Please use this identifier to cite or link to this item:http://hdl.handle.net/20.500.12105/7866
Title
A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells
Author(s)
Date issued
2016-02-15
Citation
Nat Commun. 2016 ;7:10660.
Language
Inglés
Abstract
Embryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and Rad3 related (ATR) and is associated with chromatin loading of the ssDNA-binding proteins RPA and RAD51. Single-molecule analysis of replication intermediates reveals massive ssDNA gap accumulation, reduced fork speed and frequent fork reversal. All these marks of replication stress do not impair the mitotic process and are rapidly lost at differentiation onset. Delaying the G1/S transition in ESCs allows formation of 53BP1 nuclear bodies and suppresses ssDNA accumulation, fork slowing and reversal in the following S-phase. Genetic inactivation of fork slowing and reversal leads to chromosomal breakage in unperturbed ESCs. We propose that rapid cell cycle progression makes ESCs dependent on effective replication-coupled mechanisms to protect genome integrity.
MESH
Animals | Ataxia Telangiectasia Mutated Proteins | Blastocyst | Blotting, Western | Chromatin | Chromosomal Proteins, Non-Histone | DNA, Single-Stranded | DNA-Binding Proteins | Electrophoresis, Gel, Pulsed-Field | Flow Cytometry | Histones | Mice | Microscopy, Confocal | Microscopy, Electron | Microscopy, Fluorescence | Mitosis | Morula | Mouse Embryonic Stem Cells | Phosphorylation | Poly(ADP-ribose) Polymerases | Rad51 Recombinase | Replication Protein A | Tumor Suppressor p53-Binding Protein 1 | DNA Damage | DNA Replication | G1 Phase | G1 Phase Cell Cycle Checkpoints
Online version
DOI
Collections