Mostrar el registro sencillo del ítem

dc.contributor.authorOlmeda, David 
dc.contributor.authorCerezo-Wallis, Daniela
dc.contributor.authorCastellano-Sanz, Elena
dc.contributor.authorGarcía-Silva, Susana
dc.contributor.authorPeinado Selgas, Hector 
dc.contributor.authorSoengas, MS 
dc.date.accessioned2021-10-19T10:07:15Z
dc.date.available2021-10-19T10:07:15Z
dc.date.issued2021-08
dc.identifier.citationAdv Drug Deliv Rev. 2021;175:113833.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/13444
dc.description.abstractImaging of the lymphatic vasculature has gained great attention in various fields, not only because lymphatic vessels act as a key draining system in the body, but also for their implication in autoimmune diseases, organ transplant, inflammation and cancer. Thus, neolymphangiogenesis, or the generation of new lymphatics, is typically an early event in the development of multiple tumor types, particularly in aggressive ones such as malignant melanoma. Still, the understanding of how lymphatic endothelial cells get activated at distal (pre)metastatic niches and their impact on therapy is still unclear. Addressing these questions is of particular interest in the case of immune modulators, because endothelial cells may favor or halt inflammatory processes depending on the cellular context. Therefore, there is great interest in visualizing the lymphatic vasculature in vivo. Here, we review imaging tools and mouse models used to analyze the lymphatic vasculature during tumor progression. We also discuss therapeutic approaches based on nanomedicines to target the lymphatic system and the potential use of extracellular vesicles to track and target sentinel lymph nodes. Finally, we summarize main pre-clinical models developed to visualize the lymphatic vasculature in vivo, discussing their applications with a particular focus in metastatic melanoma.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge the support of the following sources of funding: M.S.S. is funded by grants from the Spanish Ministry of Economy and Innovation (SAF2017-89533-R), Team Science and Established Investigator awards by the Melanoma Research Alliance, grants from Worldwide Cancer Research and Fundación ‘La Caixa’ Health Research 2019, and a collaborative grant from the Asociación Española Contra el Cáncer (AECC). H.P. acknowledges RETOS SAF2017-82924-R (AEI/10.13039/501100011033/FEDER-UE), Fundación Ramón Areces and La Caixa Foundation (HR-18-00256). We are also grateful for the support of the Translational NeTwork for the CLinical application of Extracellular VesicleS, TeNTaCLES. RED2018-102411-T(AEI/10.13039/501100011033). D.O. is funded by grants from the Spanish Ministry of Health (AES-PIS PI18/1057) and ‘Fundación BBVA-Becas Leonardo a Investigadores y Creadores Culturales 2018’. D.C.-W. was a recipient of a predoctoral fellowship from Fundación ‘La Caixa’ and currently with a Cancer Research Institute Irvington Postdoctoral Fellowship. E.C. is funded by the European Union’s Horizon 2020 research and innovation programme “proEVLifeCycle” under the Marie Skłodowska-Curie grant agreement No 860303.es_ES
dc.language.isoenges_ES
dc.publisherElsevier es_ES
dc.type.hasVersionSMURes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectENDOTHELIAL GROWTH-FACTORes_ES
dc.subjectBREAST-CANCER PATIENTSes_ES
dc.subjectCELL-DERIVED EXOSOMESes_ES
dc.subjectPROX1 EXPRESSIONes_ES
dc.subjectFACTOR-Ces_ES
dc.subjectFLUORESCENCE MICROLYMPHOGRAPHYes_ES
dc.subjectTUMOR LYMPHANGIOGENESISes_ES
dc.subjectENHANCED PERMEABILITes_ES
dc.subjectINDOCYANINE GREENes_ES
dc.subjectDENDRITIC CELLSes_ES
dc.titlePhysiological models for in vivo imaging and targeting the lymphatic system: Nanoparticles and extracellular vesicles.es_ES
dc.typejournal articlees_ES
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.pubmedID34147531es_ES
dc.format.volume175es_ES
dc.format.page113833es_ES
dc.identifier.doi10.1016/j.addr.2021.113833es_ES
dc.contributor.funderMinisterio de Economía e Innovación (España) 
dc.contributor.funderMelanoma Research Alliance 
dc.contributor.funderAsociación Española Contra el Cáncer 
dc.contributor.funderWorldwide Cancer Research 
dc.contributor.funderFundación Ramón Areces 
dc.contributor.funderInstituto de Salud Carlos III 
dc.contributor.funderFundación BBVA 
dc.contributor.funderFundación La Caixa 
dc.contributor.funderCancer Research Institute Irvington Postdoctoral Fellowship
dc.contributor.funderUnión Europea. Comisión Europea 
dc.description.peerreviewedNoes_ES
dc.identifier.e-issn1872-8294es_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.addr.2021.113833.es_ES
dc.identifier.journalAdvanced drug delivery reviewses_ES
dc.repisalud.institucionCNIOes_ES
dc.repisalud.orgCNIOCNIO::Grupos de investigación::Grupo de Microambiente y Metástasises_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860303es_ES
dc.rights.accessRightsopen accesses_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/SAF2017-89533-Res_ES
dc.relation.projectFECYTinfo:eu-repo/grantAgreement/ES/SAF2017-82924-Res_ES
dc.relation.projectFISinfo:eu-repo/grantAgreement/ES/PI18/1057es_ES


Ficheros en el ítem

Acceso Abierto
Acceso Abierto
Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional