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Abstract 

In many cell types, nuclear A-type lamins have structural and functional activities, including 

higher-order genome organization, DNA replication and repair, gene transcription, and signal 

transduction; however, their role in specialized immune cells remains largely unexplored. Here, 

we showed that the abundance of A-type lamins was almost negligible in resting naïve T 

lymphocytes, but was increased upon activation of the T cell receptor (TCR). The increase in 

lamin-A was an early event that accelerated formation of the immunological synapse between T 

cells and antigen-presenting cells. Polymerization of F-actin in T cells is a critical step for 

immunological synapse formation, and lamin-A interacted with the linker of nucleoskeleton and 

cytoskeleton (LINC) complex to promote F-actin polymerization. Loss of lamin-A led to 

impaired TCR clustering and downstream signaling, including a reduction in extracellular 

signal–regulated kinase 1/2 (ERK1/2) signaling, and target gene expression. Pharmacological 

inhibition of the ERK pathway reduced lamin A–dependent T cell activation. Moreover, mice 



deficient in lamin-A exhibited impaired T cell responses in vivo. These findings underscore the 

importance of A-type lamins for TCR activation, and identify lamin-A as a previously 

unappreciated regulator of the immune response. 

 

Introduction 

Mammalian A-type lamins, which include lamin-A and lamin-C and are encoded by the LMNA 

gene, are type V intermediate filaments of the nuclear envelope. In addition to their well-

established role in maintaining the mechanical stability of the nucleus, A-type lamins and 

associated nuclear envelope proteins regulate higher-order chromatin organization, DNA repair 

and replication, nuclear positioning, signal transduction, gene transcription, as well as cell 

proliferation, differentiation, and migration (1, 2). A-type lamins maintain cellular structural 

integrity not only by forming a complex network in the nucleus but also by bridging the nucleus 

and the plasma membrane through the LINC (linker of nucleoskeleton and cytoskeleton) 

complex, which contains nesprin and SUN (for Sad1p, UNC-84) proteins that connect the 

nuclear lamina with the cytoskeleton (3-5). 

 

Lamin-A and lamin-C are found in most differentiated somatic cells; however, previous studies 

yielded no consensus about whether A-type lamins are found in immune cells, with some studies 

reporting a lack of lamin-A/C abundance (6-9) and others reporting their presence in 

lymphocytes (10-13) and human CD4+ T cells (14). Moreover, although Lmna-/- mice, which are 

deficient in A-type lamins, exhibit severe age-dependent defects in thymic T cell development 

and in the numbers of T and B cells in lymphoid organs, these defects have been associated with 

the indirect effects of the loss of A-type lamin function in non-immune cells rather than a direct 



effect in lymphocytes (15). Thus, the role of A-type lamins in T cell–mediated immune 

responses remains unclear. 

 

T cells are activated upon presentation of specific antigens by antigen-presenting cells (APCs). 

This process involves the formation of the immunological synapse, a highly organized structure 

formed at the contact site between the T cell and the APC that favors transient cell-cell 

communications (16-19). Immunological synapse formation involves extensive spatial and 

temporal regulation of protein complexes to coordinate and tune signaling events. Upon 

activation, complexes of the T cell receptor (TCR) and CD3, and co-stimulatory receptors are 

concentrated at the central supramolecular activation cluster (cSMAC), which is surrounded by a 

peripheral SMAC (pSMAC), which is a ring of actin and integrins. The microtubule-organizing 

center (MTOC) is then directed to the center of the immunological synapse, thus polarizing the 

Golgi apparatus for directed secretion of granules (20-22). Both processes are critical for full T 

cell activation, as well as immunological synapse formation and maintenance (20). In addition, 

reorganization of the immunological synapse in T cells is associated with the recruitment and 

activation of intracellular pools of signaling molecules (20). 

 

Here, through in vitro and in vivo studies, we provided evidence that suggests that A-type lamins 

are transiently increased in abundance in T cells upon antigen recognition, and we demonstrated 

that lamin-A is an important modulator of the threshold for activation of T cells by linking 

processes at the plasma membrane, cytoplasm, and nucleus. 

 

Results 



Lamin-A and lamin-C are transiently increased in abundance upon T cell activation 

To investigate the expression of the gene encoding A-type lamins before and after T cell 

activation, we analyzed human peripheral blood lymphocytes (PBLs) and T lymphoblasts as well 

as mouse splenocytes and T lymphoblasts (fig. S1). We first analyzed primary immune cells 

from mice or human donors by confocal microscopy to detect A-type lamins. We found that 

lamin-A and lamin-C (collectively referred to hereafter as lamin-A/C) were detectable in only a 

small fraction of CD4+ T cells in preparations of human PBLs and mouse splenocytes (Fig. 1A), 

whereas we detected B-type lamins in all CD4+ T cells (fig. S2A). Flow cytometric studies 

demonstrated that lamin-A/C proteins were present in less than 10% of CD4+ T cells from 

human peripheral blood (Fig. 1B). 

 

To assess whether T cell activation resulted in increased lamin-A/C abundance, we analyzed the 

amounts of these proteins before and after TCR activation in PBLs and T lymphoblasts from 

humans and mice. Flow cytometry, confocal microscopy, and Western blotting analyses showed 

a transient and marked increase in lamin-A/C abundance upon TCR activation with 

Staphylococcus enterotoxin E (SEE) (Fig. 1C), SEE-loaded Raji cells (a human B 

lymphoblastoid cell line), SEE-loaded dendritic cells (DCs) (fig. S2B), or phytohemagglutinin 

(PHA) (Fig.1D). Consistent with these findings, CD4+ T lymphoblasts from OTII transgenic 

mice bearing OTII TCRs specific for the ovalbumin (OVA) antigen displayed enhanced lamin-

A/C abundance upon activation with OVA-loaded DCs (Fig. 1E). 

 

To further investigate the time course of the increase in lamin-A/C abundance upon T cell 

activation, we performed quantitative, reverse transcriptase quantitative polymerase chain 



reaction (qRT-PCR) and Western blotting analyses of human T lymphoblasts at different times 

after stimulation with Raji cells alone (which served as a negative control) or SEE-loaded Raji 

cells. Previous studies showed that APC–T cell interactions predominantly occur between 5 and 

24 hours after exposure of T cells to antigen-presenting DCs (23-26). Compared with that in T 

cells incubated with Raji cells alone, LMNA mRNA abundance in T cells activated with SEE-

loaded Raji cells was increased, with a peak at 4 hours after stimulation (fig. S2C), which was 

followed by the accumulation of lamin-A/C protein (fig. S2D). Appropriate T cell activation 

after their stimulation with SEE-loaded Raji cells was confirmed by detection of a marked 

increase in the amounts of mRNAs for the T cell activation markers interleukin-2 (IL-2) and 

CD25, which was not observed in cells stimulated with Raji cells alone (fig. S2E). Together, 

these data suggest that A-type lamins are rapidly and transiently increased in abundance upon 

activation of T cells through antigen presentation. 

 

Lamin-A and lamin-C are required for optimal activation of T cells in vitro and in vivo 

We next investigated whether A-type lamins regulated T cell function. Compared with wild-type 

splenocytes, those from Lmna-/- mice, which lack lamin-A/C proteins, had markedly reduced 

abundance of CD25 mRNA upon stimulation in vitro with anti-CD3 and anti-CD28 antibodies, 

phorbol myristate acetate (PMA) and ionomycin (a calcium ionophore), or concanavalin A (Fig. 

2A). Similarly, CD4+ T cells isolated from the spleens of Lmna-/- mice and stimulated with anti-

CD3 and anti-CD28 antibodies displayed a substantial reduction in the cell-surface abundances 

of the T cell activation markers CD69 and CD25, as observed by flow cytometric analysis (Fig. 

