Mostrar el registro sencillo del ítem

dc.contributor.authorBrasch, Melanie
dc.contributor.authorPutri, Rindia M.
dc.contributor.authorde Ruiter, Mark V.
dc.contributor.authorLuque, Daniel 
dc.contributor.authorKoay, Melissa. S. T.
dc.contributor.authorCastón, José R.
dc.contributor.authorCornelissen, Jeroen J. L. M.
dc.date.accessioned2019-05-30T10:45:30Z
dc.date.available2019-05-30T10:45:30Z
dc.date.issued2017
dc.identifier.citationJ. Am. Chem. Soc.2017,139,4,1512-1519es_ES
dc.identifier.issn0002-7863es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/7698
dc.description.abstractThe packaging of proteins into discrete compartments is an essential feature for cellular efficiency. Inspired by Nature, we harness virus-like assemblies as artificial nanocompartments for enzyme-catalyzed cascade reactions. Using the negative charges of nucleic acid tags, we develop a versatile strategy to promote an efficient noncovalent co-encapsulation of enzymes within a single protein cage of cowpea chlorotic mottle virus (CCMV) at neutral pH. The encapsulation results in stable 21-22 nm sized CCMV-like particles, which is characteristic of an icosahedral T = 1 symmetry. Cryo-EM reconstruction was used to demonstrate the structure of T = 1 assemblies templated by biological soft materials as well as the extra-swelling capacity of these T = 1 capsids. Furthermore, the specific sequence of the DNA tag is capable of operating as a secondary biocatalyst as well as bridging two enzymes for co-encapsulation in a single capsid while maintaining their enzymatic activity. Using CCMV-like particles to mimic nanocompartments can provide valuable insight on the role of biological compartments in enhancing metabolic efficiency.es_ES
dc.description.sponsorshipWe acknowledge financial support from the ERC Consolidator Grant (Protcage) and the Indonesia Endowment Fund for Education (LPDP). This work was supported in part by grants from the Spanish Ministry of Economy and Competitivity (BFU2014-55475 to JRC) and the Comunidad Autónoma de Madrid (S2013/MIT-2807 to JRC).es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Society (ACS) es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.meshBiocatalysis es_ES
dc.subject.meshBromovirus es_ES
dc.subject.meshGlucose Oxidase es_ES
dc.subject.meshNucleic Acids es_ES
dc.subject.meshParticle Size es_ES
dc.subject.meshPhosphogluconate Dehydrogenase es_ES
dc.subject.meshPhosphotransferases (Alcohol Group Acceptor) es_ES
dc.subject.meshSurface Properties es_ES
dc.titleAssembling Enzymatic Cascade Pathways inside Virus-Based Nanocages Using Dual-Tasking Nucleic Acid Tagses_ES
dc.typejournal articlees_ES
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.pubmedID28055188es_ES
dc.format.volume139es_ES
dc.format.number4es_ES
dc.format.page1519es_ES
dc.identifier.doi10.1021/jacs.6b10948es_ES
dc.contributor.funderComunidad de Madrid (España) 
dc.contributor.funderMinisterio de Economía y Competitividad (España) 
dc.description.peerreviewedes_ES
dc.identifier.e-issn1520-5126es_ES
dc.relation.publisherversionhttps://doi.org/10.1021/jacs.6b10948es_ES
dc.identifier.journalJournal of the American Chemical Societyes_ES
dc.repisalud.centroISCIII::Centro Nacional de Microbiologíaes_ES
dc.repisalud.institucionISCIIIes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/BFU2014-55475es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/S2013/MIT-2807es_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional