Cell Competition Promotes Phenotypically Silent Cardiomyocyte Replacement in the Mammalian Heart

Highlights
Cardiomyocytes are sensitive to Myc-induced competition in development and adult life
Cardiomyocyte competition is driven by short-range interactions leading to cell death
Cardiomyocyte replacement by cell competition is phenotypically silent

Authors
Cristina Villa del Campo, Cristina Clavería, Rocío Sierra, Miguel Torres

Correspondence
mtorres@cnic.es

In Brief
Cardiomyocytes of the mammalian heart are generated during prenatal and early postnatal development and show very low turnover during adult life. Strategies for cardiomyocyte generation and replacement are therefore essential for repairing the diseased heart. Villa del Campo et al. show that mosaic Myc overexpression in cardiomyocytes leads to the phenotypically silent replacement of normal cardiomyocytes by the Myc-overexpressing ones, through a process known as cell competition. This work uncovers a mechanism potentially relevant to cardiac repair.

Accession Numbers
GSE58858

Villa del Campo et al., 2014, Cell Reports 8, 1741–1751
September 25, 2014 ©2014 The Authors
http://dx.doi.org/10.1016/j.celrep.2014.08.005
Cell Competition Promotes Phenotypically Silent Cardiomyocyte Replacement in the Mammalian Heart

Cristina Villa del Campo,1 Cristina Clavería,1 Rocío Sierra,1 and Miguel Torres1,*

1Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
*Correspondence: mtorres@cnic.es
http://dx.doi.org/10.1016/j.celrep.2014.08.005
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

SUMMARY

Heterogeneous anabolic capacity in cell populations can trigger a phenomenon known as cell competition, through which less active cells are eliminated. Cell competition has been induced experimentally in stem/precursor cell populations in insects and mammals and takes place endogenously in early mouse embryonic cells. Here, we show that cell competition can be efficiently induced in mouse cardiomyocytes by mosaic overexpression of Myc during both gestation and adult life. The expansion of the Myc-overexpressing cardiomyocyte population is driven by the elimination of wild-type cardiomyocytes. Importantly, this cardiomyocyte replacement is phenotypically silent and does not affect heart anatomy or function. These results show that the capacity for cell competition in mammals is not restricted to stem cell populations and suggest that stimulated cell competition has potential as a cardiomyocyte-replacement strategy.

INTRODUCTION

Cell competition is a mechanism that eliminates suboptimal cells from tissues when “fitter” cells are present (reviewed in Baker, 2011; de Beco et al., 2012; Levayer and Moreno, 2013; Vincent et al., 2013). Cell-to-cell heterogeneity in anabolic capacity led to the first description of cell competition, during Drosophila development (Morata and Ripoll, 1975), and is currently the most frequent feature found associated with this phenomenon. The fluctuations in anabolic capacity that trigger cell competition are within a physiological range, and “loser” cells are viable and capable, in the absence of fitter cells, of sustaining tissue growth and performance. Cell competition can thus be envisioned as an optimization mechanism enabling tissues to achieve their best possible cellular composition by favoring the fitter cell population at the expense of less-fit cells. Cell competition can be experimentally induced by generating loser cells through the mosaic reduction of cell anabolism (Morata and Ripoll, 1975) or by generating “winner” cells through the mosaic increase of cell anabolism (supercompetition) (de la Cova et al., 2004; Moreno and Basler, 2004). The conserved cell anabolism regulator Myc is involved in cell growth and proliferation (reviewed in Dang, 2013; Gallant, 2013; Levens, 2013) and plays essential roles in mammalian development (Davis et al., 1993; reviewed in Hurlin, 2013). Moderate increase in Myc levels in a mosaic fashion in Drosophila imaginal discs (de la Cova et al., 2004; Moreno and Basler, 2004) and pregastrulation mammalian embryos (Clavería et al., 2013) induces supercompetition, leading to the phenotypically silent replacement of wild-type cells by Myc-overexpressing cells without overt phenotypic consequences. In addition, natural Myc fluctuations trigger cell competition in the mouse epiblast (Clavería et al., 2013), indicating an endogenous role for cell competition in optimization of the pool of precursor cells that generate the embryo. Mosaic Myc overexpression also induces cell supercompetition in embryonic stem cell cultures (Clavería et al., 2013; Sancho et al., 2013), and hematopoietic stem cells have been shown to undergo p53-dependent cell competition (Bondar and Medzhitov, 2010; Marusyk et al., 2013). These observations suggest that the capacity for cell competition might be associated with stemness, but this hypothesis has not been tested. Here, we explored this issue by asking whether cell competition could be induced in one of the first lineages to differentiate in the mammalian embryo, the cardiac lineage.