2B). Moreover, compared with wild-type controls, CD4+ T cells from OTII transgenic mice 



lacking lamin-A/C (Lmna-/- OTII mice) displayed reduced cell-surface CD25 abundance upon 

stimulation with OVA-loaded DCs (Fig 2C). 

 

To assess the role of lamin-A/C proteins as regulators of the immune response in vivo, we used a 

hapten-induced contact hypersensitivity (CHS) model (27). The immune response in this model 

starts with the application of the hapten oxalazone to the ear skin of mice, which triggers a 

sensitization phase during which specific T cells proliferate and migrate out of the lymph node 

upon recognition of hapten-carrier complexes presented by APCs. After re-exposure of the mice 

to oxalazone, an elicitation phase is initiated during which specific CD4+ and CD8+ T cells are 

activated in the dermis and trigger the inflammatory process (27, 28). As expected, we found that 

the elicitation phase after application of oxalazone to the ears of wild-type mice induced the 

progressive recruitment of CD4+ T cells to the draining cervical lymph nodes over a period of 3 

days (fig. S3, top). Furthermore, CD4+ T cells recruited to lymph nodes in wild-type mice after 

challenge with oxalazone showed increased lamin-A/C abundance, with a peak at 2 days after 

challenge (fig. S3, bottom). 

 

To investigate whether this increase in lamin-A/C abundance played any role in this model, we 

performed studies with lethally-irradiated wild-type mice transplanted with bone marrow cells 

from either wild-type mice or Lmna-/- mice. Irradiation and reconstitution was used to avoid any 

potential interference from non-immune cells and from the defects in T cell and B cell 

development that have been reported to occur in the thymus and spleen of Lmna-/- mice (15). Ear 

inflammation increased in both groups of mice during the first 2 days after challenge with 

oxalazone and then was progressively reduced (Fig. 2D). However, ear swelling was 



substantially reduced at all of the time points analyzed in mice reconstituted with immune cells 

lacking lamin-A/C (Fig. 2D). To assess whether the reduced response observed in mice 

reconstituted with bone marrow cells from Lmna-/- mice was a result of decreased numbers of 

CD4+ T cells in the ears, we performed adoptive transfer of naïve CD4+ T cells from CD45.2+ 

wild-type or CD45.2+ Lmna-/- mice into recipient CD45.1+ wild-type mice. Oxazolone was then 

applied to the abdomens of the recipient mice, and we quantified the percentages of CD4+ T cells 

in the ears three days after the second application of oxalazone to the ears. We found that the 

percentages of transferred Lmna-/- CD45.2+ CD4+ T cells in the ears of recipient mice were 

reduced compared to those of transferred wild-type CD45.2+ CD4+ T cells (Fig. 2E). 

 

We next performed competition experiments by adoptively transferring a 1:1 mixture of naïve 

CD4+ T cells from CD45.1+CD45.2+ wild-type and CD45.2+ Lmna-/- mice into  CD45.1+ wild-

type recipient mice (Fig. 2F). Under these conditions, the numbers of transferred CD45.2+ Lmna-

/- T cells that accumulated in the ears, lymph nodes, and spleens of recipient CD45.1+ wild-type 

mice were reduced compared to those of the transferred CD45.1+ CD45.2+ wild-type T cells (Fig. 

2F). The reduction in the percentage of transferred Lmna-/- CD4+ T cells in the spleen (Fig. 2F) 

suggests that the absence of lamin-A/C might affect T cell proliferation upon recognition of the 

hapten. Together, these results demonstrate that loss of lamin-A/C in the mouse impairs T cell 

responses in vitro and in vivo. 

 

To assess whether lamin-A enhanced the activation of human T cells, we performed gain-of-

function studies with J77 cells, a human Jurkat T cell line derivative that does not have 

detectable endogenous LMNA mRNA or protein under basal conditions and which failed to 



exhibit increases in LMNAmRNA abundance upon activation with SEE-pulsed Raji cells (fig. S4, 

A and B). As expected, J77 cells stably expressing GFP (J77-GFP cells) (fig. S4C) were 

activated upon incubation with SEE-loaded Raji cells compared with control J77-GFP cells 

incubated with non-loaded Raji cells, as determined by detection of increased amounts of CD69 

and CD25 mRNAs (Fig. 3A) and the increased cell-surface abundance of CD69 (Fig. 3B). 

Moreover, J77 cells stably expressing GFP–Lamin-A (J77-GFP-Lamin-A; fig. S4, C and D) that 

were incubated with SEE-loaded Raji cells showed enhanced activation when compared to 

conjugated J77-GFP cells, as revealed by the presence of increased amounts of CD69 and CD25 

mRNAs (Fig. 3A) and increased cell-surface abundance of CD69 (Fig. 3B). Treatment with anti-

CD3 and anti-CD28 antibodies also enhanced the cell-surface abundance of CD69 on J77-GFP-

Lamin-A cells compared to that on J77-GFP cells (Fig. 3C). Moreover, transient expression of 

dsRED-Lamin-A increased the cell-surface abundance of CD69 in J77-GFP cells incubated with 

SEE-loaded Raji cells compared to that on J77-GFP cells transfected with plasmid expressing 

dsRED alone (fig. S4E). 

 

A-type lamins accelerate T cell–APC interaction dynamics and TCR-CD3 mobility in the 

plasma membrane and modulate TCR signaling 

We next sought to elucidate the mechanisms through which A-type lamins enhanced T cell 

activation. Immunological synapse formation and T cell activation are finely regulated processes 

that entail multiple changes in the plasma membrane, cytoplasm, and nucleus (20). We 

hypothesized that lamin-A/C could regulate immunological synapse formation, orchestrating 

different processes required for T cell activation. To assess this possibility, we studied the effect 

of lamin-A on T cell–APC interactions and on the movement of molecules involved in 



immunological synapse formation. J77-GFP or J77-GFP-Llamin-A cells were incubated with 

non-loaded or SEE-loaded Raji cells for different times and then were plated onto poly-L-lysine 

(PLL)-coated coverslips for immunofluorescence analysis. These studies revealed that J77-GFP-

Lamin-A cells formed a greater percentage of conjugates than did J77-GFP cells at all of the time 

points analyzed (Fig. 4A), suggesting that lamin-A facilitates and stabilizes the formation of T 

cell–APC interactions. 

 

To study this in more detail, we examined immunological synapse formation by time-lapse 

confocal microscopy (Fig. 4B and movie 1). Stably-transfected J77 cell lines were stained with 

different fluorescently labeled dyes and then were added on top of SEE-loaded Raji cells that had 

been stained with the cell tracker CMAC (7-amino-4-chloromethylcoumarin) and then allowed 

to attach to PLL–coated coverslips. We did not observe any differences in the times it took the 

J77-GFP and J77-GFP-Lamin-A cells to reach the focal plane (Fig. 4C). However, compared 

with J77-GFP controls, J77-GFP-Lamin-A cells formed more conjugates with SEE-loaded Raji 

cells at all of the time points tested (Fig. 4D), and these interactions were protracted (Fig. 4E). 

 

After TCR engagement, TCR-CD3 complexes and co-stimulatory receptors accumulate at the 

cSMAC before being internalized (20). To study the effect of A-type lamins on the dynamic 

redistribution of receptors and co-receptors at the plasma membrane, we analyzed J77 cells 

transiently co-transfected with plasmids encoding CD3ζ-EGFP and either dsRED or dsRED-

Lamin-A. GFP-rich populations were obtained by cell-sorting (fig. S5A) and then were activated 

by being plated onto coverslips coated with anti-CD3 antibody. Although the stimulating ligand 

was immobile on the glass and the TCR microclusters remained stationary, under these 



conditions, there is protein flux into and out of the assembled clusters (29, 30). We then analyzed 

activated cells by total internal reflection fluorescence (TIRF) microscopy at a penetration depth 

of ~90 nm, which enabled the observation of CD3 microclusters at the plasma membrane (Fig. 

