Please use this identifier to cite or link to this item:http://hdl.handle.net/20.500.12105/8882
Title
Regulation of Mother-to-Offspring Transmission of mtDNA Heteroplasmy
Author(s)
Latorre-Pellicer, Ana CNIC | Lechuga-Vieco, Ana V. CNIC | Johnston, Iain G | Hämäläinen, Riikka H | Pellico, Juan CNIC | Justo-Mendez, Raquel CNIC | Fernandez-Toro, Jose Maria CNIC | Claveria, Cristina CNIC | Guaras, Adela CNIC | Sierra, Rocio CNIC | Llop, Jordi | Torres, Miguel CNIC | Criado-Rodriguez, Luis M. CNIC | Suomalainen, Anu | Jones, Nick S | Ruiz-Cabello, Jesus CNIC | Enriquez, Jose Antonio CNIC
Date issued
2019-12-03
Citation
Cell Metab. 2019; 30(6):1120-30
Language
Inglés
Abstract
mtDNA is present in multiple copies in each cell derived from the expansions of those in the oocyte. Heteroplasmy, more than one mtDNA variant, may be generated by mutagenesis, paternal mtDNA leakage, and novel medical technologies aiming to prevent inheritance of mtDNA-linked diseases. Heteroplasmy phenotypic impact remains poorly understood. Mouse studies led to contradictory models of random drift or haplotype selection for mother-to-offspring transmission of mtDNA heteroplasmy. Here, we show that mtDNA heteroplasmy affects embryo metabolism, cell fitness, and induced pluripotent stem cell (iPSC) generation. Thus, genetic and pharmacological interventions affecting oxidative phosphorylation (OXPHOS) modify competition among mtDNA haplotypes during oocyte development and/or at early embryonic stages. We show that heteroplasmy behavior can fall on a spectrum from random drift to strong selection, depending on mito-nuclear interactions and metabolic factors. Understanding heteroplasmy dynamics and its mechanisms provide novel knowledge of a fundamental biological process and enhance our ability to mitigate risks in clinical applications affecting mtDNA transmission.
Subject
Embryo | Germline selection | Heteroplasmy | Mitochondria | Mitochondrial replacement | mtDNA competition | mtDNA inheritance
Online version
DOI
Collections