This is the peer reviewed version of the following article:

which has been published in final form at: https://doi.org/10.1073/pnas.1603754113
Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations

Short Title: Cardiac electrical abnormalities in progeria

José Rivera-Torresa,1, Conrado J. Calvoa,b,2, Anna Llachc,2, Gabriela Guzmán-Martíneza,d,2, Ricardo Caballeroe, Cristina González-Gómeza, Luis J. Jiménez-Borregueroa,f, Juan A. Guadixg, Fernando G. Osorioh, Carlos López-Otinh, Adela Herraz-Martínezi, Nuria Cabelloj, Alex Vallmitjana1, Raul Benítezl, Leslie B. Gordonk,l, José Jalifea,m, José Mª Pérez-Pomaresg, Juan Tamargoe, Eva Delpónc,l, David Filgueiras-Ramaann, Vicente Andrésa,n

a Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
b Grupo Bioingeniería y Electrofisiología Cardíaca GEB, Bio-ITACA, Universitat Politècnica de València, València, Spain.
c Institut de Investigació Biomedica Sant Pau, Hospital de Sant Pau, Barcelona, Spain.
d Cardiac Imaging Unit, Cardiology Department, Hospital Universitario La Paz, IdiPaz. Madrid, Spain.
e Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain.
f Servicio de Cardiología, Hospital de la Princesa, Madrid, Spain.
g Departamento de Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
h Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.
i Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau, Barcelona, Spain.
j Automatic Control Department, Universitat Politècnica de Catalunya, Barcelona, Spain.
k Department of Pediatrics, Alpert Medical School of Brown University, and Hasbro Children’s Hospital, Providence, RI, USA.
l Department of Anesthesia, Division of Critical Care Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA.
m Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA.
n Department of Cardiology. Cardiac Electrophysiology Unit. Hospital Clínico San Carlos. Madrid. Spain.

1 Present address: Faculty of Biomedical Science, European University of Madrid, Spain
2 C.J.C., A.L. and G.G.-M. contributed equally to this work.
3 To whom correspondence should be addressed. Email: vandres@cnic.es.
ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin-A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin-A alterations also occur in physiological aging. It remains unknown how defective prelamin-A processing affects the cardiac rhythm. We demonstrate age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24-/− mouse model of HGPS. Challenge of Zmpste24-/− mice with the β-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24−/− cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24−/− progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap-junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.

KEYWORDS: Hutchinson-Gilford progeria syndrome / progerin / prelamin A/ connxin43 / intercellular connectivity / calcium handling / ventricular rhythm.
SIGNIFICANCE

Defective prelamin A processing causes cardiovascular alterations and premature death in HGPS patients, and also occurs during physiological aging. We found overt repolarization abnormalities in HGPS patients at advanced disease stages. Similar alterations were present in progeroid Zmpste24−/− mice, whose cardiomyocytes exhibited prolonged calcium transient duration and reduced sarcoplasmic reticulum calcium loading capacity and release, consistent with absence of isoproterenol-induced ventricular arrhythmias. Zmpste24−/− mice developed age-dependent bradycardia and PQ interval/QRS complex prolongation, likely contributing to premature death. These defects correlated with mislocalization of connexin43, which was also noted in heart tissue from HGPS patients. These results reveal molecular alterations that might cause cardiac rhythm alterations and premature death in HGPS.
INTRODUCTION

The *LMNA* gene encodes A-type lamins (lamin A and lamin C), key components of the mammalian nuclear envelope with important structural and regulatory functions that affect signaling, transcription, and chromatin organization, among other processes (1). Mature lamin A is produced from the precursor prelamin A through a series of posttranslational modifications, consisting of sequential farnesylation at the cysteine in the CSIM motif, cleavage of the SIM residues, carboxymethylation of the newly accessible cysteine, and a final proteolytic cleavage by the zinc metalloprotease ZMPSTE24/FACE-1 (2).

Mutations in the human *LMNA* gene or defective processing of prelamin A cause a group of diseases termed laminopathies, including the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS) (OMIM #176670), a very rare genetic disorder with an estimated prevalence of 1 in 21 million people (http://www.progeriaresearch.org/). HGPS patients exhibit accelerated atherosclerosis and arterial stiffness, leading to premature death at an average age of 14.6 years, predominantly from myocardial infarction, heart failure or stroke (3, 4). Most HGPS patients carry a non-inherited *de novo* heterozygous synonymous mutation at codon 608 in *LMNA* (c.1824C>T: GGC>GGT; p.G608G), which activates the use of an internal 5' splicing site in exon 11 that causes the synthesis of progerin. This unprocessed form of prelamin A lacks 50 amino acids encompassing the ZMPSTE24 cleavage site and therefore remains permanently farnesylated (2). *ZMPSTE24* mutations have also been linked to several other human progeroid syndromes (5, 6), reinforcing the notion that accumulation of progerin or prelamin A accelerates cellular aging. Moreover, progerin and prelamin A are both expressed in cells and tissues of normally aging non-HGPS individuals, suggesting their involvement in physiological aging (reviewed in (2, 7)).