5A). At the initial time points, J77-dsRED-Lamin-A cells exhibited an increased number of 

CD3-containing microclusters and a larger cSMAC area than did J77-dsRED cells, and these 

parameters were progressively reduced over time in both cell types (Fig. 5, B and C; movie 2). 

 

We noted that the disappearance of CD3-containing microclusters from the TIRF detection depth 

range was faster in J77-dsRED-Lamin-A cells than in J77-dsRED cells (Fig. 5D), which 

suggested increased internalization. Accordingly, confocal microscopic analysis of J77-GFP-

Lamin-A cells 30 min after conjugation with SEE-loaded Raji cells revealed that they had 

smaller cSMAC diameters and reduced numbers of CD3-containing microclusters at the 

membrane contact area compared to those of J77-GFP control cells (fig. S5, B and C). These 

results, which suggest that the presence of lamin-A accelerates both the dynamic redistribution of 

CD3 at the contact area during immunological synapse maturation as well as concomitant CD3 

internalization, prompted us to investigate the effects of the presence of lamin-A on different 

signaling pathways downstream of TCR-CD3 activation. Western blotting analysis of J77-GFP-

lamin-A cells conjugated for different times with SEE-loaded Raji cells revealed increased 

amounts of phosphorylated (activated) Vav1, myosin IIA, and extracellular signal–regulated 

kinase 1 (ERK1) and ERK2 (ERK1/2) compared to those of similarly treated J77-GFP cells (Fig. 

5E). Moreover, treatment with the ERK1/2 inhibitor U0126 substantially reduced the cell-surface 

amount of CD69 in J77-GFP cells and J77-GFP-lamin-A cells conjugated with SEE-loaded Raji 

cells, and almost blunted the increase in CD69 abundance elicited by lamin-A (Fig. 5F). 



 

A-type lamins promote MTOC translocation and F-actin polymerization in activated T 

cells 

We hypothesized that differences in lamin-A/C–dependent signaling in activated T cells might 

be related to changes in the tubulin and actin cytoskeleton. To address this possibility, we first 

examined the translocation of the MTOC toward the immunological synapse, an important step 

in lymphocyte activation initiated by TCR signaling (31). Immunofluorescence and confocal 

microscopy revealed that the MTOC translocated faster to the immunological synapse in J77-

GFP-Lamin-A cells than in control J77-GFP cells (Fig. 6A). Moreover, J77-GFP-Lamin-A cells 

exhibited increased F-actin polymerization induced by anti-CD3 and anti-CD28 antibodies, as 

measured by flow cytometric analysis of phalloidin-stained cells (Fig. 6B), as well as increased 

F-actin relocalization to the immunological synapse with respect to the rest of the membrane in 

cells conjugated with SEE-loaded Raji cells, as detected by confocal microscopy (Fig. 6C). 

Accordingly, human primary lamin-A/C–expressing T lymphoblasts subjected to knockdown of 

lamin-A/C by small inhibitory RNA (siRNA) (Fig. 6D) exhibited reduced F-actin polymerization 

upon stimulation with SEE-loaded Raji cells (Fig. 6E) or anti-CD3 and anti-CD28 antibodies 

(Fig. 6F). Together, these results indicate that A-type lamins promote F-actin polymerization and 

MTOC translocation during immunological synapse formation. 

 

The lamin-A–mediated increase in T cell activation requires a physical connection between 

the nucleus and the cytoskeleton through the LINC complex 

Together with nesprins and SUN proteins, lamin-A/C proteins mediate the connection between 

the nuclear lamina and the cytoskeleton (3-5). SUN proteins interact with lamin-A, and their 



SUN domain extends into the perinuclear space to form contacts with the KASH (Klarsicht/Anc-

1/SYNE homology) domains of nesprins, which are located at the outer nuclear membrane and 

connect with cytoplasmic microtubules, actin, and intermediate filaments (4, 5). To assess 

whether these connections were required for optimal T cell activation and F-actin 

polymerization, we transfected J77-GFP-Lamin-A cells with plasmids encoding either a 

dominant-negative nesprin construct containing the C-terminal KASH domain fused to an N-

terminal mCherry (DN KASH) (32), or a dominant negative SUN1 luminal domain construct 

(DN SUN) (33, 34). Overexpression of these proteins disrupts the LINC complex and the 

connections between A-type lamins and the cytoskeleton (32). Consistent with our earlier results, 

we found that J77-GFP-Lamin-A cells conjugated with SEE-loaded Raji cells showed increased 

cell-surface expression of CD69 compared with J77-GFP cells (Fig. 7A), a response that was 

blunted upon overexpression of DN KASH (Fig. 7A). Furthermore, the presence of DN KASH 

did not affect CD69 cell-surface abundance in J77-GFP cells lacking lamin-A/C (Fig. 7A). 

Moreover, compared with cells transfected with control plasmids, J77-GFP-Lamin-A cells 

transfected with plasmids encoding DN KASH (Fig. 7B) or DN SUN (Fig. 7C) displayed 

reduced F-actin content upon stimulation with SEE-loaded Raji cells. Together, these results 

suggest that lamin-A–mediated increases in F-actin polymerization and T cell activation depend, 

at least in part, on the physical connection between the nucleus and the cytoskeleton mediated 

through physical interactions between lamin-A, SUN1, Nesprin, and the cytoskeleton. 

 

Discussion 

In this study, we provide evidence that A-type lamins are increased in abundance in T cells upon 

activation and that they mediate changes in signaling downstream of the TCR, in the actin 



cytoskeleton, and in gene expression to increase the capacity of the cell to control the activation 

threshold. We also showed that the optimal stimulation of T cells elicited by A-type lamins 

required their physical connection with the cytoskeleton through nesprins and SUN proteins. 

 

On the basis of previous studies (6-9), it was thought that lamin-A/C proteins are low in 

abundance (or undetectable) in hematopoietic cells (5). Our results demonstrate that A-type 

lamins are transiently present in T cells and that their abundance is controlled at the 

transcriptional level during TCR-mediated activation, consistent with other studies describing 

their expression in lymphocytes (10-14). A low degree of differentiation and a high degree of 

proliferation are associated with a reduction in the abundance of A-type lamins in normal cells 

and in human malignancies, including leukemias and lymphomas (12, 35-38). This loss of lamin-

A proteins is associated with transcriptional silencing by the hypermethylation of CpG islands in 

the LMNA promoter in hematologic malignancies (39). Future studies are required to address the 

mechanisms that regulate lamin-A/C abundance in normal T cells.  

 

Lmna-/- mice display severe age-dependent defects in T and B cell development (15). However, 

in irradiated wild-type mice reconstituted with bone marrow progenitor cells from Lmna-/- mice, 

T and B cells develop normally in the thymus, and normal immune cell populations are observed 

in the spleen (15). Furthermore, in irradiated wild-type mice that were infected with a 

lymphocytic choriomeningitis virus after reconstitution with a 1:1 mixture of wild-type and 

Lmna-/- bone marrow cells, T cells functioned normally in terms of their production of the 

cytokines IL-2, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) (15). Our gain- and 

loss-of-function experiments demonstrate a direct effect of A-type lamins in T cell activation. In 



vitro, ectopically expressed lamin-A enhanced T cell activation, whereas T cells from Lmna-/- 

mice showed impaired activation, as monitored by the reduced abundances of the activation 

markers CD69 and CD25 at both the mRNA and protein levels. A role for A-type lamins in T 

cell activation was further suggested by our in vivo studies with a mouse model of the contact 

hypersensitivity inflammatory response, in which transplantation of Lmna-/- bone marrow cells 

failed to reconstitute the inflammatory response in lethally-irradiated wild-type mice to the same 

extent as that achieved by transplantation with cells with intact A-type lamins. The results of the 

CD4+ T cell adoptive transfer experiments indicate that the impaired response observed in mice 

reconstituted with Lmna-/- bone marrow cells may have been a result of a reduction in the 

numbers of CD4+ T cells in the inflamed ears and their corresponding draining lymph nodes. 

Moreover, this reduction may have been related to a defect in cellular proliferation, because there 

was also a reduction in the numbers of Lmna-/- CD4+ T cells in the spleens of the recipient mice. 

Thus, our work, together with the study of Hale et al. (15), reveal the complexity of the role of 

A-type lamins in immune responses, which deserves further investigation. 

 

It was unexpected that A-type lamins, which are confined to the nucleus, could regulate several 

events that control immunological synapse formation and T cell activation, functions that occur 

at the plasma membrane and in the cytoplasm. At the plasma membrane, engagement of the TCR 

results in the formation of signaling microclusters, which are enriched in receptors and co-

receptors (such as the TCR and CD3), as well as kinases and adaptor proteins, which generate 

signaling events. Our results show that A-type lamins regulate several points of these complex 

pathways. We found that A-type lamins enhanced cytoplasmic F-actin polymerization upon TCR 

engagement, which may be an important factor in the regulation by A-type lamins of events that 



take place outside the nucleus. Consistent with this observation, compared to wild-type cells, 

Lmna-/- mouse embryonic fibroblasts have a larger fraction of highly mobile cytoplasmic actin, 

reassemble stress fibers more slowly after disruption of actin filaments with cytochalasin D, and 

do not increase the ratio of F-actin to G-actin upon serum stimulation (40). Moreover, the actin 

cytoskeleton can localize many signaling proteins close to receptors, as well as generate barriers 

to restrict the movement of molecules (41), including CD3 microclusters (42). In this regard, we 

found that A-type lamins modified both the molecular density of CD3 at the membrane and its 

behavior upon TCR engagement. The movement of microclusters also depends on the activation 

of myosin IIA (43-45), which contributes to actin retrograde flow (46) and activates Vav1, which 

in turn promotes F-actin polymerization (21, 44). Our results showed that the presence of lamin-

A enhanced the extent of phosphorylation of myosin IIA and Vav1, which could lead to 

increased F-actin polymerization and microcluster dynamics. 

 

There is evidence that the accumulation of F-actin at the immunological synapse enhances 

signaling by providing a nanoscale scaffold for the assembly of signaling complexes, 

maintaining cell-cell contacts, and organizing cell polarity (18, 42, 47). In terms of cell-cell 

contacts, lamin-A increases the number and duration of contacts between T cells and APCs. 

These effects may be explained by increased formation of lamellipodia, which is augmented by 

F-actin polymerization and which helps the formation of a complete, functional immunological 

synapse (48). In terms of cell polarity, formation of an immunological synapse leads to the 

disassembly of the uropod at the back of the cell, as well as movement of the MTOC to a new 

position between the nucleus and the cell-cell contact surface at the front of the cell. These 

processes switch the axis of polarity towards the APC, which enables the endocytic and exocytic 



apparatus to be configured to sustain the directed secretion of cytokines, exosomes, and 

cytotoxic granules at the cell-cell contacts (49, 50). Polarization of the MTOC depends on 

phosphorylation of phospholipase C-γ1 (PLC-γ1) (51), which can be stimulated by F-actin 

polymerization (52). Our results showed that lamin-A stimulated F-actin polymerization and the 

subsequent activation of PLC-γ1, which may contribute to increased MTOC polarization. Lamin-

A might also modify the actin and tubulin cytoskeleton by changing the degree of activation of 

other proteins involved in their remodeling, such as Vav1 and myosin IIA. 

 

Lamin-A/C can also modulate T cell activation by provoking changes inside the nucleus, as 

demonstrated by the modifications in the abundances of CD25 and CD69 mRNAs upon the over-

expression or knockdown of lamin-A and lamin-A/C, respectively. These changes can be 

attributed, in part, to alterations in signaling and gene expression, because A-type lamins interact 

with and regulate signaling proteins and transcription factors (1, 2). Specifically, we found that 

lamin-A-expressing T cells exhibited increased phosphorylation of ERK1/2, which increases the 

cell-surface abundances of CD69 and CD25 (53-58). Indeed, pharmacological inhibition of 

ERK1/2 blunted the lamin-A-dependent increase in cell-surface CD69 abundance. The effect of 

lamin-A/C on ERK1/2 phosphorylation (activation) might result from their direct interaction 

with each other (59). 

 

The nucleus is connected to the cytoskeleton by interactions between lamin-A, SUN proteins, 

and KASH domain–containing nesprins (3-5). Our experiments with DN KASH proteins 

indicated that nuclear-cytoskeletal connections involving these proteins were necessary for 

enhanced activation of J77-GFP-Lamin-A cells, as revealed by increased CD69 abundance. 



Notably, DN KASH did not affect CD69 protein abundance in J77-GFP cells, which have 

endogenous lamin-B, but undetectable lamin-A/C. The most plausible explanation for this 

inability of lamin-B to compensate for the loss of lamin-A/C is the absence of any interaction 

between lamin-B and SUN proteins (34). Moreover, the reduced F-actin content observed when 

DN KASH and DN SUN proteins were expressed in J77-GFP-Lamin-A cells suggests that 

lamin-A-dependent F-actin polymerization is mediated by nuclear-cytoskeletal connections. 

 

The nuclear lamina is connected with the plasma membrane through interactions between the 

LINC complex, the cytoskeleton, and membrane-bound adhesion molecules, such as integrins 

(60-62), and these connections are essential for the ability of cells to sense and respond to 

external stimuli (63). In addition, the adhesion of lymphocytes to the extracellular matrix and 

other cells is mediated by integrins (64). By forming bridges between the cytoskeleton and the 

nucleus, lamin-A might therefore facilitate the conversion of mechanical signals from the plasma 

membrane into the activation of specific signaling pathways and the expression of 

mechanosensitive genes, a process known as mechanotransduction, which has been postulated as 

a means of regulating T cell activation (65). Our results suggest that the connections between the 

cytoskeleton and A-type lamins might provide T cells with an increased capacity to transmit 

mechanical forces from the membrane to the nuclear interior that are necessary for adequate 

modulation of T cell functions. Further research is necessary to investigate whether lamin-A 

regulates integrin-dependent signaling. 

 

In summary, we demonstrated that A-type lamins are increased in abundance in T cells upon 

antigen recognition and that they are required for optimal T cell activation, by regulating directly 



or indirectly several events that occur at the plasma membrane and in the cytoplasm and nucleus. 

We also showed that optimal T cell activation elicited by A-type lamins required a physical 

connection between the nuclear envelope and the cytoskeleton through the LINC complex. 

 

Materials and Methods 

 

Plasmids 

The plasmids encoding mCherry and EGFP were purchased from Clontech. The plasmids 

encoding CD3ζ-EGFP (66), DN KASH (32), DN SUN (33, 34) dsRED and dsRED-Lamin-A 

(67), and EGFP-lamin-A (68) were previously described. 