Cardiac precursors originate early in gastrulation within the anteriormost embryonic mesoderm (reviewed in Vincent and Buckingham, 2010). During mouse gastrulation, cardiac precursors migrate anteriorly and form a cardiac crescent, which by embryonic day 8.0 (E8.0) has folded into a primary tube containing still-proliferative but differentiated and functionally active cardiomyocytes (reviewed in Evans et al., 2010; Rana et al., 2013). A subset of cardiac precursors remain undifferentiated in the second heart field (Kelly et al., 2001) and are progressively added to the heart tube until cardiac chambers and outflow and inflow tracts are definitively laid down around E10. After birth, most cardiomyocytes stop dividing and undergo hypertrophy to establish the mature definitive myocardium (Sooopaa et al., 1996). Here, we show that mosaic Myc overexpression in cardiomyocytes at levels that do not alter heart anatomy or function promotes the phenotypically silent replacement of wild-type (WT) cardiomyocytes in the mouse fetal and adult myocardium through cell competition. Our results show the widespread ability of mammalian cells to undergo Myc-driven cell competition and identify cell competition as an efficient mechanism for phenotypically silent substitution of cell populations while preserving organ function.

http://www.cellreportsjournal.com/content/8/8/1741.full
RESULTS

Mosaic Myc Overexpression Induces Cardiomyocyte Population Expansion in the Developing Heart

To test the consequences of overexpressing Myc in the developing heart, we used the recently established iMOS system (Clavería et al., 2013), which allows the Cre-mediated conditional induction of random genetic mosaics. We first generated control random genetic mosaics in cardiac lineages using Nkx2.5-Cre (Stanley et al., 2002) to induce the iMOS WT transgene, which produces a random mosaic of enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP) WT cells. Quantitative confocal analysis of iMOS WT recombination at E10.5 in iMOS WT; Nkx2.5-Cre hearts confirmed the mosaic expression pattern of the two reporter proteins in embryonic cardiomyocytes at a reproducible cell population ratio, as previously described (EYFP:ECFP = 3:1) (Figures 1A–1C, 1G, and 1H). Again as described (Stanley et al., 2002), the fluorescent protein distribution pattern indicated iMOS activation throughout the embryonic heart (Figures 1A–1C). We then generated Nkx2.5-Cre-induced iMOS T1-Myc mosaics, in which the EYFP cell population modestly overexpresses Myc (Clavería et al., 2013) (Figures 1D–1F). Confocal analysis of EYFP simultaneously with Myc protein immunodetection showed the expected increase in MYC levels in the EYFP cell population of iMOS T1-Myc mosaics, but not iMOS WT mosaics (Figures 1I and 1J). We then quantified the contribution of the mosaic cell populations by confocal analysis at different stages of heart development. In the iMOS T1-Myc mosaics we found a progressive reduction in the relative abundance of the ECFP-WT cell population—and a concomitantly increased relative abundance of the EYFP-Myc population—that was not observed in the iMOS WT mosaics (Figures 2A–2G). The proportion of ECFP cardiomyocytes at E9.5 in iMOS T1-Myc mosaics was lower (but not significantly) than that observed in iMOS WT mosaics. From then on, the relative abundance of the ECFP-WT population in iMOS T1-Myc mosaics showed a progressive decline to 60% of the iMOS WT value at E10.5, 40% at E11.5, and 25% at postnatal day 0 (P0) (Figure 2G). The shift in cell populations thus takes place mostly in a narrow time window between E9.5 and E11.5.

Previous studies showed that Myc overexpression in cardiomyocytes during fetal life can lead to pathological cardiac hyperplasia (Jackson et al., 1990). However, in these studies, Myc expression was 20-fold above normal. To determine whether the overexpression levels used here could lead to cardiac hyperplasia we characterized adult heart anatomy and cardiomyocyte size. P0 hearts from Nkx2.5-Cre-recombined iMOS T1-Myc and iMOS WT mice were of normal size and anatomy (Figures S1A and S1B and data not shown), and cardiomyocytes from the iMOS T1-Myc hearts were of a similar size to those from iMOS WT hearts (Figure S1C).

The shift in the cell population proportion observed in iMOS WT mosaics thus results from expansion of the EYFP Myc-overexpressing cardiomyocyte population and a concomitant reduction of the ECFP WT population relative contribution, without disruption of heart cell composition or anatomy. These results also indicate that the levels of Myc overexpression from the iMOS T1-Myc allele are within the limits that allow normal cardiomyocyte development and do not provoke hyperplasia.
Islet-1 Progenitors Are Highly Sensitive to Myc-Induced Cell Competition