Genetically-modified mice expressing prelamin A or progerin have enabled the study of mechanisms underlying progeria (8) and testing of the efficacy of various therapies (9, 10). Here, we examined cardiac electrical alterations on ECGs of 15 HGPS patients with the classical *LMNA* c.1824C>T mutation, representing approximately 5% of the world population (www.progeriaresearch.org). We then correlated the observed alterations in HGPS patients to the underlying molecular processes in *Zmpste24*-null mice; these mice accumulate farnesylated prelamin A in the nuclear envelope and phenocopy several other defects observed in HGPS, including cardiovascular alterations and premature death (average lifespan ≈20 weeks versus >2 years in wild-type mice) (9, 11).
RESULTS

Electrocardiographic alterations in HGPS patients. Supplemental Tables S1 and S2 show ECG measurements from HGPS patients carriers of the LMNA c.1824C>T mutation (N=15, age range 2-19 years) and controls (N=13, age range 4-19 years), respectively. As they aged, 7 patients showed overt repolarization abnormalities in at least one ECG that were compatible with coronary artery disease (ST depression/elevation, negative and biphasic T waves; representative example in SI Appendix, Fig.S1A). One patient showed significant QTc interval prolongation (537 ms) in the context of ischemia at advanced stages of the disease (18 years of age). These ECG alterations were not observed in controls (representative example in SI Appendix, Fig.S1B). Repolarization abnormalities in HGPS patients were highly evident at advanced disease stages. Compared with age-matched controls, HGPS patients exhibited significant T-wave flattening which was exacerbated as disease progressed (Fig.1A, First: initial ECG; Last: last ECG during follow-up). All patients and controls had sinus rhythm and normal PR interval and QRS complex duration (SI Appendix, Tables S1 and S2). Interestingly, although all HGPS patients exhibited cardiac rhythm within physiological values, the heart rate and PR interval tended to be slower and larger, respectively, in older HGPS patients (6 out of 15) at the end of the follow-up period (26.8±2.3 months follow-up): heart rate on first and last ECG were 114±7 bpm and 101±7 bpm, respectively, p=0.36; PR on first and last ECG were 115±2 ms and 128±11 ms, respectively, p = 0.22).

Time-course of ECG abnormalities in progeroid Zmpste24−/− mice. We next analyzed the electrocardiographic phenotype of Zmpste24−/− mice, an established preclinical model of HGPS (9, 11). A glossary of electrocardiographic parameters can be found in the online supplement. To study repolarization, we quantified T-wave flattening by measuring T-wave morphology changes, including sharpness, by excess kurtosis of the T-wave peak in relation to its geometrical change from the isoelectric line and the area under the T wave (see Supplemental Methods). Similarly to HGPS patients, progeroid mice showed repolarization abnormalities manifested as significant T-wave flattening. To determine the risk of ventricular arrhythmia associated with T-wave alterations we used the β-adrenergic agonist isoproterenol, which can trigger calcium-related alterations in cardiac repolarization. Weekly isoproterenol challenge, based on its sympathomimetic effect and ability to induce Ca2+-related alterations in repolarization, further exacerbated the repolarization alterations as Zmpste24−/− mice aged, although acute isoproterenol did not cause significant ventricular arrhythmias in Zmpste24−/− or controls (Fig.1B). While both groups responded normally in the first week of follow-up, older Zmpste24−/− mice developed a very marked reduction in the heart rate (bradycardia) during recovery from isoproterenol (Fig.2A). In addition, compared with wild-type controls, Zmpste24−/− mice progressively developed longer RR intervals as they aged (Fig.2B,C). The variability of the RR interval, measured as the standard deviation (SD-RR), increased linearly as a function of the average RR interval (SI Appendix, Fig.S2) and was associated with increased incidence of premature ventricular complexes (PVCs, Fig.2D, and SI Appendix, Fig.S3) and a short life span. During both isoproterenol challenge (SI Appendix, Fig.S4) and recovery (SI Appendix, Fig.S5), Zmpste24−/− mice showed increased prolongation of PQ and QRS intervals. Progeroid Zmpste24−/− mice also developed age-dependent bradycardia in the absence of isoproterenol (Fig.3A). In addition, at 18-20 weeks of age, Zmpste24−/− mice showed significant signs of defective cardiac conduction compared with
age-matched controls, manifested as prolonged PQ interval and QRS complex, without alterations to the QTc interval (Fig.3B-E, Supplemental Table S3).

Preserved cardiac function in Zmpste24−/− mice. Transthoracic echocardiography revealed no abnormalities in left ventricle end-diastolic (LVIDs) or end-systolic (LVIDds) parameters in progeroid Zmpste24−/− mice (Fig.3F). Likewise, Zmpste24−/− mice had normal left ventricle mass, posterior wall and interventricular septal thickness at diastole (SI Appendix, Fig.S6A), and diastolic function, but had a slightly higher left ventricle ejection fraction (EF) and fractional shortening (FS) than controls (Fig.3F, and SI Appendix, Fig.S6A), although within the normal range. The higher ejection fraction in progeroid mice might be explained by bradycardia, since longer diastolic intervals may favor such an increase. In fact, together bradycardia and smaller body surface area in Zmpste24−/− mice explain the significantly lower cardiac output compared to wild-type controls (SI Appendix, Fig.S6B). However, cardiac index, which relates the cardiac output of the left ventricle per minute to body surface area, was not different between progeroid and wild-type mice (SI Appendix, Fig.6B). Time-course studies demonstrated no between-genotype differences in systolic or diastolic blood pressure (SI Appendix, Fig.S6C).

Ex-vivo cellular electrophysiology. We next conducted electrophysiology studies in cardiac multicellular preparations from Zmpste24−/− mice to identify potential mechanisms underlying the arrhythmia risk associated with abnormal repolarization. No significant between-genotype differences were found in resting membrane potential (RMP), action potential amplitude (APA), maximum velocity of depolarization (Vmax), or action potential (AP) duration in right or left ventricular samples (SI Appendix, Table S4). Moreover, APs recorded in right and left ventricular preparations were indistinguishable between genotypes (Fig.4A). Interestingly, most Zmpste24−/− ventricular preparations exhibited slow spontaneous automatic activity at ≈3 Hz (Fig.4B). Moreover, Zmpste24−/− left ventricle preparations displayed after-depolarizations that led to triggered APs, contrasting with normal AP in controls (Fig.4B, 4C).