 

Cells and mice 

Vβ8 Jurkat J77cl20 (J77) T cells, Vβ3 Jurkat (CH7C17) T cells, and lymphoblastoid Raji B cells 

were cultured in complete medium [RPMI 1640, 10% fetal bovine serum (FBS, Sigma)]. Human 

PBLs were isolated from freshly prepared buffy coats obtained from healthy donors. PHA-

activated and SEE-specific human T lymphoblasts were obtained as described previously (69). 

When indicated, human T lymphoblasts were co-cultured with SEE-loaded monocyte-derived 

DCs, which were obtained as described previously (70). Stable J77 cell populations 

overexpressing GFP or GFP-Lamin-A were generated by transfection of plasmids encoding 

EGFP or EGFP-lamin-A, respectively, followed by selection with G418 (1 mg/ml, Invitrogen). 

Lmna-/- mice were previously described (71). C57BL/6-Tg (TcraTcrb)425Cbn/J mice (OTII 

mice) expressing a TCR specific for the OVA peptide (amino acid residues 323 to 339) in the 

context of I-Ab were purchased from the Jackson Laboratory (stock number 004194). Lmna-/- 



OTII mice were generated by crossing OTII mice with Lmna-/- mice. CD45.1+ B6.SJL mice were 

used as the recipients for adoptive transfers. CD45.1+CD45.2+ wild-type mice were generated by 

crossing C57BL/6 CD45.2+ mice with C57BL/6 CD45.1+ mice. To obtain T lymphoblasts from 

wild-type and OTII mice, naïve CD4+ T cells (106 cells/ml) were cultured in the presence of 

irradiated APCs (T cell-depleted splenocytes) and OVA peptide (10 μg/ml). After 1 day, cells 

were washed, and IL-2 (10 ng/ml) was added to the medium. Seven days later, irradiated APCs 

and OVA peptide (10 μg/ml) were added to stimulate the CD4+ T lymphoblasts. 

 

Antibodies and reagents 

Staphylococcus enterotoxin E (SEE) was purchased from Toxin Technology. The CellTracker 

Blue CMAC, Alexa Fluor 647-conjugated anti-α-tubulin antibody, Alexa Fluor 488-conjugated 

phalloidin, and Alexa Fluor 647-conjugated phalloidin were obtained from Invitrogen. Human 

fibronectin, PLL, anti-α-tubulin antibody, and U0126 were obtained from Sigma-Aldrich. 

Primary antibodies include SPV-T3b (anti-human-CD3) (72), TP1/55 (anti-human CD69) (73), 

and HP2/6 (anti-human CD4) (74). The monoclonal antibody specific for Vav1 phosphorylated 

at Tyr174 (pVav1 Y174) was a kind gift from X. Bustelo (Centro de Investigación del Cáncer, 

Salamanca). Anti-Vav and anti-ERK1/2 antibodies were from Millipore. Anti-phosphorylated 

MLC, anti-MLC, anti-lamin-A/C, anti-lamin-A, and anti-ERK2 antibodies were obtained from 

Santa Cruz Biotechnology. Anti–PLC-γ1 (Y783), anti–PLC-γ1, Alexa Fluor 488-conjugated anti-

lamin-A/C, and Alexa Fluor 488-conjugated mouse immunoglobulin G1 (IgG1) isotype control 

were obtained from Cell Signaling. Allophycocyanin (APC)-conjugated anti-human CD69, 

fluorescein isothiocyanate (FITC)-conjugated anti-mouse CD69, anti-mouse CD3, anti-CD28, 

PerCPCy5.5-conjugated anti-CD45.1, Alexa Fluor 647-conjugated anti-CD45.1, anti-CD45.2-



V450, and biotinylated antibodies against B220, CD19, MHCII, CD11c, CD11b, CD44, and 

CD8α were from BD Biosciences. 

 

Cell transfection and gene silencing 

J77 cells or primary human T lymphoblasts (2 × 107 cells) were washed twice with Hanks’ 

balanced salt solution (HBSS, Cambrex) and transiently transfected by electroporation with 

plasmids (20 µg) or 1 µM siRNA in OPTIMEM medium (Gibco, Invitrogen) at 240 V and 32 ms 

(Gene Pulser II, Bio-Rad). Plasmids encoding EGFP-lamin-A, dsRED, and dsRED-Lamin-A 

were used. Specific double-stranded siRNAs against human lamin-A/C or negative control 

siRNAs were purchased from Eurogentec. The efficiency of gene silencing was assessed by 

Western blotting, flow cytometric, and confocal microscopic analysis 24 hours after transfection. 

 

Cell-cell conjugate formation 

Raji cells were incubated with CMAC in HBSS for 30 min and then with or without SEE (0.5 

µg/ml), centrifuged at low speed, washed, and then allowed to form conjugates with J77 cells or 

CD4+ human T lymphoblasts obtained from SEE-treated PBLs at 37°C for the times indicated in 

the figure legends. 

 

Flow cytometry 

Cells were cocultured in 96-well plates at 37°C for the times indicated in the legends. After cells 

were incubated and stained with specific antibodies, data were acquired on FACSCantoII or 

LSRFortessa flow cytometers (BD Biosciences) and analyzed with BD FACSDIVA (BD 

Biosciences) or FlowJo (Treestar Inc) software. Raji cells were distinguished from other cells by 



CMAC staining. To measure F-actin content, cells were stimulated for different times with 

purified anti-CD3 antibody (10 µg/ml, T3b) or SEE-loaded, CMAC-stained Raji cells, fixed in 

2% paraformaldehyde (PFA), permeabilized with 0.5% Triton X-100, and labeled with 

phalloidin. For experiments in which ERK1/2 signaling was blocked, J77 cells were 

preincubated for 1 hour with the MEK1/2 inhibitor U0126 (which prevents the activation of 

ERK1/2), and then were allowed to form conjugates with Raji cells in the presence of the 

inhibitor for the times indicated in the figure legends. 

 

Western blotting analysis 

J77 cells were allowed to form conjugates with SEE-loaded Raji cells (at a ratio of 10:1) for the 

times indicated in the figure legends, after which they were lysed at 4°C for 40 min with 50 mM 

Tris-HCl (pH 7.5), 1% NP-40, 0.2% Triton X-100, 150 mM NaCl in phosphate-buffered saline 

(PBS) containing phosphatase and protease inhibitors (Roche). Cell lysates were centrifuged at 

2500g for 10 min to remove cellular debris and nuclei. Whole-cell lysates were analyzed by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to polyvinylidene difluoride 

(PVDF) membranes, and incubated with the appropriate primary antibodies in Tris-buffered 

saline, 1% Tween 20. Bound antibodies were detected with horseradish peroxidase -conjugated 

secondary antibodies, and membranes were developed by enhanced chemiluminescence with 

Super-Signal West Pico or Femto chemiluminescent substrate (Pierce Chemical). Band 

intensities were quantified with Metamorph software, and the intensities of bands of interest 

were normalized to those of the appropriate controls, for example, total proteins in the case of 

analysis of phosphorylated proteins. 

 



Fluorescence confocal microscopy 

Confocal images were obtained with a Leica TCS-SP5 confocal scanning laser unit attached to 

an inverted epifluorescence microscope (DMI6000B) and fitted with an HCX PL APO lambda 

blue 63X/1.4 oil immersion objective, or with a Zeiss LSM700 confocal scanning laser unit 

attached to an inverted epifluorescence microscope (Observer.Z1) fitted with a Pan APO 

Chromat 63X/1.4 oil immersion objective. For live-cell imaging, microscopes are covered by a 

full acrylic box to enable analysis at 37°C, 5% CO2. For time-lapse fluorescence imaging, cells 

were resuspended in HBSS (Lonza), 2% FBS, 20 mM Hepes, and were plated onto PLL-coated 

35-mm dishes (MatTek). Cells expressing GFP or GFP–Lamin-A were differentially stained with 

vibrant DiI and DiD cell labels (Invitrogen). Images were analyzed with Leica LASAF (Leica 

Microsystems), Metamorph (Molecular Devices) Imaris (Bitplane), or ImageJ (NIH) software. 