We next explored the impact of inducing Myc mosaicism in Islet1+ cardiac progenitors. For this, we generated imos^{T1-Myc} mosaics in second heart field (SHF) progenitors using Islet1-Cre (Yang et al., 2006). This Cre driver provides partial interspersed recombination of the SHF cell population, resulting in about 7% EYFP recombined cardiomyocytes in the right ventricle (RV) of imos^{WT} mosaics (Figures 3A, 3D, 3E, and 3F). In contrast, the RV of imos^{T1-Myc}, Islet1-Cre hearts on average contained 40% EYFP cardiomyocytes at P0, representing a 5.7-fold expansion during gestation of the original EYFP cardiomyocyte population (Figures 3B, 3D, 3F, and 3H). In addition, the ECFP cardiomyocyte population in the Islet-Cre-induced imos^{T1-Myc} mosaic hearts was almost completely eliminated by P0 (Figures 3E', 3F', and 3H). These results indicate a more active elimination of the mosaic ECFP-WT cell population and a continued expansion of the Myc-overexpressing cardiomyocyte population during fetal life, in a context in which it is continuously confronted with WT cardiomyocytes. We then characterized the temporal progression of ECFP cardiomyocyte depletion in imos^{T1-Myc} mosaics, finding that this population was already reduced to 40% of its original contribution by E9.5, with further progressive reduction until the final residual presence at birth (Figures 3I–3L). The enhanced early elimination of WT progenitors in the Islet-Cre-induced mosaics indicates that undifferentiated Islet1+ cardiac progenitors are highly sensitive to Myc mosaicism.

The Myc-Overexpressing Cardiomyocyte Population Expands by Apoptosis-Driven Cell Competition

To study the mechanisms underlying the expansion of the Myc-overexpressing cardiomyocyte population during development, we first determined the abundance of PHH3⁺ cells and bromodeoxyuridine (BrdU) incorporation in imos mosaics at E10.5, when the shift in the cell population proportion is taking place. Overall, PHH3⁺ and BrdU⁺ cell frequencies did not differ significantly between imos^{T1-Myc} and imos^{WT} cardiomyocytes (Figure S2). Moreover, the PHH3⁺ and BrdU⁺ cell frequencies in the ECFP cell population of imos^{T1-Myc} mosaics was not different from that in the ECFP population (Figures S2D and S2E). These results fit with previous studies showing that the Myc dosage induced by a single Rosa26 allele does not increase proliferation rates in most tissues (Clavería et al., 2013; Murphy...
et al., 2008) and suggest that the shift in cardiomyocyte populations is not produced by overt differences in cell proliferation between the two cell populations.

To evaluate the role of cell death in the depletion of WT cardiomyocytes, we generated mosaics of the iMOST1-Myc/T2p35 strain, which produces a random mosaic of EYFP-Myc and ECFP-p35 cells. p35 is a baculoviral caspase inhibitor able to prevent apoptosis in insects and mammals (Clavería et al., 1998; Hay et al., 1994). Quantitative confocal analysis of P0 hearts from iMOST1-Myc/T2p35 mosaics induced with either Nkx2.5-Cre or Islet1-Cre showed that the p35-expressing ECFP population was substantially, although not completely, protected against elimination (Figures 2H–2N, 3C, and 3G–3H). This result indicates that cell death is a predominant mechanism in the population shift observed in iMOST1-Myc mosaics. However, expansion of the EYFP-Myc cell population did not differ significantly between Islet1-Cre-induced iMOST1-Myc/T2p35 and iMOS T1-Myc mosaics (Figure 3D), indicating that expansion of Myc-enriched cardiomyocytes can progress through elimination of nonrecombined WT cardiomyocytes even when small numbers of apoptosis-resistant ECFP-p35 cardiomyocytes are present.

We next scored apoptosis by TUNEL at E10.5 in the Nkx2.5-Cre-induced mosaics, concentrating on the outflow tract (OFT) because this region had higher rates of apoptosis in the iMOSWT mosaics. The iMOS T1-Myc mosaic was markedly higher than observed in the EYFP-Myc cells (Figures 4D–4F). Interestingly, the apoptosis rate varied between heart regions: whereas the ECFP/EYFP TUNEL ratio was 4- to 5-fold above baseline in the ventricles, in the OFT it was over 10-fold higher, indicating that ECFP-WT cardiomyocytes in this region are especially sensitive to mosaic Myc overexpression.

To study the range limit of the cellular interaction leading to ECFP-WT cardiomyocyte apoptosis in iMOS T1-Myc mosaics, we took advantage of the Islet-Cre strain. The low-rate, interdispersed recombination induced by this line allowed us to score apoptosis separately for WT cardiomyocytes in direct contact...
with EYFP cells and those not in contact (Figures 4G–4H). Apoptosis was 17-fold more frequent in WT cardiomyocytes in direct contact with Myc-overexpressing EYFP cardiomyocytes than in those not contacting EYFP cardiomyocytes (Figure 4I; Movie S1).

These results indicate that the expansion of Myc-overexpressing cardiomyocytes requires the elimination of neighboring WT cardiomyocytes through apoptosis triggered by direct cell-cell contact or short-range signaling. Our characterization thus establishes that the replacement of the WT cardiomyocyte population by the Myc-overexpressing population is due to apoptosis-driven cell competition.

