Show simple item record

dc.contributor.authorAhuja, Akshay K
dc.contributor.authorJodkowska, Karolina
dc.contributor.authorTeloni, Federico
dc.contributor.authorBizard, Anna H
dc.contributor.authorZellweger, Ralph
dc.contributor.authorHerrador, Raquel
dc.contributor.authorOrtega Jimenez, Sagrario 
dc.contributor.authorHickson, Ian D
dc.contributor.authorAltmeyer, Matthias
dc.contributor.authorMendez, Juan 
dc.contributor.authorLopes, Massimo
dc.date.accessioned2019-07-08T09:13:24Z
dc.date.available2019-07-08T09:13:24Z
dc.date.issued2016-02-15
dc.identifier.citationNat Commun. 2016 ;7:10660.es_ES
dc.identifier.issn2041-1723es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/7866
dc.description.abstractEmbryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and Rad3 related (ATR) and is associated with chromatin loading of the ssDNA-binding proteins RPA and RAD51. Single-molecule analysis of replication intermediates reveals massive ssDNA gap accumulation, reduced fork speed and frequent fork reversal. All these marks of replication stress do not impair the mitotic process and are rapidly lost at differentiation onset. Delaying the G1/S transition in ESCs allows formation of 53BP1 nuclear bodies and suppresses ssDNA accumulation, fork slowing and reversal in the following S-phase. Genetic inactivation of fork slowing and reversal leads to chromosomal breakage in unperturbed ESCs. We propose that rapid cell cycle progression makes ESCs dependent on effective replication-coupled mechanisms to protect genome integrity.es_ES
dc.description.sponsorshipWe thank the Center for Microscopy and Image Analysis of the University of Zurich and the Confocal Microscopy Unit and Transgenic Animal Unit (Biotechnology Programme,CNIO) for technical assistance. We are grateful to P. Cinelli and his group members fortechnical assistance in the initial phases of this project, and C. Santocanale, P. Schar,P. Janscak and A. Sartori for sharing reagents. We also thank S. Ferrari, P. Cinelli, L.Sommer, M. Manz and all current and past members of the Lopes group for usefuldiscussions. This work was supported by the Swiss National Science Foundation grants 31003A_146924 and PDFMP3_127523 to M.L. and grant PP00P3_150690/1 to M.A., bySAF2013–44866R (to S.O.) and BFU2013–49153-P grants from Spanish Ministry of Economy and Competitiveness (MINECO) to J.M., and by the European Research Council, Nordea Foundation and Danish National Research Foundation to I.D.Hes_ES
dc.language.isoenges_ES
dc.publisherNature Publishing Groupes_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject.meshAnimals es_ES
dc.subject.meshAtaxia Telangiectasia Mutated Proteins es_ES
dc.subject.meshBlastocyst es_ES
dc.subject.meshBlotting, Westernes_ES
dc.subject.meshChromatin es_ES
dc.subject.meshChromosomal Proteins, Non-Histonees_ES
dc.subject.meshDNA, Single-Stranded es_ES
dc.subject.meshDNA-Binding Proteins es_ES
dc.subject.meshElectrophoresis, Gel, Pulsed-Field es_ES
dc.subject.meshFlow Cytometry es_ES
dc.subject.meshHistones es_ES
dc.subject.meshMice es_ES
dc.subject.meshMicroscopy, Confocal es_ES
dc.subject.meshMicroscopy, Electron es_ES
dc.subject.meshMicroscopy, Fluorescence es_ES
dc.subject.meshMitosis es_ES
dc.subject.meshMorula es_ES
dc.subject.meshMouse Embryonic Stem Cells es_ES
dc.subject.meshPhosphorylation es_ES
dc.subject.meshPoly(ADP-ribose) Polymerases es_ES
dc.subject.meshRad51 Recombinase es_ES
dc.subject.meshReplication Protein A es_ES
dc.subject.meshTumor Suppressor p53-Binding Protein 1 es_ES
dc.subject.meshDNA Damage es_ES
dc.subject.meshDNA Replication es_ES
dc.subject.meshG1 Phase es_ES
dc.subject.meshG1 Phase Cell Cycle Checkpoints es_ES
dc.titleA short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cellses_ES
dc.typeArtículoes_ES
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.identifier.pubmedID26876348es_ES
dc.format.volume7es_ES
dc.format.number1es_ES
dc.format.page10660es_ES
dc.identifier.doi10.1038/ncomms10660es_ES
dc.contributor.funderDanish National Research Foundationes_ES
dc.contributor.funderMinisterio de Economia y Competitividad (España)es_ES
dc.contributor.funderEuropean Research Counciles_ES
dc.description.peerreviewedes_ES
dc.identifier.e-issn2041-1723es_ES
dc.relation.publisherversionhttps://doi.org/10.1038/ncomms10660.es_ES
dc.identifier.journalNature communicationses_ES
dc.repisalud.institucionCNIOes_ES
dc.repisalud.orgCNIOCNIO::Grupos de investigación::Grupo de Replicación de ADNes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/SAF2013–44866Res_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/BFU2013–49153-Pes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 Internacional
This item is licensed under a: Atribución-NoComercial-CompartirIgual 4.0 Internacional