For immunofluorescence assays, cells were plated on slides coated with PLL (50 µg/ml) for 5 

min at 37°C, fixed in 2% PFA-1% sucrose, incubated with the appropriate primary antibodies 

followed by species-matching secondary antibodies coupled to Alexa Fluor fluorochromes 

(Invitrogen), and then mounted in ProLong Gold antifade medium (Invitrogen). To detect 

intracellular proteins, cells were first permeabilized with 0.5% Triton X-100 for 5 min. F-actin 

accumulation at the immunological synapse was measured in three-dimensional (3D) confocal 

maximal projections with the Synapsemeasure plugin in ImageJ (75). In the charts, each dot 

corresponds to a T cell-B cell conjugate. The distance from MTOC to the contact area between a 

T cell and an APC was measured in 3D confocal maximal projections with ImageJ. 

 

Quantitative RT-PCR analysis 



Total RNA was isolated from mouse splenocytes or J77 cells with Qiazol Lysis Reagent 

(Qiagen) and isopropanol precipitation or with the RNeasy Mini kit (Qiagen), according to the 

manufacturer’s instructions. RNA concentration and purity were assessed from the ratio of 

absorbances at 260 and 280 nm, and RNA integrity was verified by separation on ethidium 

bromide-stained 1% agarose gels. Complementary DNA (cDNA) was generated from total RNA 

(0.1 to 1 µg per reaction) with the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) with random hexamers and RNase Inhibitor, according to the manufacturer’s 

protocol. Quantitative PCR was performed with the ABI PRISM 7900HT Sequence Detection 

System (Applied Biosystems) with the PCR Power SYBR Green PCR Master Mix (Applied 

Biosystems), and reactions were performed in technical triplicates. The sequences of the forward 

and reverse primers used for RT-PCR are as follows. Mouse genes: Cd69: 5’-

ATCTCTCCGTGGACCACTTG-3’ and 5’-CACAGCCCAAGGGATAGAAA-3’; Cd25: 5’-

AACAACTGCAATGACGGAGACAT-3’ and 5’-CAGCTGGCCACTGCTACCTT-3’; Hprt1: 

5’-CCTAAGATGAGCGCAAGTTGAA-3’ and 5’-CCACAGGACTAGAACACCTGCTAA-3’. 

Human genes: IL-2: 5’-AAGTTTTACATGCCCAAGAAGG-3’ and 5’-

AAGTGAAAGTTTTTGCTTTGAGC-3’; CD69: 5’-TCCGGAGAGTGGACAAGAAAAT-3’ 

and 5’-GACCCTTCATGACGTGTTGAGA-3’; CD25: 5’-ACGGGAAGACAAGGTGGAC-3’ 

and 5’-TGCCTGAGGCTTCTCTTCAC-3’; LAMIN-A: 5’-GACGAGGATGAGGATGGAGA-3’ 

and 5’-GACACTGGAGGCAGAAGAGC-3’; LAMIN-A/C (recognizing both LAMIN-A and 

LAMIN-C mRNAs): 5’-ATGGAGATGATCCCTTGCTG-3’ and 5’-

CTTCTTCCCCAGTGGAGTTG-3’; LAMIN-C: 5’-CAACTCCACTGGGGAAGAAG-3’ and 5’-

AACATTCTTTAATGAAAAGATTTTTGG-3’; HPRT1: 5’-

TGACACTGGCAAAACAATGCA-3’ and 5’-GGTCCTTTTCACCAGCAAGCT-3’. The exent 



of expression of a gene of interest was analyzed by the comparative Ct method with Biogazelle 

qBasePLUS software using as an internal control the housekeeping gene HPRT1 (hypoxanthine 

phosphoribosyltransferase 1). Results are represented as fold change relative to control 

conditions (see details in figure legends).  

 

Generation of chimeric mice, adoptive transfer experiments, and contact hypersensitivity 

assays 

C57BL6 wild-type recipient mice received 9.5 Gy of total body irradiation administered in two 

treatments from a 137Cs source. Bone marrow cells from CD45.2+ wild-type and CD45.2+ Lmna-/- 

mice were transplanted into CD45.1+ wild-type recipients by tail-vein injections immediately 

after irradiation (ten mice per group). Eight weeks after transplantation, the chimeric condition of 

the mice was assessed by flow cytometric analysis of blood cells stained with a combination of 

fluorescently labeled anti-CD45.1 and anti-CD45.2 antibodies to detect CD45.2+ cells from 

donors and CD45.1+ cells from recipient mice, which confirmed that more than 90% of the cells 

analyzed were derived from the transplanted bone marrow cells (fig. S6). For the adoptive 

transfer experiments, CD4+ T cells from CD45.2+ Lmna-/-, CD45.1+CD45.2+ wild-type, or 

CD45.2+ wild-type mice were isolated by negative selection from spleens with MACS separation 

columns (Miltenyi Biotec) after labeling the cells with a cocktail of biotinylated antibodies 

against B220, CD19, MHCII, CD11c, CD11b, CD44, and CD8α, as well as with a solution 

containing streptavidin-bound magnetic microbeads (Miltenyi Biotec). Adoptive transfer 

experiments were performed by inoculating CD45.1+ wild-type recipient mice with 2 × 106 CD4+ 

T cells from the spleen of CD45.2+ Lmna-/- or CD45.2+ wild-type mice or by inoculating 

CD45.1+ wild-type recipient mice with 4 × 106 cells of a 1:1 mixture of CD4+ T cells from the 



spleens of CD45.2+ Lmna-/- and CD45.1+CD45.2+ wild-type mice. In both cases, adoptive cell 

transfer was performed 24 hours before the first application of oxazolone. In mice transplanted 

with bone marrow cells as well as in adoptively transferred mice, contact hypersensitivity was 

induced by painting shaved mouse abdomen skin with 200 µl of 3% oxazolone (4-

ethoxymethylene-2-phenyl-2-oxazolin-5-one, Sigma) in ethanol. After 5 days, mice were 

challenged with 20 µl of 1% oxazolone on each side of the right ear. The left ear was painted 

with vehicle as a control. In transplanted mice, ear thickness was measured in a blinded manner 

every day for 7 days. Net ear swelling was calculated by subtracting the thickness of the vehicle-

treated ear from the thickness of the oxazolone-challenged ear. Adoptively transferred mice were 

sacrificed 3 days after the second application of oxazolone, and the analysis of the numbers of 

transplanted CD4+ T cells was determined in the skin of the ears, the cervical draining lymph 

nodes, and the spleen. To analyze cells in the skin, the ears were removed from the mice and 

split into dorsal and ventral halves. The skin was placed in 2 ml of digestion buffer containing 

DNase I (0.1 mg/ml) and Liberase TL (0.2 mg/ml, Roche) diluted in 1% FBS in RPMI (GIBCO). 

After 1 hour of incubation at 37ºC, ears were placed into a 70-mm cell strainer (BD Biosciences) 

and mashed through the mesh. The strainers were washed with 2 ml of 1% FBS, 2 mM EDTA in 

PBS (GIBCO). 