We next analyzed transcription of genes encoding ion channel proteins involved in the different phases of the AP. Real-time qPCR analysis in Zmpste24−/− hearts revealed no significant between-group differences in mRNA expression of Scn5A (encoding the cardiac sodium channel Nav1.5, involved in cell depolarization) or of Kcnq1 (respectively encoding the potassium channels Kv1.5, Kir2.1, Kv4.3 and Kv7.1, all involved in AP repolarization); in contrast, Zmpste24−/− hearts showed significant upregulation of Kcnh2 (encoding the potassium channel Kv11.1, also known as hERG, involved in AP repolarization) (SI Appendix, Fig.S7).

Zmpste24−/− mice show defective sarcoplasmic reticulum (SR) Ca²⁺ handling. We next investigated the role of intracellular Ca²⁺ handling in the observed in vivo after-depolarizations and triggered APs in multicellular left ventricle Zmpste24−/− preparations. Unlike wild-type cardiomyocytes, Zmpste24−/− cardiomyocytes were unable to maintain stable Ca²⁺ transients at higher stimulation frequencies, an effect that was more prominent at 5 mM extracellular Ca²⁺ (Fig.5A). To test whether this defect in Zmpste24−/− cardiomyocytes was caused by unstable calcium release from the SR through the ryanodine receptor type 2 (RyR2) channel, we measured the frequency of spontaneous calcium waves at rest. However, we found no differences in the calcium wave frequency at any of the calcium concentrations examined (Fig.
In line with these results, Zmpste24 deficiency did not affect the transcript level of RyR2 (Fig.5C), which is responsible for calcium release from the SR (12).

These findings suggested possible impairment of L-type Ca$^{2+}$ currents (I_{Ca}) or Ca$^{2+}$ uptake by the SR in Zmpste24$^{-/-}$ cardiomyocytes as alternative causes for unstable calcium transients. Compared with wild-type controls, Zmpste24$^{-/-}$ hearts expressed significantly lower transcript and protein levels of SR Ca$^{2+}$ ATPase (SERCA2a), whereas there was no alteration in transcript levels of STIM1 and Orai1, essential regulators of Ca$^{2+}$ release-activated Ca$^{2+}$ channels (Fig.5C, 5D). We also analyzed the expression of calsequestrin 1 (CSQ1) and 2 (CSQ2), calcium-binding proteins of the SR that help this organelle store a very high amount of Ca$^{2+}$ during relaxation in each contraction-relaxation cycle. Although CSQ1 and CSQ2 transcript levels were significantly lower in Zmpste24$^{-/-}$ hearts (Fig.5C), no between-genotype differences were observed at the protein level (Fig.5D). Likewise, peak I_{Ca} did not differ significantly between cardiomyocytes of the two genotypes (SI Appendix, Fig.58).

To determine SR Ca$^{2+}$ reloading function in ventricular cardiomyocytes, we loaded the SR by exposing cells to an increasing number of stimulation pulses and estimated the resulting Ca$^{2+}$ load from caffeine-elicited inward current traces (Fig.6A). SR reloading function was significantly weaker in Zmpste24$^{-/-}$ cardiomyocytes than in wild-type cells after 5, 10, and 20 stimulation pulses (Fig.6B), and the defective response was still more apparent after ≥30 stimulation pulses (Fig.6C). Significantly lower SR Ca$^{2+}$ loading in Zmpste24$^{-/-}$ cardiomyocytes was also evident from caffeine-elicited current traces recorded after loading the SR by depolarizing the membrane potential for 5s to -40, -30, -20, or 0 mV (Fig.6D, 6E). In addition, intracellular Ca$^{2+}$ transients recorded in isolated cardiomyocytes paced at 0.5 Hz revealed a significantly longer Ca$^{2+}$-transient duration (at half maximal amplitude) in Zmpste24$^{-/-}$ cells (Fig.6F).

Finally, we measured the SR Ca$^{2+}$ release-dependent inactivation of the I_{Ca} in response to consecutive stimulation pulses given after clearance of SR Ca$^{2+}$ (Fig.7A) in order to assess the feedback of SR calcium release on I_{Ca} inactivation. As expected, current traces recorded in wild-type cardiomyocytes showed a faster rate of I_{Ca} inactivation as the number of pulses used for SR reload increased from 1 (p1) to 30 (p30) (Fig.7B). In contrast, the effect of SR loading on the I_{Ca} inactivation rate in Zmpste24$^{-/-}$ cardiomyocytes was very modest (Fig.7B). Accordingly, the time constant for I_{Ca} inactivation decreased progressively with increasing pulse number in wild-type but not Zmpste24$^{-/-}$ cardiomyocytes (Fig.7C). Moreover, the amplitude of the intracellular Ca$^{2+}$ transient induced by repeated stimulation at 0.5 Hz was significantly lower in Zmpste24$^{-/-}$ cardiomyocytes (Fig.7D). Together these findings indicate that SR Ca$^{2+}$ uptake and release are blunted in Zmpste24$^{-/-}$ cardiomyocytes, which also explains the failure of acute isoproterenol treatment to induce ventricular arrhythmia despite abnormal repolarization.