Myc Overexpression Induces Cardiomyocyte Population Expansion in the Adult Heart

To determine whether increased Myc levels impact cardiomyocyte population homeostasis during adult life, we induced mosaicism in the adult cardiomyocyte population by using the tamoxifen-inducible αMHC-merCremer strain (Sohal et al., 2001) (Figure 5A). Mosaics were induced by feeding animals tamoxifen during the first month after weaning, and hearts were analyzed immediately after tamoxifen cessation and at subsequent intervals up to 1 year (Figure 5A). This protocol produced an initial EYFP recombination slightly above 50% (Figure 6D). Previous studies have shown that strong Myc overexpression in cardiomyocytes of adult mice induces cardiomyocyte hypertrophy (Xiao et al., 2001). We thus first analyzed whether hypertrophy also resulted from long-term moderate Myc overexpression. Tamoxifen-induced adult iMOSWT and iMOSWT mice showed no spontaneous cardiac malfunction and their hearts were of normal size and anatomy even after 2 months of an intense exercise protocol (Figures 5B–5E). Measurement of average cardiomyocyte 2D size, both in histological sections and in cultures of disaggregated cardiac cells (Figures 5F–5I), showed that cardiomyocytes in iMOSWT hearts were not only not bigger than those in iMOSWT hearts but also in fact slightly smaller (Figure 5J). Due to binucleation, adult cardiomyocytes could contain more than one EYFP-Myc copy, and the levels of EYFP are expected to correlate with the Myc dose in the iMOSWT mosaics. Analysis of per-cell cardiomyocyte size and EYFP level showed no
correlation between these two parameters in either iMOSWT or iMOSTT-Myc mosaic hearts (Figures 5K and 5L). These results show that sustained Myc overexpression from the iMOSTT-Myc allele during adult life does not provoke cardiomyocyte hypertrophy. Heart size and heart/body weight ratios were moreover similar in both mosaics, indicating that overall cardiac cellular and organ anatomy are preserved.

We next determined the proportions of cardiomyocyte populations at different times after mosaic induction. While in iMOSWT hearts the proportion of EYFP cardiomyocytes was 53% at 1 year of age (Figures 6A and 6D), in the iMOSTT-Myc mosaics, the proportion increased progressively from a frequency similar to that found in iMOSWT hearts to 66% at 1 year of age (Figures 5B and 6D). Interestingly, half of this enrichment took place during the first month of observation. Since there were no major changes in heart mass or cardiomyocyte size (Figures 5E and 5J), these observations suggest that Myc-overexpressing cardiomyocytes expand at the expense of WT cardiomyocytes during adult life. To directly test this, we determined the relative frequency of ECFP cardiomyocytes with respect to all fluorescent (ECFP+EYFP) cardiomyocytes in 1-year-old iMOSTT-Myc and iMOSWT mosaics (Figures 6E–6H). The ECFP cell frequency was ∼60% lower in the iMOSTT-Myc mosaics, confirming that the expansion of the Myc-overexpressing cardiomyocyte population is concomitant with a reduction in the WT population. Most adult cardiomyocytes in the mouse are tetraploid and contain two nuclei (Soonpaa et al., 1996); this, together with the partial recombination achieved by tamoxifen treatment, generates heterogeneous levels of EYFP-Myc content in cardiomyocytes, with a predicted predominance of cardiomyocytes with one or two active EYFP-Myc copies. We therefore refined our study to...
showed that the enrichment in EYFP+ cardiomyocytes in fluorescence intensity was determined (Figure 6I). This analysis translated cardiomyocytes and the frequency of cells according to frequencies overtly differ between the two mosaics studied. Data in bar graphs are means ± SEM. *p < 0.05 **p < 0.01 ***p < 0.001.

Cardiomyocyte Competition

To identify the pathways altered in the iMOS\textsuperscript{TT}-MYC adult mosaic heart, we performed a transcriptomic analysis by RNA sequencing (RNA-seq), comparing 8-week old iMOS\textsuperscript{TT}-MYC and control hearts (Figure S3). Among the genes more significantly up- or downregulated in iMOS\textsuperscript{TT}-MYC hearts, there is a strong representation of genes involved in the response to cardiac overload, in cell growth/division, in energy metabolism, and in apoptosis (Figure S3A). Gene set enrichment analysis on all genes present in the RNA-seq experiment again detected the protective response to cardiac overload in iMOS\textsuperscript{TT}-MYC hearts, including the activation of the atrial natriuretic peptide and fetal cardiomyocyte programs (Kishimoto et al., 2001; Kuhn et al., 2002) and the hepatocyte growth factor (HGF)/Rho/tissue remodeling pathways (Madonna et al., 2012). In contrast, the epidermal growth factor (EGF) pathway, involved in the development of pathological hypertrophy (Shah and Catt, 2003), was found repressed in iMOS\textsuperscript{TT}-MYC hearts. Regarding metabolic processes, activation of the ribosome biosynthesis, a typical response to Myc overexpression, was also detected. In parallel, activation of the lysosomal pathway was as well present, indicating that metabolic activity was globally increased including both anabolic and catabolic processes. With regard to the metabolic processes, iMOS\textsuperscript{TT}-MYC hearts showed a reduction in lipid catabolism and in assembly of the peroxisome, the main organelle for lipid catabolism, suggesting a modification in the fuel usage by Myc-overexpressing cardiomyocytes. A remarkable alteration was found in various regulators of the circadian rhythm; Dbp and Per1, 2, and 3 were upregulated and Arntl (Bmal1) was downregulated. Circadian rhythm transcription factors are essential regulators of cardiac metabolism and regulate the balance between lipid and glucose usage in the heart and display a feedback regulation with the oxidative phosphorylation pathway in the heart (Durgan and Young, 2010). A major regulator of cardiac metabolism, AMP-activated protein kinase, has also been described to undergo circadian regulation (Tsai et al., 2010), its regulatory subunit is overexpressed in the iMOS\textsuperscript{TT}-MYC hearts, and it can be activated by Myc overexpression (Nieminen et al., 2013). The results observed are therefore compatible with a modified metabolic status of the iMOS\textsuperscript{TT}-MYC-