 

TIRF microscopy 

J77 cells were co-transfected with plasmids encoding CD3ζ-EGFP and either dsRED or dsRED-

Lamin-A. Transfected cells were sorted on a FACSAriaI flow cytometer, cultured for 1 day, and 

then plated onto 35-mm dishes (MatTek) coated with purified anti-CD3 antibody (T3b, 10 

μg/ml). Images were acquired for 10 min at 0.35-s intervals on a Leica AM TIRFM MC unit 



mounted on a Leica DMI6000B microscope fitted with a 100×/1.46 oil immersion objective, 

with 1.6× magnification and ~90-nm depth penetration. Images were analyzed with Imaris 

software (Bitplane) with a Brownian motion algorithm. 

 

Statistical analysis 

All statistical analyses were performed with Prism GraphPad or Microsoft Office Excel. Unless 

otherwise stated, statistical significance was calculated by two-tailed Student’s t-test. When 

specified, one-way ANOVA or two-way ANOVA with Bonferroni’s post-hoc multiple 

comparison test was used. Significance of differences was calculated as follows: *P < 0.05, **P 

< 0.01, and ***P < 0.001. 

 

Supplementary Materials 
Fig. S1. Schemes of the protocols used to culture human PBLs and mouse splenocytes to 
generate human T lymphoblasts, human DCs, and mouse T lymphoblasts. 
Fig. S2. Analysis of lamin-A/C and lamin-B1 in immune cells. 
Fig. S3. CD4+ T cells migrate to lymph nodes and have lamin-A/C in the hapten-induced contact 
hypersensitivity model. 
Fig. S4. J77 cells stably expressing GFP-lamin-A display enhanced T cell activation. 
Fig. S5. Lamin-A facilitates the interactions between J77 cells and APCs and modulates CD3 
movement and clustering at the immunological synapse. 
Fig. S6. Quantification of the numbers of CD45.1+ and CD45.2+ CD4+ T cells in the blood of 
donor, recipient, and chimeric mice. 
Movie S1. A-type lamins regulate several steps in the interaction between T cells and APCs. 
Movie S2. Lamin-A regulates the movement of TCR-CD3 complexes in the plasma membrane. 
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Fig. 1. A-type lamins are increased in abundance upon T cell activation. (A) Human CD4+ 

PBLs and mouse splenocytes were incubated with antibodies specific for lamin-A/C (red) and 

CD4 (green) and then were analyzed by confocal microscopy. A single confocal plane is shown. 

(B) Human PBLs were incubated with antibodies specific for CD4 and lamin-A/C and then were 

analyzed by flow cytometry. Cells stained with isotype control antibody were used as negative 

control (gray). The graph shows quantification of the percentage of CD4+ T cells that have 

lamin-A/C. Data are means ± SEM from five donors. (C to E) Time course of the increase in 

lamin-A/C abundance in CD4+ PBLs and T lymphoblasts. (C) SEE-treated human PBLs were 

analyzed by flow cytometry and Western blotting. Top: Representative flow cytometry 



histograms. Middle: Quantification of flow cytometry histograms. Bottom: Representative 

Western blot. (D) Phytohemagglutinin (PHA)-treated human T lymphoblasts were analyzed by 

flow cytometry and Western blotting. Top: Representative flow cytometry histograms. Bottom: 

Representative Western blot. (E) T lymphoblasts from OTII transgenic mice were stimulated 

with OVA-loaded DCs and analyzed by flow cytometry. Top: Representative flow cytometry 

histograms. Bottom: Quantification of flow cytometry histograms. Histograms of cells stained 

with isotype control antibody are filled in gray. Graphs show the fold-increase in the abundance 

in lamin-A/C with respect to the quantity at day 0 before stimulation.  Data are means ± SEM 

from three to five donors. 

 

Fig. 2. Loss of A-type lamins impairs T cell activation in vitro and in vivo. (A) Wild-type 

(WT) and Lmna-/- splenocytes were unstimulated or stimulated for 2 hours with anti-CD3 and 

anti-CD28 antibodies, PMA and ionomycin (PMA+Iono), or concanavalin A and then were 

analyzed by quantitative PCR to determine their relative amounts of Cd25 mRNA. The graphs 

show the amount of mRNA relative to that in wild-type cells without stimulation and are means 

± SEM from three independent experiments, analyzed by one-way ANOVA. (B) CD4+ 

splenocytes isolated from pools of two to nine Lmna-/- ) or WT mice were stimulated with anti-

CD3 and anti-CD28 antibodies for 24 hours and then were analyzed by flow cytometry to 

determine the cell-surface abundances of CD69 and CD25. The graphs show the percentages of 

CD25+ or CD69+ cells relative to those among wild-type cells and are means ± SEM from three 

independent experiments. Representative histograms of CD25 or CD69 staining are shown. (C) 

CD4+ splenocytes isolated from pools of three to nine OTII Lmna-/- or OTII WT mice were 

stimulated with either non-loaded or OVA peptide-loaded DCs for 24 hours, and then were 



analyzed by flow cytometry to determine cell-surface CD25 abundance. The graph shows the 

percentages of CD25+ cells relative to those among wild-type cells and are means ± SEM from 

three independent experiments. Representative histograms of CD25 staining are shown. (D) 

Measurement of the contact hypersensitivity response to oxalazone in the ears of lethally-

irradiated WT recipient mice that were reconstituted with bone marrow cells from WT or Lmna-/- 

mice. Data represent the extent of ear swelling in 10 mice of each group and are means ± SEM, 

analyzed by two-way ANOVA. (E) CD4+ T-cells from CD45.2+ WT and CD45.2+ Lmna-/- mice 

were isolated and adoptively transferred into different groups of CD45.1+ WT mice before the 

first application of oxazolone. Three days after the second application, the percentages of 

transferred CD45.2+CD4+ T cells relative to the recipient CD45.1+CD4+ T cells in the ears were 

quantified by flow cytometry. Data are means ± SEM from six to seven mice. (F) CD4+ T-cells 

from CD45.2+CD45.1+ WT and CD45.2+ Lmna-/- mice were isolated, mixed at a 1:1 ratio, and 

adoptively transferred to CD45.1+ WT mice before the application of oxazolone. Left histogram 

shows a representative experiment with the proportions of CD45.2+ and CD45.1+CD45.2+ cells 

that were adoptively transferred. Three days after the second application of oxazolone, the 

percentages of CD45.2+ Lmna-/- and CD45.1+CD45.2+ WT CD4+ T cells relative to the total 

number of CD4+CD45.2+ T cells in the ears, draining lymph nodes, and spleens were quantified 

by flow cytometry, as shown in the representative histograms. Data are means ± SEM from eight 

mice. 

 

Fig. 3. Lamin-A enhances the activation of human J77 cells. (A) J77 cells stably expressing 

GFP (J77-GFP) or GFP-Lamin-A (J77-GFP-Lamin-A) were incubated with either unloaded Raji 

cells or SEE-loaded Raji cells for the indicated times before being subjected to quantitative PCR 



analysis to determine the relative amounts of CD69 and CD25 mRNAs. (B) J77-GFP or J77-

GFP-Lamin-A cells were stimulated with either unloaded Raji cells or SEE-loaded Raji cells for 

16 hours and then were analyzed by flow cytometry to determine the cell-surface abundance of 

CD69. Histograms show a representative experiment. The graph shows the percentages of 

CD69+ cells in the indicated conditions relative to those among J77-GFP cells conjugated with 

unloaded Raji cells and are means ± SEM from three independent experiments, analyzed by one-

way ANOVA. (C) J77-GFP or J77-GFP-Lamin-A cells were stimulated for 6, 18, or 24 hours 

with anti-CD3 and anti-CD28 antibodies and then were analyzed by flow cytometry to determine 

the cell-surface abundance of CD69. The histogram shows a representative experiment at 18 

hours, and the graph shows fold changes in the percentage of CD69+ cells at the indicated times 

relative to the percentage of J77-GFP cells that were CD69+ after stimulation with anti-CD3 and 

anti-CD28 antibodies for 6 hours. Data are means ± SEM from three independent experiments 

and were analyzed by two-way ANOVA. 

