Mostrar el registro sencillo del ítem

dc.contributor.authorZhou, Jing
dc.contributor.authorGhoroghi, Shima
dc.contributor.authorBenito-Martin, Alberto
dc.contributor.authorWu, Hao
dc.contributor.authorUnachukwu, Uchenna John
dc.contributor.authorEinbond, Linda Saxe
dc.contributor.authorGuariglia, Sara
dc.contributor.authorPeinado Selgas, Hector 
dc.contributor.authorRedenti, Stephen
dc.date.accessioned2019-12-23T12:12:24Z
dc.date.available2019-12-23T12:12:24Z
dc.date.issued2016-01-22
dc.identifier.citationSci Rep. 2016;6:19743.es_ES
dc.identifier.issn2045-2322es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/8872
dc.description.abstractMicrovesicles (MVs) are lipid bilayer-covered cell fragments that range in diameter from 30 nm-1 uM and are released from all cell types. An increasing number of studies reveal that MVs contain microRNA, mRNA and protein that can be detected in the extracellular space. In this study, we characterized induced pluripotent stem cell (iPSC) MV genesis, content and fusion to retinal progenitor cells (RPCs) in vitro. Nanoparticle tracking revealed that iPSCs released approximately 2200 MVs cell/hour in the first 12 hrs with an average diameter of 122 nm. Electron and light microscopic analysis of iPSCs showed MV release via lipid bilayer budding. The mRNA content of iPSC MVs was characterized and revealed the presence of the transcription factors Oct-3/4, Nanog, Klf4, and C-Myc. The protein content of iPSCs MVs, detected by immunogold electron microscopy, revealed the presence of the Oct-3/4 and Nanog. Isolated iPSC MVs were shown to fuse with RPCs in vitro at multiple points along the plasma membrane. These findings demonstrate that the mRNA and protein cargo in iPSC MVs have established roles in maintenance of pluripotency. Building on this work, iPSC derived MVs may be shown to be involved in maintaining cellular pluripotency and may have application in regenerative strategies for neural tissue.es_ES
dc.language.isoenges_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject.meshAnimals es_ES
dc.subject.meshCell Fusion es_ES
dc.subject.meshCell Membrane es_ES
dc.subject.meshCell Size es_ES
dc.subject.meshCell-Derived Microparticles es_ES
dc.subject.meshInduced Pluripotent Stem Cells es_ES
dc.subject.meshMice es_ES
dc.subject.meshProteins es_ES
dc.subject.meshRNA, Messenger es_ES
dc.subject.meshReal-Time Polymerase Chain Reaction es_ES
dc.titleCharacterization of Induced Pluripotent Stem Cell Microvesicle Genesis, Morphology and Pluripotent Contentes_ES
dc.typejournal articlees_ES
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.identifier.pubmedID26797168es_ES
dc.format.volume6es_ES
dc.format.number1es_ES
dc.format.page19743es_ES
dc.identifier.doi10.1038/srep19743es_ES
dc.description.peerreviewedes_ES
dc.identifier.e-issn2045-2322es_ES
dc.relation.publisherversionhttps://doi.org/10.1038/srep19743 .es_ES
dc.identifier.journalScientific reportses_ES
dc.repisalud.institucionCNIOes_ES
dc.repisalud.orgCNIOCNIO::Grupos de investigación::Grupo de Microambiente y Metástasises_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Atribución-NoComercial-CompartirIgual 4.0 Internacional