Abnormal connexin43 (Cx43) localization in the hearts of Zmpste24$^{-/-}$ mice and HGPS patients. To further investigate conduction alterations in progeria, we performed immunohistopathological studies in heart tissue. Cardiomyocyte size was estimated by quantifying their cross-sectional area in heart sections, as well as the membrane capacitance, which is linearly proportional to the plasma membrane area and cell size. Because Zmpste24$^{-/-}$
mice are smaller than age-matched controls (9, 11), we normalized results by tibia length. Normalized cross-sectional area and membrane capacitance were similar in cardiomyocytes of both genotypes (SI Appendix, Fig. S9). We also performed Mallory’s trichrome staining, which revealed normal chambers, ventricular walls, and myocardial fiber arrangement in Zmpste24−/− hearts (SI Appendix, Fig.S10A, B). Moreover, Mallory’s trichrome staining did not reveal increased fibrosis in the ventricular interstitium (SI Appendix, Fig.S10B) or in key structures involved in cardiac conduction such as the atrioventricular node and the main His bundles (SI Appendix, Fig.S10C), which might have explained conduction abnormalities in Zmpste24−/− mice. However, consistent with previous studies in HGPS patients (13), Zmpste24−/− mice showed extensive fibrosis in the tunica media of the major coronary arteries (SI Appendix, Fig.S11A), and discontinuous and weak expression of smooth muscle actin within the medial arterial layer (SI Appendix, Fig.S11B).

Another possible explanation for the observed cardiac conduction anomalies is altered expression of intercalated disc proteins that play a key role in intercellular connectivity, such as the gap junction protein Cx43 and plakoglobin, as well as cytoskeletal desmosome-interacting proteins such as desmin, a class-III intermediate filament connected to A-type lamins through Nesprin/Sun protein complexes. Western blot analysis in progeroid hearts revealed a significant ≈2-fold increase in Cx43 expression without changes in plakoglobin or desmin (SI Appendix, Fig.S12). Remarkedly, compared with wild-type controls, Zmpste24−/− cardiomyocytes exhibited marked mislocalization of Cx43 to the cytoplasm and the lateral long axis, as revealed by double immunofluorescence to simultaneously detect Cx43 and N-Cadherin (Fig.8A). Quantification of digital images revealed less Cx43/N-Cadherin colocalization in the hearts of progeroid mice than in wild-type controls (Fig. 8E).

Profound Cx43 mislocalization was also revealed by immunostaining of left ventricle specimens obtained from two HGPS patients at autopsy. In these patients, Cx43 was abundantly associated with the perinuclear rim (Fig.8B-D), which is its trafficking origin for subsequent targeting to the intercalated disks (14) (see Discussion). Quantification of digital images confirmed a low percentage of Cx43/N-Cadherin co-localization in HGPS hearts (Fig.8E). Defective cardiomyocyte connectivity associated to Cx43 mislocalization may contribute to cardiac conduction defects in progeria (see Discussion).

DISCUSSION

HGPS is a devastating genetic disease resulting from abnormal processing of prelamin-A which is characterized by premature cardiovascular disease and death at an average age of 14.6 years (4). Here, we provide a comprehensive analysis of ECG abnormalities and underlying molecular changes at different stages of HGPS. Our findings may have implications for the risk of premature death in HGPS patients and potentially for normal aging, since defective prelamin A processing has also been revealed in cells and tissues of normally-aging non-HGPS individuals (reviewed in (2, 7)). A previous study identified repolarization abnormalities in 3 out of 15 HGPS patients with the ‘classical’ LMNA c.1824C>T mutation (3). Here, we confirm and extend these findings through a rigorous examination of a new cohort of 15 HGPS patients
carrying the same mutation. Half of the patients showed overt repolarization abnormalities in at least one ECG compatible with coronary artery disease (ST depression/elevation, negative and biphasic T waves). Repolarization abnormalities in HGPS patients were strongly evident at advanced disease stages. We also detected prominent mislocalization of Cx43 in left ventricle specimens obtained at autopsy from diseased HGPS patients; Cx43 mislocalization was also observed in the hearts of progeroid Zmpste24−/− mice, and is indicative of defective cardiac conduction in progeria (see below).

Animal models resembling the clinical phenotype of HGPS patients are central to understanding the underlying mechanisms of the disease and to developing novel therapies. Our analysis of the well-established Zmpste24−/− mouse model of progeria caused by prelamin A accumulation (9, 11) revealed the progressive development of cardiac rhythm alterations that can lead to premature death. Zmpste24−/− hearts and cardiomyocytes showed the following specific alterations: i) T-wave repolarization abnormalities, which were also present in half of HGPS patients; ii) prolonged PQ interval and wide QRS complex; iii) development of bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms at late disease stages in the absence of ventricular arrhythmias during isoproterenol challenge; iii) automatic spontaneous ventricular activity and after-depolarizations ex vivo, which were associated with significantly slowed ICa inactivation and reduced amplitude of the intracellular Ca2+ transient; and iv) mislocalization of Cx43 in the heart.