 

Fig. 4. Lamin-A modulates the dynamics of human J77 cell-Raji cell interactions. (A) J77-

GFP or J77-GFP-Lamin-A cells were incubated with CMAC-labeled, unloaded or SEE-loaded 

Raji cells , incubated with an anti-α-tubulin antibody, and then analyzed by confocal 

microscopy. Representative images are of cell conjugates formed after 5 min. Raji cells are in 

red, whereas staining with the anti-α-tubulin antibody is in green. A single confocal plane is 

shown. Graph shows the percentages of cell conjugates at the indicated times. Data are means ± 

SEM of 300 to 500 conjugates from two independent experiments and were analyzed by two-

way ANOVA. (B to E) J77-GFP cells (cyan and green) and J77-GFP-Lamin-A cells (red) were 

mixed in equal amounts and added onto SEE-loaded Raji cells (dark blue) that had been plated 



onto PLL-coated coverslips. (B) Representative confocal video microscopy images of the 

conjugation of J77-GFP cells or J77-GFP-Lamin-A cells with SEE-loaded Raji cells at the 

indicated times. A single confocal plane is shown. (C) Percentages of cells that arrived at the 

focal plane by the indicated time frame. (D) Percentages of the indicated J77 cells that formed 

conjugates with Raji cells over time. Data are means ± SEM from thee independent experiments, 

and were analyzed by two-way ANOVA. (E) Duration of the interactions between the indicated 

J77 cells and Raji cells. Data are means ± SEM from three independent experiments. 

 

Fig. 5. Lamin-A is required for optimal movement of TCR-CD3 complexes within the 

plasma membrane and TCR-dependent signaling. J77 cells were co-transfected with plasmids 

encoding CD3ζ-EGFP and either dsRED or dsRED-Lamin-A, sorted by flow cytometry on the 

basis of the detection of dsRED and GFP, plated onto anti-CD3 antibody-coated coverslips, and 

analyzed by TIRF microscopy at a penetration depth of ~90 nm. (A) Representative TIRF 

microscopy images of CD3ζ-EGFP at the indicated times. (B to D) The graphs show (B) the 

number of microclusters at each time point, (C) the area of the cSMAC at each time point, and 

(D) the duration of the tracks of each CD3 microcluster at the plasma membrane. Data are means 

± SEM of 10 to 13 cells of each condition from three independent experiments. (E) J77-GFP and 

J77-GFP-lamin-A cells were allowed to form conjugates with SEE-loaded Raji cells for the 

indicated times before being lysed and analyzed by Western blotting to detect total and 

phosphorylated forms of Vav, ERK1/2, PLC-γ1, and myosin IIA. MW: Molecular weight 

marker. Representative blots are shown. Graphs show quantification of the ratios of 

phosphorylated to total proteins and are means ± SEM from three independent experiments. (F) 

J77-GFP or J77-GFP-lamin-A cells were allowed to form conjugates with unloaded (time 0) or 



SEE-loaded Raji cells for the indicated times in the presence or absence of the MEK1/2 inhibitor 

U0126. Cells were then incubated with antibody against CD69 and analyzed by flow cytometry. 

Histograms show a representative experiment. Graph shows the fold-change in the cell-surface 

abundance of CD69 in the indicated cells relative to that in J77-GFP cells incubated with 

unloaded Raji cells. Data are means ± SEM from three independent experiments, and were 

analyzed by one-way ANOVA. 

 

Fig. 6. A-type lamins promote MTOC translocation and F-actin polymerization in 

activated T cells. (A) J77-GFP and J77-GFP-lamin-A cells were allowed to form conjugates 

with CMAC-labeled, unloaded or SEE-loaded Raji cells (red) for the indicated times before they 

were stained with an anti-α-tubulin antibody and analyzed by confocal microscopy. 

Representative images are of cell conjugates at 5 min. Tubulin is in green, arrowheads point to 

the MTOC, and asterisks indicate Raji cells. A single confocal plane is shown. The graph shows 

quantification of the distance (in µm) between the MTOC and the J77 cell–Raji cell contact area 

at the indicated times after conjugate formation. Data are means ± SEM of at least 300 

conjugates from three independent experiments and were analyzed by two-way ANOVA. (B) 

J77-GFP (white) and J77-GFP-lamin-A (black) cells were stimulated with coated anti-CD3 

antibody and soluble anti-CD28 antibody, stained for phalloidin, and analyzed by flow 

cytometry. Data represent the fold change in the extent of F-actin polymerization relative to that 

in J77-GFP cells without antibodies at time zero. Data are means ± SEM from three independent 

experiments and were analyzed by two-way ANOVA. (C) J77-GFP and J77-GFP-lamin-A cells 

conjugated with SEE-loaded Raji cells were stained with phalloidin to detect F-actin and were 

analyzed by confocal microscopy. Representative projections of confocal stack images are 



shown in which F-actin staining is depicted in pseudocolor intensity-coding format (maximum 

intensity is white), GFP is in green, and merged images depict GFP in green and F-actin staining 

in red. White asterisks indicate Raji cells. Right graph shows the amount of F-actin accumulation 

at the immunological synapse. Data are means ± SEM of 200 conjugates from three independent 

experiments. (D) Western blotting analysis of human T lymphoblasts transfected with control 

siRNA (siRNA-CTRL) or lamin-A/C-specific siRNA (siRNA-LMNA). (E and F) Human T 

lymphoblasts transfected with siRNA-CTRL or siRNA-LMNA were stimulated with (E) SEE-

loaded Raji cells or (F) anti-CD3 and anti-CD28 antibodies for the indicated times, stained for F-

actin, and then analyzed by flow cytometry. Data represent fold-changes in the amount of F-actin 

polymerization relative to that in (E) siRNA-CTRL-treated cells incubated with unloaded Raji B 

cells or (F) T lymphoblasts that were not stimulated with antibodies. Data are means ± SEM 

from three independent experiments and were analyzed by two-way ANOVA. 

 

Fig. 7. The lamin-A–mediated increase in the extent of T cell activation requires a physical 

connection between the nucleus and the cytoskeleton through the LINC complex. (A) J77-

GFP and J77-GFP-lamin-A cells expressing Cherry or a Cherry-tagged dominant negative form 

of the nesprin KASH domain (DN KASH) were conjugated for 16 hours with SEE-loaded Raji 

cells, incubated with antibody for CD69, and analyzed by flow cytometry. Histograms show a 

representative experiment. Right graph represents the fold increase in the percentage of CD69+ 

cells with respect to the GFP+ Cherry-expressing cells (first bar). (B) J77-GFP-lamin-A cells 

expressing DN KASH (black) or Cherry (white) were conjugated with SEE-loaded Raji cells for 

the indicated times, fixed, permeabilized, stained for F-actin, and then analyzed by flow 

cytometry. Data are the fold-change in F-actin content with respect to that in Cherry-expressing 



cells in the absence of SEE-loaded Raji cells (0 min). Data are means ± SEM from three 

independent experiments and were analyzed by two-way ANOVA. (C) J77-GFP-lamin-A cells 

expressing Cherry (white) or Cherry and DN SUN (black) were incubated with SEE-loaded Raji 

cells for the indicated times, fixed, permeabilized, stained for F-actin, and then analyzed by flow 

cytometry. Data are the fold-change in F-actin content in the indicated cells relative to that in 

Cherry-expressing cells in the absence of SEE-loaded Raji cells (0 min). Data in (A) and (B) are 

means ± SEM from three independent experiments and were analyzed by two-way ANOVA. 
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