Show simple item record

dc.contributor.authorRodriguez-Acebes, Sara 
dc.contributor.authorMouron, Silvana Andrea 
dc.contributor.authorMendez, Juan
dc.identifier.citationJ Biol Chem. 2018;293(33):12855-12861es_ES
dc.description.abstractIn growing cells, DNA replication precedes mitotic cell division to transmit genetic information to the next generation. The slowing or stalling of DNA replication forks at natural or exogenous obstacles causes "replicative stress" that promotes genomic instability and affects cellular fitness. Replicative stress phenotypes can be characterized at the single-molecule level with DNA combing or stretched DNA fibers, but interpreting the results obtained with these approaches is complicated by the fact that the speed of replication forks is connected to the frequency of origin activation. Primary alterations in fork speed trigger secondary responses in origins, and, conversely, primary alterations in the number of active origins induce compensatory changes in fork speed. Here, by employing interventions that temporally restrict either fork speed or origin firing while still allowing interrogation of the other variable, we report a set of experimental conditions to separate cause and effect in any manipulation that affects DNA replication dynamics. Using HeLa cells and chemical inhibition of origin activity (through a CDC7 kinase inhibitor) and of DNA synthesis (via the DNA polymerase inhibitor aphidicolin), we found that primary effects of replicative stress on velocity of replisomes (fork rate) can be readily distinguished from primary effects on origin firing. Identifying the primary cause of replicative stress in each case as demonstrated here may facilitate the design of methods to counteract replication stress in primary cells or to enhance it in cancer cells to increase their susceptibility to therapies that target DNA repair.es_ES
dc.description.sponsorshipThe DNA Replication Group is part of the BFU2016-81796-REDC network of excellence. We thank all members of the group for discussions and Dr. Oscar Fernández-Capetillo and Dr. Ana Losada for useful comments on the manuscriptes_ES
dc.publisherAmerican Society for Biochemistry and Molecular Biology (ASBMB) es_ES
dc.subjectDNA polymerasees_ES
dc.subjectDNA primasees_ES
dc.subjectDNA replicationes_ES
dc.subjectCell division cycle 7-related protein kinase (Cdc7)es_ES
dc.subjectFork speedes_ES
dc.subjectMolecular biologyes_ES
dc.subjectReplication origines_ES
dc.subjectReplicative stresses_ES
dc.subjectStretched DNA fiberses_ES
dc.subject.meshAphidicolin es_ES
dc.subject.meshCell Cycle Proteins es_ES
dc.subject.meshCellular Senescence es_ES
dc.subject.meshDNA es_ES
dc.subject.meshDNA Repair es_ES
dc.subject.meshDNA Replication es_ES
dc.subject.meshHeLa Cells es_ES
dc.subject.meshHumans es_ES
dc.subject.meshProtein-Serine-Threonine Kinases es_ES
dc.subject.meshReplication Origin es_ES
dc.titleUncoupling fork speed and origin activity to identify the primary cause of replicative stress phenotypeses_ES
dc.typejournal articlees_ES
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.contributor.funderMinisterio de Economía y Competitividad (España)
dc.identifier.journalThe Journal of biological chemistryes_ES
dc.repisalud.orgCNIOCNIO::Grupos de investigación::Grupo de Replicación de ADNes_ES
dc.rights.accessRightsopen accesses_ES

Files in this item

Acceso Abierto

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 Internacional
This item is licensed under a: Atribución-NoComercial-CompartirIgual 4.0 Internacional