Show simple item record

dc.contributor.authorQuintana-Cabrera, Ruben
dc.contributor.authorQuirin, Charlotte
dc.contributor.authorGlytsou, Christina
dc.contributor.authorCorrado, Mauro
dc.contributor.authorUrbani, Andrea
dc.contributor.authorPellattiero, Anna
dc.contributor.authorCalvo, Enrique 
dc.contributor.authorVazquez, Jesus 
dc.contributor.authorEnriquez, Jose Antonio 
dc.contributor.authorGerle, Christoph
dc.contributor.authorSoriano, Maria Eugenia
dc.contributor.authorBernardi, Paolo
dc.contributor.authorScorrano, Luca
dc.date.accessioned2018-10-26T07:59:26Z
dc.date.available2018-10-26T07:59:26Z
dc.date.issued2018
dc.identifierISI:000442594800001
dc.identifier.citationNat Commun. 2018; 9(1):3399
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/20.500.12105/6537
dc.description.abstractIt is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F1Fo-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization.
dc.description.sponsorshipThe authors thank Drs. F. Caicci and E. Boldrin (Department of Biology, University of Padova) for EM sample preparation; Drs. N. Demaurex (University of Geneva, Switzerland), H. Imamura and H. Koji (University of Kyoto, Japan) for reagents, J.P. Bolanos and A. Almeida (University of Salamanca, Spain) for facilities and discussion. R.Q.-C. was supported by an AIRC Postdoctoral Fellowship, a Fondazione Umberto Veronesi Postdoctoral Fellowship and is currently a recipient of a Juan de la Cierva-Incorporacion fellowship from the Spanish Ministry of Economy, Industry and Competitiveness (IJCI-2015-26225). This work was supported by Telethon-Italy GPP10005, GGP14187, GGP15091; AIRC Italy IG-15748, ERC FP7-282280, FP7 CIG PCIG13-GA-2013-618697; Italian Ministry of Research FIRB RBAP11Z3YA\_005 to L.S. C.Ge. is supported by JST, CREST Grant JPMJCR13M4 (to Genij Kurisu and C.Ge.), the Platform for Drug Design, Discovery and Development from MEXT, Japan and the Grants-in-Aid for Scientific Research (Kiban B: 17H03647) from MEXT, Japan. JAE is supported by Spanish Ministry of Economy, Industry and Competitiveness (SAF2015-65633-R; SAF2015-71521-REDC). The CNIC is supported by MINECO and Pro-CNIC Foundation and is a SO-MINECO (award SEV-2015-0505).
dc.language.isoeng
dc.publisherNature Publishing Group 
dc.type.hasVersionVoR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPERMEABILITY TRANSITION PORE
dc.subjectCOMPLEX III DEFICIENCY
dc.subjectCYTOCHROME-C RELEASE
dc.subjectOXIDATIVE-PHOSPHORYLATION
dc.subjectF1F0-ATP SYNTHASE
dc.subjectSUPRAMOLECULAR ORGANIZATION
dc.subjectLIVER-MITOCHONDRIA
dc.subjectINHIBITOR PROTEIN
dc.subjectINNER MEMBRANE
dc.subjectSUBUNIT-G
dc.titleThe cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function
dc.typejournal article
dc.rights.licenseAtribución 4.0 Internacional*
dc.identifier.pubmedID30143614
dc.format.volume9
dc.identifier.doi10.1038/s41467-018-05655-x
dc.contributor.funderItalian Association for Cancer Research 
dc.contributor.funderFondazione Umberto Veronesi 
dc.contributor.funderMinisterio de Economía, Industria y Competitividad (España) 
dc.contributor.funderFondazione Telethon 
dc.contributor.funderEuropean Research Council 
dc.contributor.funderMinistero dell Università e della Ricerca (Italia) 
dc.contributor.funderUnión Europea. Comisión Europea 
dc.contributor.funderMinistry of Education, Culture, Sports, Science, and Technology (Japón) 
dc.contributor.funderFundación ProCNIC 
dc.description.peerreviewed
dc.relation.publisherversionhttps://doi.org/10.1038/s41467-018-05655-x
dc.identifier.journalNature Communications
dc.repisalud.orgCNICCNIC::Grupos de investigación::Genética Funcional del Sistema de Fosforilación Oxidativa
dc.repisalud.orgCNICCNIC::Grupos de investigación::Proteómica cardiovascular
dc.repisalud.orgCNICCNIC::Unidades técnicas::Proteómica / Metabolómica
dc.repisalud.institucionCNIC
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/618697es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/282280es_ES
dc.rights.accessRightsopen accesses_ES


Files in this item

Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto
Thumbnail
Acceso Abierto

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This item is licensed under a: Atribución 4.0 Internacional