Notably, some characteristics of the progeroid Zmpste24−/− mouse heart are also present in HGPS patients and are frequently observed in normal aging; these include extensive fibrosis and loss of smooth muscle cells in coronary arteries, defective calcium homeostasis, progressive development of repolarization defects, and Cx43 mislocalization (15-17). Overt repolarization abnormalities in ST-T waves and T-wave flattening in mice did not increase the risk of isoproterenol-triggered ventricular arrhythmia. However, T-wave alterations are well known to increase the risk of lethal ventricular arrhythmias during ischemia (18), which might contribute to premature death in HGPS patients from myocardial infarction, one of the main causes of death in this population. T-wave abnormalities might be explained at least in part by an altered repolarization pattern brought about by two opposing ion channel changes observed in the hearts of Zmpste24−/− mice: on the one hand, the significant upregulation of Kcnh2, which encodes the hERG channel responsible for IKr, would help terminate the action potential plateau and shorten repolarization (19); on the other hand, the observed slow ICa inactivation would tend to prolong the plateau and delay repolarization (20). Importantly, an abnormally long QTc interval was observed in only one of 51 ECGs from the 15 HGPS patients, and occurred in the context of ischemia and significant repolarization anomalies. Consistently, we observed no significant QTc prolongation in Zmpste24−/− mice, in agreement with the normal APD observed in Zmpste24−/− ventricular cardiomyocytes and the majority of ECG traces from HGPS patients. Although we documented significant QRS complex widening in progeroid mice, it is important to note that the high-amplitude QRS complex in the mouse ECG represents not only the spread of depolarization across the ventricle, but also the early phase of repolarization (21). We therefore carefully examined QRS complex and QT duration (QT90, Fig.3B-E) to detect any significant increases in both parameters. However, mouse and human QT intervals must be compared with caution.
The occurrence of bradycardia-related premature ventricular complexes in Zmpste24−/− mice during recovery after isoproterenol demonstrates a significant suppression of normal pacemaker activity, with emergence of ventricular ectopic escape discharges. Isoproterenol-induced heart rate increase in vivo is associated with increases in intracellular Na⁺ and Ca²⁺ concentration (22); these changes, in the presence of the post-isoproterenol-induced bradycardia, likely contributed to the escape discharges and premature ventricular complexes arising from the Purkinje system (SI Appendix, Fig.S3). Our ex-vivo experiments with multicellular ventricular preparations showed after-depolarizations during spontaneous ventricular activity at ≈3 Hz, which is similar to the cycle length after isoproterenol treatment in vivo. Although we were unable to establish the exact origin of these ventricular after-depolarizations, the in vivo data support involvement of the Purkinje system, consistent with slow idioventricular discharges (cycle length=266.38, SI Appendix, Fig.S3) arising from varying Purkinje locations.

Connexins are the pore-forming subunits of gap junctions and are essential for proper intercellular electrical coupling between cardiomyocytes and for AP spread during each cardiac cycle (23, 24). Cx43 is the major connexin expressed in the ventricles. Its abnormal expression, typically involving downregulation and heterogeneous redistribution to the lateral cardiomyocyte membrane, is associated with different forms of chronic heart disease (hypertrophic, dilated, and ischemic cardiomyopathy) and even with aging (24-26). Defective Cx43 expression results in electrical defects in the myocardium and contributes to arrhythmogenesis. Therefore, Cx43 mislocalization in the heart may explain, at least partly, the prolongation of PQ interval and QRS complex in Zmpste24−/− mice. Interestingly, reduced gap junction coupling accompanied by Cx43 lateralization has been linked to reduced functional expression of the alpha subunit (Naᵥ1.5) of the cardiac sodium channel at the intercalated disc (27), and the reduced sodium current is likely to have contributed to the significantly impaired atrioventricular and intraventricular conduction in Zmpste24−/− mice. Previous computer simulations (28) suggest that, in the presence of Cx43 mislocalization and low Naᵥ1.5 expression, a normal peak Iᵥ with slow inactivation and reduced Ca²⁺ transients could maintain relatively safe conduction in the ventricles of Zmpste24−/− mice, albeit at a reduced velocity. However, a high intracellular Ca²⁺ concentration would have compromised propagation safety and caused earlier block, as observed for reduced intercellular coupling (28). Because the intercalated disc is regarded as a functional unit, with gap junction formation requiring the presence of neighboring mechanical junctions (29), we tested the expression of desmin and plakophilin-2. However, our western blot analysis in Zmpste24−/− hearts revealed no alterations in the expression of these proteins.

Consistent with the findings in Zmpste24−/− mice, immunofluorescence studies in left ventricle specimens from deceased HGPS patients revealed abnormal cellular distribution of Cx43 to a predominantly perinuclear localization. Since Cx43 is packaged into vesicles at the perinuclear trans-Golgi network and is then transported to the intercalated disk (14), our findings suggest that abnormal prelamin A processing causes defective Cx43 targeting to its distinctive microdomain at the gap junctions. Additional LMNA mutations might also cause cardiomyopathy by altering connexin expression and/or cellular localization. For example, transgenic mice expressing the lamin A N195K mutant, which causes dilated cardiomyopathy with conduction system disease in humans (DCM-CD1), die at an early age due to arrhythmia, and such a phenotype correlates with cardiac Cx43 and Cx40 misexpression and/or mislocalization (30). Future studies are warranted to elucidate the mechanism causing defective
Cx43 microdomain targeting to gap junctions and their contribution to abnormal cardiac conduction in progeria.

