Please use this identifier to cite or link to this item:http://hdl.handle.net/20.500.12105/9487
Title
An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene
Author(s)
Ferrandiz-Avellano, Maria-Jose ISCIII | Martin-Galiano, Antonio Javier ISCIII | Arnanz, Cristina ISCIII | Camacho-Soguero, Isabel | Tirado-Velez, JM ISCIII | de la Campa, Adela G ISCIII
Date issued
2016
Citation
Nucleic Acids Res. 2016 Sep 6;44(15):7292-303.
Language
Inglés
Document type
journal article
Abstract
We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7-31.4 kb in length and included 9-22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria.
MESH
Benzodioxoles | DNA | DNA Topoisomerases, Type I | DNA, Bacterial | DNA, Superhelical | Gene Expression Regulation, Bacterial | Genes, Bacterial | Homeostasis | Microbial Viability | Phenanthrenes | Streptococcus pneumoniae | Transcription, Genetic | Transcriptome | Multigene Family
Online version
DOI
Collections