Figure 6. Myc Overexpression Induces Replacement of Adult Cardiomyocytes

(A–C) Confocal images of plated cardiomyocytes isolated at t3 (12 months after tamoxifen administration; see scheme in Figure 5) from aMHCMerCremer-recombined iMOSWT (WT) (A), iMOS\textsuperscript{TT}-MYC (MYC) (B), and iMOS\textsuperscript{TT}-MYC/P35 (MYC/P35) (C) mosaics, showing native EYFP expression and background autofluorescence. (D) Percentage of EYFP+ cardiomyocytes in cultures obtained from aMHCMerCremer-recombined iMOSWT (WT) hearts at t1 and t3 and from iMOS\textsuperscript{TT}-MYC (MYC) hearts at t1-t3 (n ≥ 3 and 300 cells). Data are means ± SEM.

(E–G) Confocal images of plated cardiomyocytes obtained as in (A)–(C), showing anti-GFP immunofluorescence, which identifies EYFP+ and ECFP+ cardiomyocytes. Scale bar, 50 μm.

(H) Quantification of data represented in (A)–(G) at t3. The graph on the left shows the absolute frequencies of EYFP-Myc and ECFP-WT cardiomyocytes in iMOSWT (WT), iMOS\textsuperscript{TT}-MYC (MYC) and iMOS\textsuperscript{TT}-MYC/P35 (MYC/P35) mosaics. In the graph on the right, the same data were expressed as relative ECFP+/EYFP+ cardiomyocyte proportions relative to that observed in iMOSWT (WT) mosaics, which was normalized to 100%.

(I) Graph represents the frequency of cardiomyocytes according to EYFP intensity in tamoxifen-induced aMHCMerCremer-recombined iMOSWT (WT) and iMOS\textsuperscript{TT}-MYC (MYC) mosaics, measured in cardiomyocytes isolated at t3, as in (A)–(C). The vertical dotted line marks the limit between background-fluorescent and EYFP-positive cardiomyocytes. Arrows indicate regions in which the frequencies overtly differ between the two mosaics studied. Data in bar graphs are means ± SEM. *p < 0.05 **p < 0.01 ***p < 0.001.

Analysis of the Pathways Involved in Adult Cardiomyocyte Competition

To identify the pathways altered in the iMOS\textsuperscript{TT}-MYC adult mosaic heart, we performed a transcriptomic analysis by RNA sequencing (RNA-seq), comparing 8-week old iMOS\textsuperscript{TT}-MYC and control hearts (Figure S3). Among the genes more significantly up- or downregulated in iMOS\textsuperscript{TT}-MYC hearts, there is a strong representation of genes involved in the response to cardiac overload, in cell growth/division, in energy metabolism, and in apoptosis (Figure S3A). Gene set enrichment analysis on all genes present in the RNA-seq experiment again detected the protective response to cardiac overload in iMOS\textsuperscript{TT}-MYC hearts, including the activation of the atrial natriuretic peptide and fetal cardiomyocyte programs (Kishimoto et al., 2001; Kuhn et al., 2002) and the hepatocyte growth factor (HGF)/Rho/tissue remodeling pathways (Madonna et al., 2012). In contrast, the epidermal growth factor (EGF) pathway, involved in the development of pathological hypertrophy (Shah and Catt, 2003), was found repressed in iMOS\textsuperscript{TT}-MYC hearts. Regarding metabolic processes, activation of the ribosome biosynthesis, a typical response to Myc overexpression, was also detected. In parallel, activation of the lysosomal pathway was as well present, indicating that metabolic activity was globally increased including both anabolic and catabolic processes. With regard to the metabolic processes, iMOS\textsuperscript{TT}-MYC hearts showed a reduction in lipid catabolism and in assembly of the peroxisome, the main organelle for lipid catabolism, suggesting a modification in the fuel usage by Myc-overexpressing cardiomyocytes. A remarkable alteration was found in various regulators of the circadian rhythm; Dbp and Per1, 2, and 3 were upregulated and Arntl (Bmal1) was downregulated. Circadian rhythm transcription factors are essential regulators of cardiac metabolism and regulate the balance between lipid and glucose usage in the heart and display a feedback regulation with the oxidative phosphorylation pathway in the heart (Durgan and Young, 2010). A major regulator of cardiac metabolism, AMP-activated protein kinase, has also been described to undergo circadian regulation (Tsai et al., 2010), its regulatory subunit is overexpressed in the iMOS\textsuperscript{TT}-MYC hearts, and it can be activated by Myc overexpression (Nieminen et al., 2013). The results observed are therefore compatible with a modified metabolic status of the iMOS\textsuperscript{TT}-MYC-