Some of the nuclear envelope alterations in the heart associated with prelamin A or progerin expression also occur during normal aging (15-17), suggesting that shared mechanisms might cause cardiac alterations in HGPS patients and in the geriatric population. Consistent with this idea, prelamin A and progerin are both produced in the cells of normally aging individuals, thus raising the possibility that altered lamin A processing contributes to normal aging and associated cardiovascular disease (reviewed in (2, 7)). Much like in normal human aging, progeroid Zmpste24−/− mice develop coronary fibrosis, bradycardia and severe conduction abnormalities. Cardiac conduction abnormalities also arise during aging in wild-type mice, and are associated with an increased incidence of arrhythmias (31). However, Ca2+ transients differ between Zmpste24−/− mice and normally aging wild-type mice (32), with Zmpste24−/− cardiomyocytes being unable to maintain stable Ca2+ transients at 4 Hz. Ventricular cardiomyocytes from aged wild-type mice also have a significantly higher incidence of spontaneous Ca2+ sparks than cells from young animals; however, we did not observe a similar difference between progeroid mice and age-matched controls. Zmpste24−/− mice show weakened Ica inactivation and defective SR Ca2+ uptake and release, features also observed in aging human atrial myocytes (15). In line with this, Ca2+ transient amplitudes are reduced in progeroid mice (Fig.6), in aged wild-type mice (32), and in aged human atrial cardiomyocytes (15).

The progressively developing bradycardia and deteriorating cardiac conduction in progeroid mice also resemble clinical rhythm abnormalities observed in the elderly (16, 17). Although the commonest age-related cardiac conduction abnormality in humans is degenerative fibrosis (33), Zmpste24−/− mice did not show abnormal fibrosis in the ventricular interstitium or in the major conduction structures. However, in line with observations in HGPS patients (13), the coronary arteries of Zmpste24−/− mice showed extensive fibrosis and reduced accumulation of smooth muscle cells, potential causes of vascular stiffening, reduced coronary flow, and abnormal impulse generation in the sinoatrial node and conduction in the atria and ventricles. The latter may have also contributed to T-wave alterations, especially during isoproterenol challenge, as well as to progressive development of bradycardia in progeroid Zmpste24−/− mice. In fact, human patients with coronary artery disease show a high prevalence of conduction abnormalities such as atrioventricular or sinoatrial block (34).

Study Limitations. We provide a comprehensive characterization of cardiac abnormalities in HGPS patients and progeroid Zmpste24−/− mice, identifying a number of cellular and molecular alterations in both species that are likely to contribute to defective cardiac repolarization and conduction in progeria. Future studies are warranted to establish direct causal connections between the presence of unprocessed prelamin A or progerin and the cardiac abnormalities associated with HGPS with the goal of identifying novel targets for therapeutic intervention. Based on our findings, major efforts should be placed into elucidating the mechanisms causing Cx43 mislocalization in the heart of progeroid mice and HGPS patients. These studies may pave the way to developing efficient therapies to improve cardiac conduction in progeria.

Although ion channels are highly conserved between humans and mice, significant electrophysiological differences exist (35), making it difficult to translate mouse findings to the
clinical arena. For example, although we observed a tendency toward a slower heart rate in older HGPS patients with longer follow-up, HGPS patients did not show the bradycardia and other conduction abnormalities that appeared progressively in Zmpste24−/− mice. This might have been due to the lack of sequential ECG assessment in humans until very advanced disease stage. Indeed, human left ventricle specimens obtained by autopsy revealed reduced localization of Cx43 at gap junctions, consistent with altered ventricular conduction velocity.

Continuous telemetry and other invasive electrophysiological measurements would have been desirable in Zmpste24−/− mice. However, these animals show severe body weight loss (body weight ≈9 g at late stages compared with ≈30 g in age-matched wild-type controls) and are physically extremely fragile, precluding the use of commercially available telemetry systems or any other invasive approaches to register specific arrhythmias forecasting premature death. The physical deterioration of HGPS patients also limits implementation of any invasive measurements (e.g., implantable loop recordings) to further study rhythm abnormalities.
MATERIALS AND METHODS

Clinical information from children with HGPS was obtained from The Progeria Research Foundation Medical and Research Database (PI L.B.G.), and approved by the Rhode Island Hospital and Brown University Institutional Review Boards (Providence, RI). All participants or parents provided written informed consent in the primary language of the participant or parent. When appropriate, interpreters were used for consenting. At least one ECG recorded no more than 3 years before death was obtained from each of 15 HGPS patients. Thirteen gender and age-matched control volunteers were weighed and ECG traces recorded for comparison. All control volunteers or parents provided written informed consent. Animal studies were carried out in male Zmpste24−/− mice (11) and age-matched wild-type male littermates (all C57BL/6). Animals were reared and housed in accordance with institutional guidelines and regulations. All other detailed materials and methods are described in the SI Materials and Methods.
ACKNOWLEDGEMENTS

We thank María Jesús Andrés for technical assistance and help with art work, Susan Campbell for assistance with patient information, Maite Dubraska for assistance with blood sampling and ECG in control subjects, Inés Ortega and Virginia Zorita for animal maintenance and care, and Simon Bartlett for English editing. This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) (grants SAF2010-16044, SAF2011-30312, SAF2011-30088, SAF2013-46663-R, SAF2014-52413-R) and Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (grants RD12/0042/0028, RD12/0042/0011, RD12/0042/0002) with co-funding from the Fondo Europeo de Desarrollo Regional (FEDER), and The Progeria Research Foundation. JAG is the recipient of Marie Curie COFUND U-Mobility Grant No.246550. The Instituto Universitario de Oncología is supported by Obra Social Cajastur. The CNIC is supported by the MINECO and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505).

