Show simple item record

dc.contributor.authorDi Natale, Concetta
dc.contributor.authorLa Manna, Sara
dc.contributor.authorDe Benedictis, Ilaria
dc.contributor.authorBrandi, Paola 
dc.contributor.authorMarasco, Daniela
dc.identifier.citationFront Pharmacol. 2020; 11:578382es_ES
dc.description.abstractAt the end of December 2019, an epidemic form of respiratory tract infection now named COVID-19 emerged in Wuhan, China. It is caused by a newly identified viral pathogen, the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which can cause severe pneumonia and acute respiratory distress syndrome. On January 30, 2020, due to the rapid spread of infection, COVID-19 was declared as a global health emergency by the World Health Organization. Coronaviruses are enveloped RNA viruses belonging to the family of Coronaviridae, which are able to infect birds, humans and other mammals. The majority of human coronavirus infections are mild although already in 2003 and in 2012, the epidemics of SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), respectively, were characterized by a high mortality rate. In this regard, many efforts have been made to develop therapeutic strategies against human CoV infections but, unfortunately, drug candidates have shown efficacy only into in vitro studies, limiting their use against COVID-19 infection. Actually, no treatment has been approved in humans against SARS-CoV-2, and therefore there is an urgent need of a suitable vaccine to tackle this health issue. However, the puzzled scenario of biological features of the virus and its interaction with human immune response, represent a challenge for vaccine development. As expected, in hundreds of research laboratories there is a running out of breath to explore different strategies to obtain a safe and quickly spreadable vaccine; and among others, the peptide-based approach represents a turning point as peptides have demonstrated unique features of selectivity and specificity toward specific targets. Peptide-based vaccines imply the identification of different epitopes both on human cells and virus capsid and the design of peptide/peptidomimetics able to counteract the primary host-pathogen interaction, in order to induce a specific host immune response. SARS-CoV-2 immunogenic regions are mainly distributed, as well as for other coronaviruses, across structural areas such as spike, envelope, membrane or nucleocapsid proteins. Herein, we aim to highlight the molecular basis of the infection and recent peptide-based vaccines strategies to fight the COVID-19 pandemic including their delivery systems.es_ES
dc.description.sponsorshipThis work was partially supported by POR CAMPANIA FESR 2014/2020 “Combattere la resistenza tumorale: piattaforma integrata multidisciplinare per un approccio tecnologico innovativo alle oncoterapie-Campania Oncoterapie” (Project No. B61G18000470007). CDN was supported by the “IBSA Foundation for scientific research,” SLM was supported by AIRC fellowship for Italy.es_ES
dc.publisherFrontiers Mediaes_ES
dc.relation.isversionofPublisher's versiones_ES
dc.titlePerspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic.es_ES
dc.rights.licenseAtribución 4.0 Internacional*
dc.contributor.funderIBSA Foundation for scientific researches_ES
dc.identifier.journalFrontiers in pharmacologyes_ES
dc.repisalud.orgCNICCNIC::Grupos de investigación::Inmunobiologíaes_ES

Files in this item

Acceso Abierto

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This item is licensed under a: Atribución 4.0 Internacional