dc.contributor.author | Quintana-Cabrera, Ruben | |
dc.contributor.author | Quirin, Charlotte | |
dc.contributor.author | Glytsou, Christina | |
dc.contributor.author | Corrado, Mauro | |
dc.contributor.author | Urbani, Andrea | |
dc.contributor.author | Pellattiero, Anna | |
dc.contributor.author | Calvo, Enrique | |
dc.contributor.author | Vazquez, Jesus | |
dc.contributor.author | Enriquez, Jose Antonio | |
dc.contributor.author | Gerle, Christoph | |
dc.contributor.author | Soriano, Maria Eugenia | |
dc.contributor.author | Bernardi, Paolo | |
dc.contributor.author | Scorrano, Luca | |
dc.date.accessioned | 2018-10-26T07:59:26Z | |
dc.date.available | 2018-10-26T07:59:26Z | |
dc.date.issued | 2018 | |
dc.identifier | ISI:000442594800001 | |
dc.identifier.citation | Nat Commun. 2018; 9(1):3399 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12105/6537 | |
dc.description.abstract | It is unclear how the mitochondrial fusion protein Optic atrophy 1 (OPA1), which inhibits cristae remodeling, protects from mitochondrial dysfunction. Here we identify the mitochondrial F1Fo-ATP synthase as the effector of OPA1 in mitochondrial protection. In OPA1 overexpressing cells, the loss of proton electrochemical gradient caused by respiratory chain complex III inhibition is blunted and this protection is abolished by the ATP synthase inhibitor oligomycin. Mechanistically, OPA1 and ATP synthase can interact, but recombinant OPA1 fails to promote oligomerization of purified ATP synthase reconstituted in liposomes, suggesting that OPA1 favors ATP synthase oligomerization and reversal activity by modulating cristae shape. When ATP synthase oligomers are genetically destabilized by silencing the key dimerization subunit e, OPA1 is no longer able to preserve mitochondrial function and cell viability upon complex III inhibition. Thus, OPA1 protects mitochondria from respiratory chain inhibition by stabilizing cristae shape and favoring ATP synthase oligomerization. | |
dc.description.sponsorship | The authors thank Drs. F. Caicci and E. Boldrin (Department of Biology, University of Padova) for EM sample preparation; Drs. N. Demaurex (University of Geneva, Switzerland), H. Imamura and H. Koji (University of Kyoto, Japan) for reagents, J.P. Bolanos and A. Almeida (University of Salamanca, Spain) for facilities and discussion. R.Q.-C. was supported by an AIRC Postdoctoral Fellowship, a Fondazione Umberto Veronesi Postdoctoral Fellowship and is currently a recipient of a Juan de la Cierva-Incorporacion fellowship from the Spanish Ministry of Economy, Industry and Competitiveness (IJCI-2015-26225). This work was supported by Telethon-Italy GPP10005, GGP14187, GGP15091; AIRC Italy IG-15748, ERC FP7-282280, FP7 CIG PCIG13-GA-2013-618697; Italian Ministry of Research FIRB RBAP11Z3YA\_005 to L.S. C.Ge. is supported by JST, CREST Grant JPMJCR13M4 (to Genij Kurisu and C.Ge.), the Platform for Drug Design, Discovery and Development from MEXT, Japan and the Grants-in-Aid for Scientific Research (Kiban B: 17H03647) from MEXT, Japan. JAE is supported by Spanish Ministry of Economy, Industry and Competitiveness (SAF2015-65633-R; SAF2015-71521-REDC). The CNIC is supported by MINECO and Pro-CNIC Foundation and is a SO-MINECO (award SEV-2015-0505). | |
dc.language.iso | eng | |
dc.publisher | Nature Publishing Group | |
dc.type.hasVersion | VoR | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | PERMEABILITY TRANSITION PORE | |
dc.subject | COMPLEX III DEFICIENCY | |
dc.subject | CYTOCHROME-C RELEASE | |
dc.subject | OXIDATIVE-PHOSPHORYLATION | |
dc.subject | F1F0-ATP SYNTHASE | |
dc.subject | SUPRAMOLECULAR ORGANIZATION | |
dc.subject | LIVER-MITOCHONDRIA | |
dc.subject | INHIBITOR PROTEIN | |
dc.subject | INNER MEMBRANE | |
dc.subject | SUBUNIT-G | |
dc.title | The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function | |
dc.type | journal article | |
dc.rights.license | Atribución 4.0 Internacional | * |
dc.identifier.pubmedID | 30143614 | |
dc.format.volume | 9 | |
dc.identifier.doi | 10.1038/s41467-018-05655-x | |
dc.contributor.funder | Italian Association for Cancer Research | |
dc.contributor.funder | Fondazione Umberto Veronesi | |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad (España) | |
dc.contributor.funder | Fondazione Telethon | |
dc.contributor.funder | European Research Council | |
dc.contributor.funder | Ministero dell Università e della Ricerca (Italia) | |
dc.contributor.funder | Unión Europea. Comisión Europea | |
dc.contributor.funder | Ministry of Education, Culture, Sports, Science, and Technology (Japón) | |
dc.contributor.funder | Fundación ProCNIC | |
dc.description.peerreviewed | Sí | |
dc.relation.publisherversion | https://doi.org/10.1038/s41467-018-05655-x | |
dc.identifier.journal | Nature Communications | |
dc.repisalud.orgCNIC | CNIC::Grupos de investigación::Genética Funcional del Sistema de Fosforilación Oxidativa | |
dc.repisalud.orgCNIC | CNIC::Grupos de investigación::Proteómica cardiovascular | |
dc.repisalud.orgCNIC | CNIC::Unidades técnicas::Proteómica / Metabolómica | |
dc.repisalud.institucion | CNIC | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/618697 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/282280 | es_ES |
dc.rights.accessRights | open access | es_ES |