AUTHOR CONTRIBUTION

CONFLICT OF INTEREST

None to declare.
REFERENCES

FIGURE LEGENDS

FIGURE 1. Age-related exacerbation of repolarization abnormalities in HGPS patients and Zmpste24-/- mice. (A) Left: Extracted averaged ECG leads II and V5 from human control participants (blue traces) and HGPS patients at initial stage (‘First’, light red trace) and in advanced stages (‘Last’, dark red trace). Right: Quantification of mean flattening scores. (B) Left: Representative T-wave abnormalities in Zmpste24-/- mice, comparing the first and the last isoproterenol (ISO) challenge (First: 11-week-old; Last: 19-week-old or last week before death; see Supplementary Methods). Right: Mean effective flattening scores at baseline, after ISO exposure and during 5 min recovery. *, p<0.05 vs control; †, p<0.05 vs First follow up.

FIGURE 2. Severe bradycardia in post-isoproterenol administration recovery is associated with an increase in premature ventricular complexes in Zmpste24-/- mice. (A) β-adrenergic response (interbeat interval, IBI) in wild-type and Zmpste24-/- mice from the first to the last isoproterenol challenge (ISO) (First: 11-week-old; Last: 19-week-old or last week before death. (B) RR histograms and Rn/Rn+1 correlation plots in wild-type and Zmpste24-/- mice during ISO time-course challenge (color-coded time scale). A significant increase in the percentage of long RR intervals during the last week of follow up (C) was also associated with a significant increase in bradycardia-related premature ventricular complexes. (D) First: 11-week-old; Last: 19-week-old or last week before death. See SI Materials and Methods. *, p<0.05; **, p<0.01.

FIGURE 3. Zmpste24-/- mice show preserved cardiac function but develop severe bradycardia and cardiac conduction abnormalities. (A) Heart rate (bpm, beats per minute) in conscious mice. (B) Template ECG showing the intervals used to quantify (C) PQ, (D) QRS and (E) heart-rate-corrected QT at 90% of repolarization from Tpeak (QTc90) duration, measured on the baseline ECG at the first follow-up (week 11; First) and at the last follow-up (Last; see Supplementary Methods). (F) Left ventricular internal diameter (LVID) at systole (s) and diastole (d) and ejection fraction (EF) determined by trans-thoracic echocardiography in 18-20-week-old mice. *, p<0.05; **, p<0.01; ***, p<0.001.

FIGURE 4. Transmembrane action potentials recorded in multicellular left ventricular preparations. (A) Representative APs (3 Hz) from wild-type and Zmpste24-/- mice. (B) Left ventricular preparations from Zmpste24-/- mice displayed after-depolarizations that occasionally yielded triggered APs (C, bottom).

FIGURE 5. Defective Ca^{2+} transients in Zmpste24-/- cardiomyocytes. (A) Left: Analysis of beat-to-beat response stability in isolated mouse ventricular myocytes subjected to increasing stimulation frequencies. Representative examples of calcium transients recorded in the presence of 5 mM extracellular Ca^{2+} are shown. Irregular beat-to-beat responses start at lower frequencies in Zmpste24-/- cardiomyocytes. Right: The graph shows threshold frequencies (in Hz) for the induction of non-uniform beat-to-beat responses at the indicated Ca^{2+} concentrations. Responses were recorded in myocytes isolated from wild-type and Zmpste24-/- mice (12 cells from 6 mice of each genotype). (B) Top: Typical recordings of spontaneous calcium waves at the indicated Ca^{2+} concentrations. Bottom: Calcium dependency of the calcium wave frequency. Values are from 7 wild-type mice (n=15 cells) and 6 Zmpste24-/- mice (n=14 cells) (C) qPCR of heart tissue. (D) Western blot analysis of heart tissue. Representative
blots are shown and relative band intensity was quantified as described in Supplemental Methods. *, p<0.05; **, p<0.01; ***, p<0.001.

FIGURE 6. Reduced maximal sarcoplasmic reticulum Ca\(^{2+}\) uptake in Zmpste24\(^{-/-}\) cardiomyocytes. SR calcium loading capacity in isolated ventricular myocytes. (A-C) Calcium loading measured as a function of the number of stimulation pulses used for SR loading. (A) Representative caffeine-induced currents recorded after SR reloading with the indicated number of stimulation pulses (p). Transient exposure to caffeine (CAF) was used to release SR calcium content before reloading and to measure loading after the train of stimulation pulses. (B) Time integral of caffeine-induced currents recorded after SR reloading with the indicated stimulation pulses. Data were obtained from 7 Zmpste24\(^{-/-}\) and 8 wild-type myocytes (from n=5 mice) exposed consecutively to 2 and 5 mM extracellular Ca\(^{2+}\). Time integrals were converted to amoles and normalized to cellular capacitance (in pF). (C) Effect of extracellular calcium concentration on the time integral of caffeine-induced current at steady-state (after ≥30 stimulation pulses). (D-F) Calcium loading measured as a function of membrane potential. (D) Representative caffeine-induced currents recorded after SR loading with a 5s depolarization to the indicated membrane potentials. (E) Time integral of caffeine-induced current recorded in the presence of 2 mM extracellular Ca\(^{2+}\) after SR reloading at rest (-80 mV) and after depolarizing to the indicated voltage. Data were obtained from 8 Zmpste24\(^{-/-}\) myocytes (n=5 mice) and 9 wild-type myocytes (n=6 mice). (F) Mean calcium transient duration at half maximal amplitude (DHMA) recorded in myocytes paced at 0.5 Hz (17 wild-type and 18 Zmpste24\(^{-/-}\) myocytes from n=6 mice per group). *, p<0.05.

FIGURE 7. Impaired sarcoplasmic reticulum calcium release-dependent inactivation of L-type calcium currents in isolated Zmpste24\(^{-/-}\) myocytes. (A) Protocol to measure the effect of SR calcium loading on I\(_{Ca}\) inactivation. SR calcium content was released with caffeine (CAF) and reloaded with a train of stimulation pulses (p). (B) Representative superimposed I\(_{Ca}\) recordings on p1 and p30. Currents were normalized to their peak values and fitted to a double exponential equation. (C) Dependency of time constant (tau) for fast I\(_{Ca}\) inactivation on indicated pulses. (D) Representative calcium transient (ΔF/F0) recordings from myocytes paced at 0.5 Hz (left) and calcium transient amplitude quantification (right). Indicated cardiomyocytes are from n=6 mice/genotype. *, p<0.05; **, p<0.01; ***, p<0.001.

FIGURE 8. Abnormal localization of connexin43 in hearts of progeroid Zmpste24\(^{-/-}\) mice and HGPS patients. (A, B) Double immunofluorescence of left ventricle sections from mice of the indicated genotype and HGPS patients to detect N-Cadherin (N-Cadh, Left panels: green) and Cx43 (Middle panels: red). Right panels show merged images, with DAPI staining of nuclei (blue). (A) Cx43 lateralization was evident in Zmpste24\(^{-/-}\) mice. Green arrows mark examples of intercalated disk areas (N-Cadh-positive). The white arrow in the Zmpste24\(^{-/-}\) image marks an intercalated disk without Cx43 expression, and the red arrow in the wild-type image marks an intercalated disk with abundant Cx43 expression. (B) Representative images illustrating loss of Cx43/N-Cadh colocalization in HGPS heart. Green and white arrows are as in panel A. The red arrow marks a Cx43 positive area which does not colocalize with N-Cadh. (C) Zoom-in of a HGPS heart section showing predominant Cx43 expression near the nuclei and scarce Cx43/N-Cadh colocalization at the intercalated disks. (D) Automatic image segmentation of a HGPS heart section used for quantification of Cx43/N-Cadh colocalization. Green, red and dark-blue blob boundaries correspond to positive staining for N-Cadh, Cx43,
and nuclei, respectively. Cyan blob-boundaries represent areas showing Cx43/nuclei colocalization. **(E)** Percentage of Cx43/N-Cadh colocalization at the intercalated disks estimated by quantifying automatically-segmented images. Results are represented relative to wild-type (=100). N=3 wild-type and Zmpste24−/− mice, and N=2 HGPS patients were analyzed (n=5 sections per individual). *, p<0.001. White bars in the photomicrographs represent 50 µm.
FIGURE 1

A

- Control
- HGPS Initial Follow-up
- HGPS Last Follow-up

B

- Baseline
- Last Week
- First Week

- Wild-type
- Zmpste24⁻/⁻

5 min recovery from ISO

Mouse Flattening Score (%)

- Baseline
- ISO
- Recovery

First | Last | First | Last | First | Last

Wild-type | Zmpste24⁻/⁻
FIGURE 2

(A) Point-to-point averaged IBI (ms) over time for WT and Zmpste24−/− mice. First week shows a steady decrease for both genotypes, with WT having a lower IBI compared to Zmpste24−/−. Last week shows an increase in IBI for both genotypes, with Zmpste24−/− having a higher IBI than WT.

(B) Scatter plot showing occurrences of RR (ms) for WT and Zmpste24−/− mice. The color bar represents the time in minutes. The plot shows a distribution of RR values for each time point, with WT having a more compact distribution compared to Zmpste24−/−.

(C) Graph showing the percentage of beats in different RR intervals for the first and last week. First week shows WT and Zmpste24−/− having similar percentages, while last week shows a decrease in beats for Zmpste24−/− compared to WT.

(D) Graph showing premature ventricular complexes for the first and last week. WT shows a decrease in complexes, while Zmpste24−/− shows an increase.

* p < 0.05, ** p < 0.01, *** p < 0.001.
FIGURE 4

A

Wild-type

Zmpste24−/−

B

Wild-type

Zmpste24−/−

C

Zmpste24−/−
FIGURE 5

(A) Relative mRNA level of Zmpste24 knockout (KO) cells compared to wild-type cells. The y-axis represents ΔF/F₀, a measure of intracellular calcium concentration, and the x-axis represents time in seconds.

(B) Relative protein level of Zmpste24 KO cells compared to wild-type cells. The y-axis represents ΔF/F₀, and the x-axis represents [Ca²⁺] concentration.

(C) Relative mRNA level of Zmpste24 KO cells compared to wild-type cells. The x-axis represents [Ca²⁺] concentration, and the y-axis represents waves per minute.

(D) Relative protein level of Zmpste24 KO cells compared to wild-type cells. The x-axis represents [Ca²⁺] concentration, and the y-axis represents kDa.
A Wild type

Zmpste24-/-
p1 p3 p10 p30

mV

CAF

B

Wild type

Zmpste24-/-

I/I_max

p30

p1

ms

Wild-type (n=5) Zmpste24-/-(n=5)

C

Wild-type (n=5) Zmpste24-/-(n=5)

Tau (ms)

30

20

10

0

1 3 10 30

Pulse number

D

Wild-type

Zmpste24-/-

ΔF/F_0

0

1

1.2

Wild-type

Zmpste24-/-

ΔF/F_0

0

1

1.2

Wild-type (n=17) Zmpste24-/-(n=18)
FIGURE 8

(A) Zmpste24−/− and Wild-type Mice (N=3)

(B) HGPS

(C) Merged N-Cadh Cx43 DAPI

(D) Zoom-In x3

(E) % Cx43 / N-Cadh colocalization (relative to wild-type)

Human (N=2)