Cell Reports 8, 1741–1751, September 25, 2014 ©2014 The Authors
with either a direct or indirect impact of Myc overexpression on the circadian metabolic regulation. In agreement with this view, the Ingenuity Pathway analysis on the selected up- and downregulated genes (Figure S3B) indicates a modification of the lipid metabolism and a reduction of the oxidative phosphorylation activity in iMOST\textasciitilde-Myc hearts. The top networks identified by this analysis for the upregulated, downregulated, and joint gene sets are again the networks activated in response to cardiac overload (Figures 3B and 3C). In agreement with these results, we found that the expression of the atrial natriuretic peptide was clearly activated in a patchy pattern in the ventricles of the iMOST\textasciitilde-Myc mosaic hearts (Figure S3D).

Given the known functions of Myc in cardiomyocytes, the pathways detected likely result from cell-autonomous Myc functions and may relate to the ability of Myc-overexpressing cardiomyocytes to replace the WT cardiomyocyte population. In addition, the gene set enrichment study identified the activation of the apoptosis regulation and inflammation pathways in iMOST\textasciitilde-Myc hearts, which could be related to the death and removal of WT cardiomyocytes. We therefore used the iMOST\textasciitilde-Myc/T2p35 mosaics to undertake a functional study of the involvement of cell death. This analysis showed that p3S expression largely rescues the ECFP cell population (Figures 6C, 6G, and 6H). These results indicate that adult cardiomyocytes undergo Myc-induced cell competition, which progresses by elimination of WT cardiomyocytes and their replacement by cardiomyocytes with high Myc levels. We then analyzed whether increased proliferation of the Myc-overexpressing population is contributing to this phenomenon. We found that BrdU incorporation was 4-fold more frequent in the EYFP-Myc cardiomyocytes than in the WT cardiomyocytes of iMOST\textasciitilde-Myc mosaic hearts (Figure 7B). This increase did not alter the proportion of mononucleated cardiomyocytes (Figure 7C), suggesting that the balance between mononucleated cardiomyocyte division and binucleation is preserved.

To directly assess the involvement of apoptosis in the cardiomyocyte population shift, we analyzed the TUNEL pattern in adult iMOST\textasciitilde-Myc mosaics; however, we found no significant differences in TUNEL frequency between the EYFP-Myc and ECFP-WT cell populations. These results suggested that, unlike the situation during development, apoptosis might not be involved in the elimination of WT cardiomyocytes in adults, despite the activation of apoptotic pathways detected by RNA-seq. We then explored whether alternative cell-death pathways could be operating in postnatal cardiomyocytes. Given that p3S, in addition to inhibiting apoptotic cell death, can also inhibit autophagic cell death (Martin and Baehrecke, 2004) and that many apoptosis regulators are also involved in autophagic cell death, we tested whether this pathway could be involved in postnatal cardiomyocyte cell competition. Analysis of the autophagic death-specific marker Beclin (Liang et al., 1999) showed rare positive cells in iMOSWT hearts (Figures 7D–7D’); however, the frequency of Beclin-positive cells increased by 5-fold in iMOST\textasciitilde-Myc mosaic hearts (Figure 7E–7E’). Moreover, the frequency of Beclin-positive cells within the iMOST\textasciitilde-Myc mosaics was 9-fold higher in ECFP-WT cells than in EYFP-Myc cells (Figure 7G). These results indicate that autophagic cell death instead of apoptotic cell death is a major contributor to postnatal cardiomyocyte cell competition.

DISCUSSION

In this study, we demonstrate the ability of moderate Myc overexpression to induce cell competition in the developing and adult mouse heart. Previous studies showed that strong Myc
overexpression during fetal life leads to cardiac hyperplasia due
to cardiomyocyte hyperproliferation, while overexpression in
adults leads to cardiac hypertrophy due to cardiomyocyte over-
growth (Jackson et al., 1990; Xiao et al., 2001). In contrast, we
found that the Myc overexpression levels provided by the endogenous promoter of the Rosa26 locus do not lead to cardiac hypertrophy or hyperplasia. These results agree with previous evidence of ubiquitous MycER¹² expression from the Rosa26 locus, which did not induce cardiac hypertrophy even when two alleles were present (Murphy et al., 2008). A molecular signature typical of the response to cardiac overload however was activated. The activated pathways (Nppa, HGF) are cardioprotective and stimulate benign adaptation to increased cardiac function demands (Kishimoto et al., 2001; Kuhn et al., 2002; Madonna et al., 2012). In particular, the HGF pathway is not only involved in the cardiac overload response but also stimulates cardiac regeneration (Madonna et al., 2012). The activation of these pathways in the absence of cardiac overload, or in the presence of increased cardiac demand due to intense exercise, did not result in functional impairment. In fact, the EGF pathway, involved in pathological cardiac hypertrophy (Lee et al., 2011), was found inhibited in the Myc mosaic hearts. The Myc levels used here therefore can be considered “homeostatic” in the heart, since hearts exposed to these levels stay within normal anatomical and functional parameters. Interestingly, these expression levels provided in a mosaic fashion are enough to trigger cell competition, thereby enabling Myc-high cardiomyocytes to eliminate neighboring WT cardiomyocytes and expand to replace them. These results identify a window in which Myc level fluctuations can affect cardiomyocyte behavior to promote homeostatic changes in myocardial cell composition without affecting organ development and function.

