Mostrar el registro sencillo del ítem

dc.contributor.authorPerez-Medina, Carlos 
dc.contributor.authorTeunissen, Abraham J P
dc.contributor.authorKluza, Ewelina
dc.contributor.authorMulder, Willem J M
dc.contributor.authorvan der Meel, Roy
dc.date.accessioned2021-04-12T07:22:26Z
dc.date.available2021-04-12T07:22:26Z
dc.date.issued2020-07-30
dc.identifier.citationAdv Drug Deliv Rev. 2020; 154-155:123-141es_ES
dc.identifier.issn0169-409Xes_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12105/12601
dc.description.abstractNanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.es_ES
dc.description.sponsorshipThe work of EK, RvdM and WJMM is supported by the Dutch Research Council (NWO; ZonMW Vici grant no. 016.176.622 to WJMM).CPM is supported by Comunidad Autónoma de Madrid's Programa deAtracción de Talento (2018 T1/BMD10758)es_ES
dc.language.isoenges_ES
dc.publisherElsevier es_ES
dc.type.hasVersionVoRes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleNuclear imaging approaches facilitating nanomedicine translation.es_ES
dc.typejournal articlees_ES
dc.rights.licenseAtribución 4.0 Internacional*
dc.identifier.pubmedID32721459es_ES
dc.format.volume154-155es_ES
dc.format.page123-141es_ES
dc.identifier.doi10.1016/j.addr.2020.07.017es_ES
dc.contributor.funderDutch Research Council (Holanda) 
dc.contributor.funderComunidad de Madrid (España) 
dc.description.peerreviewedes_ES
dc.identifier.e-issn1872-8294es_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.addr.2020.07.017es_ES
dc.identifier.journalAdvanced drug delivery reviewses_ES
dc.repisalud.orgCNICNanomedicina e Imagen Moleculares_ES
dc.repisalud.institucionCNICes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/2018 T1/BMD10758es_ES
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Acceso Abierto
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Este Item está sujeto a una licencia Creative Commons: Atribución 4.0 Internacional