reconstruction based on the pseudoinverse of the system response matrix (SRM) is presented. w. To implement the pseudoinverse method, the reconstruction problem is separated into two stages. First, the axial part of the SRM is pseudo-inverted (PINV) to rebin the 3D data into 2D datasets. Then, the resulting 2D slices can be reconstructed with analytical methods or by applying the pseudoinverse algorithm again. The proposed two-step PINV reconstruction yielded good-quality images at a rate of several frames per second, compatible with real time applications. Furthermore, extremely fast direct PINV reconstruction of projections of the 3D image collapsed along specific directions can be implemented.es_ES
dc.description.sponsorshipPart of the calculations in this work were performed in the "Cluster de Calculo para Tecnicas Fisicas" funded in part by UCM and in part by UE Regional Funds. We acknowledge the support from the Spanish Government (FPA2015-65035-P, RTC-2015-3772-2, and RTI2018-095800-A-I00), Comunidad de Madrid (S2013/MIT-3024 TOPUS-CM, B2017/BMD-3888 PRONTO-CM), and European Regional Funds. This work was also supported by the EU's H2020 under MediNet, a Networking Activity of ENSAR-2 (grant agreement 654002), and by a NIH R01 CA215700-2 grant. The CNIC is supported by the Ministerio de Ciencia, Innovacion y Universidades and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).es_ES
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI) es_ES
dc.titleReal-Time 3D PET Image with Pseudoinverse Reconstructiones_ES
dc.typejournal articlees_ES
dc.rights.licenseAtribución 4.0 Internacional*
dc.contributor.funderComplutense University of Madrid (España) 
dc.contributor.funderUnión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF) 
dc.contributor.funderGovernment of Spain 
dc.contributor.funderComunidad de Madrid (España) 
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España) 
dc.contributor.funderFundación ProCNIC 
dc.identifier.journalApplied Scienceses_ES
dc.repisalud.orgCNICCNIC::Unidades técnicas::Imagen Avanzadaes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/S2013/MIT-3024 TOPUS-CM,es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/B2017/BMD-3888 PRONTO-CMes_ES
dc.rights.accessRightsopen accesses_ES

Files in this item

Acceso Abierto

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This item is licensed under a: Atribución 4.0 Internacional