These observations highlight the remarkable ability of fetal cardiomyocyte populations to undergo changes in composition without disrupting cardiac function. Previous studies showed that in mosaic hearts composed of wild-type cardiomyocytes and others carrying a deleterious mutation, the wild-type cardiomyocytes overproliferate during development to compensate for the loss of mutant cardiomyocytes (Drenckhahn et al., 2008). These studies indicate that the fetal heart bears sensing mechanisms that detect the loss of functional cardiomyocytes and promote their replacement. Our present results show that this replacement ability can also be stimulated by cell competition, whereby even undamaged wild-type cardiomyocytes can be eliminated and replaced by more competitive cells, without compromising cardiac homeostasis. Interestingly, this ability is retained during adult life, albeit at a notably slower pace with respect to that observed during development. In Drosophila, damaged postmitotic cells in the ovary can be eliminated and compensated for by hypertrophy of the remaining healthy cells (Tamori and Deng, 2013), while in the eye, postmitotic cells become refractory to cell competition (Tyler et al., 2007). Here, we found that, despite the predominant postmitotic nature of adult cardiomyocytes, the loss of the outcompeted population is not compensated by hypertrophy of winner cells but through overproliferation.

The mechanisms by which neighboring cells compare their fitness during cell competition in the mammalian embryo remain unknown, but a common theme of cell competition in the epiblast and the developing heart is the elimination of loser cells by apoptosis. In fact, in the fetal heart, we did not observe overt differences in proliferation between the two mosaic populations. This result is in apparent conflict with the fact that overexpansion of Islet-Cre-recombined cardiomyocyte population requires overproliferation and with the finding that the relative reduction of the WT cardiomyocyte population in the Nkx2.5-Cre-recombined mosaics requires compensatory proliferation to preserve normal heart size. The 5.7× expansion of the IsletCre-recombined population, however, involves only 2.5 extra cell cycles per cell in the 11 days between the activation of the driver at E7.5 and birth. This yields a total of 0.22 extra divisions per cell and day. In the case of the studies with the Nkx2.5Cre driver, between E8.5 and E11.5, a 60% reduction in the original 25% WT cardiomyocyte population was observed, which represents a 15% of the total cardiomyocyte population. To replace the 15% missing cardiomyocytes, only 0.15 extra cell divisions/cardiomyocyte would be required during the 3-day observation period. The degree of overproliferation required to explain the changes observed is therefore small and might not be experimentally detectable, especially since PHH3 and BrdU alone might not be enough for a full characterization of the cell proliferation rate cell proliferation.

In adult cardiomyocytes, however, we found a clear increase in the proliferative ability of winner cardiomyocytes, which likely contributes to the replacement of the loser population. While this increased proliferation capacity might be essential for the competitive ability, it is clearly not sufficient, and elimination of the loser population is still a requirement for cell competition in the adult heart. In fact, this overproliferation is most likely only compensatory for the loss of WT cardiomyocytes, since the homogeneous overexpression of two Rosa26-MycER copies does not lead to overproliferation in the adult heart (Murphy et al., 2008). The compensatory nature of this overproliferation would also explain the absence of cardiac overgrowth upon Myc mosaic overexpression.

These results suggest that fitness comparison between neighbors and death of the less-fit cells is a common theme in cell competition in very different scenarios. The fact that autophagic instead of apoptotic cell death is observed in adult cardiomyocytes could be more related to the specific features of adult cardiomyocytes than to the cell-competition phenomenon. Dying cells are normally eliminated by macrophages, but the size of an adult cardiomyocyte is about 100 times that of a macrophage, so a phase of self-destructive autophagy might be necessary before they can be eliminated by macrophages in a controlled manner. In fact, the typical example of autophagic death in Drosophila involves as well the elimination of giant cells of the salivary gland (Martin and Baehrecke, 2004). These considerations are in agreement with the predominance of TUNEL-negative autophagic cardiomyocyte death reported in heart failure patients (Knaapen et al., 2001).

The fact that cardiomyocytes undergo Myc-induced cell competition suggests that cell competition operates during normal heart development for the elimination of impaired cardiomyocytes unable to meet the anabolic rates demanded in the myocardium. Anabolism-induced cell competition thus appears
as a widespread phenomenon in mammalian tissues and not restricted to stem cell pools like the epiblast. There is an important difference, however, between endogenous cell competition in the epiblast and how it might operate during cardiogenesis: whereas epiblast development is characterized by a strong pattern of cell competition-associated apoptosis, during cardiogenesis, cardiomyocyte death is very infrequent (Poelmann et al., 2000). This suggests that while cell competition would work as a cell quality-control mechanism in both scenarios, in the epiblast it functions as a constitutive program, whereas during cardiogenesis it is used contingently, only if impaired cardiomyocytes appear. Since cardiomyocyte competition ability extends into adult life, it will be very interesting in the future to study whether cell competition is involved in maintaining tissue fitness during aging and whether it can contribute to natural or induced repair of cardiac insults in which cardiomyocytes are lost or impaired.

EXPERIMENTAL PROCEDURES

Mouse Strains

The IMOSWT, iMOSWT-Myc, and iMOSWT-Myc/T2-p35 mouse lines have been described (Clavería et al., 2013). Here, they were used in combination with different Cre-expressing lines to induce genetic mosaics in the developing and adult mouse heart. Experimental embryos or born mice were generated from crosses of homozygous IMOS females with males carrying the different Cre drivers: Nkx2.5Cre (Stanley et al., 2002), Islet1Cre (Yang et al., 2006), and aMHCremer (Sohal et al., 2001). Mice were genotyped by PCR (Clavería et al., 2013). To induce recombination in IMOS:aMHCremer mice, they were fed for 1 month with pellets containing tamoxifen at 40 g/kg (Teklad ref. TD.07262).

Confocal Microscopy

Whole embryonic hearts or histological sections were imaged with a Nikon A1R confocal microscope using 405, 458, 488, 568, and 633 nm wavelengths and 20×/0.75 dry and 40×/1.30 oil objectives. Areas occupied by EYPF and ECDF cells were quantified using the threshold detection and particle analysis tools in ImageJ (NIH; http://rsb.info.nih.gov/ij). To calculate the relative frequency of ECDF cells, the percentage of ECDF area observed was divided by the average percentage in IMOSWT mosaics. All percentages were normalized to a 100% value in the WT mosaic. ECDF was scored either by direct identification of native ECDF fluorescence or by subtracting the area of native EYPF from the anti-GFP staining, which detects both EYPF and ECDF.

Immunofluorescence and TUNEL Assay

Embryos were obtained at different days of gestation and fixed overnight at 4°C in 2% paraformaldehyde in PBS. Hearts were either dissected for whole-mount staining or gelatin embedded and cryosectioned. Adult cardiomyocytes were isolated by Langendorff perfusion with liberase (Roche Applied Science) and plated for confocal imaging as described previously (García-Prieto et al., 2014). Primary antibodies used were anti-phosphohistone H3 (Ser 10), anti-Myc polyclonal antibody (Millipore), Living colors Rabbit polyclonal antibody (Jackson ImmunoResearch), clonal anti-GFP antibody (Clontech), Beclin1 (Cell Signaling), and Nppa (Millipore). Immunofluorescence was performed following standard procedures. TUNEL was performed on whole-mount embryonic hearts or sections using terminal deoxynucleotidyl transferase (TdT) and biotin-16-2′-deoxy-uridine-5′-triphosphate (Biotin-16-diUTP) (both from Roche), and developed with various streptavidin fluorescent conjugates (Jackson ImmunoResearch).

Statistical Analysis

To compare average percentages of ECDF cells/area between more than two groups, the Kruskal-Wallis test was used (assuming nonnormal distributions). For comparisons of two groups, a Mann-Whitney test was used. To test the correlation between cell size and EYPF expression, a linear regression model was used. All comparisons were made using Prism statistical analysis software. The significance of BrdU* frequency and mononucleated cardiomyocyte frequency comparisons from adult hearts was analyzed using a proportions test as implemented in R.

ACCESSION NUMBERS

The NCBI Gene Expression Omnibus database accession number for the RNA-seq data reported in this paper is GSE58858.

SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures, three figures, and one movie and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2014.08.005.

ACKNOWLEDGMENTS

We thank J.L. de la Pompa for comments on the manuscript, V. García for mouse work, E. Arza and A.M. Santos for help with microscopy and 3D reconstruction, J. García-Prieto for help with cardiomyocyte isolation, A.V. Alonso for the echocardiography assays, F. Sánchez-Cabo for statistics, and S. Bartlett for text editing. The CNIC Genomics unit performed the RNA sequencing procedures. This work was supported by grants BFU2012-31086 and RD12/0019/0005 (ISCIII) from the Spanish Ministry of Economy and Competition (MINECO) and grant P2010/BMD-2315 from the Madrid Regional Government. C.V. is supported by a FPI grant from the MINECO. The CNIC is supported by the MINECO and the Pro-CNIC Foundation.

Received: February 5, 2014
Revised: April 21, 2014
Accepted: August 1, 2014
Published: September 4, 2014

REFERENCES