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SUMMARY  

  

Viroporins are a group of proteins that participate in several viral functions, including the 

promotion of release of viral particles from cells. These proteins also affect cellular functions 

including the cell vesicle system, glycoprotein trafficking and membrane permeability. Viroporins are 



 
not essential for the replication of viruses, but their presence enhances virus growth. Comprising 

some 60-120 amino acids, viroporins have a hydrophobic transmembrane domain that interacts with 

and expands the lipid bilayer. Some viroporins also contain other motifs such as basic amino acid 

residues or a domain rich in aromatic amino acids that confers the protein the ability to interact with 

the interfacial lipid bilayer. Viroporin oligomerization gives rise to hydrophilic pores at the 

membranes of virus infected cells. As the list of known viroporins steadily grows, recent research 

efforts focus on deciphering the actions of the viroporins poliovirus 2B, alphavirus 6K, HIV-1 Vpu and 

influenza virus M2. All these proteins can enhance the passage of ions and small molecules through 

membranes depending on their concentration gradient. Future work will lengthen the list of 

viroporins and will provide a deeper understanding of their mechanisms of action.  

  

1. INTRODUCTION  

  

Viruses inflict a number of injuries as they infect susceptible cells. Some of these injuries 

affect cell membranes, such that the plasma membrane and intracellular vesicle system become 

modified. A typical feature observed during the action of most animal viruses is enhanced membrane 

permeability [1]. Several viral gene products could be responsible for these changes, including 

proteases [2,3], glycoproteins [4-7] and viroporins [1].  

  

2. DEFINITIONS AND EARLY WORK  

  

Viroporins are small, highly hydrophobic, virus-encoded proteins that interact with 

membranes modifying the cell's permeability to ions or other small molecules. The name viroporin 



 
was first proposed when it was found that several virus proteins shared common characteristics [8]. 

This concept was later revised in depth [1].  

That viroporins existed was predicted many years ago, when enhanced membrane 

permeability was noted in several virus-cell systems [9,10]. Two different modes of membrane 

leakiness have been distinguished according to the time of infection. Early membrane modification 

linked to virus entry requires no gene expression since it is the virion's components that mediate 

these alterations [11,12]. As infection progresses, several viral products can affect cell membranes. 

Amongst these products, viroporins are responsible, at least in part, for membrane leakiness 

occurring late in infection.  

  

3. GENERAL FEATURES OF VIROPORIN STRUCTURE  

  

Typically, viroporins are comprised of some 60-120 amino acids (Table 1). They contain a 

highly hydrophobic domain able to form an amphipathic α-helix. The insertion of these proteins into 

membranes followed by their oligomerization creates a typical hydrophilic pore with hydrophobic 

amino acid residues facing the phospholipid bilayer and hydrophilic resides forming part of the pore 

[13-16]. Apart from this domain, there are several additional features of viroporin structure that 

warrant mentioning. Hence, some viroporins contain an additional hydrophobic region that interacts 

with membranes. This may disturb the organization of the lipid bilayer. The viroporin may also 

contain a stretch of basic amino acids that acts like a detergent (Figure 1). All these features 

contribute to membrane destabilization.  

Recently, another domain has been detected in some viroporins that has the capacity to 

interact with membranes. This domain is rich in aromatic amino acids and is usually inserted in the 



 
interfacial phase of the phospholipid bilayer [17]. This type of interaction also leads to membrane 

destabilization, thus enhancing membrane permeability.  

  

4. VIRUS GLYCOPROTEINS THAT MODIFY MEMBRANE PERMEABILITY  

  

Several types of virus proteins are able to modify membrane permeability. Sensu stricto, this 

property defines the activity of a viroporin. However, apart from small hydrophobic viral proteins, 

there are other virus products that promote membrane permeabilization. This is true of a number of 

virus glycoproteins that are known to increase cell membrane permeability [4,6,7,18-22]. The 

architecture of some viral glycoproteins is such that upon oligomerization, it may conform a physical 

pore. In principle, physical viral glycoprotein pores could be formed by the fusion of peptides acting 

in conjunction with transmembrane domains. The fusion peptides would create a pore in the cell 

membranes upon insertion, while the TM domain would form a pore in the virion membrane. 

Moreover, domains adjacent to the transmembrane region could have motifs designed to destabilize 

membrane structure. Thus, in viruses that lack the typical viroporin, its function could be replaced by 

these pore-forming glycoproteins, while for other viruses viroporin activity may be redundant 

[23,24]. In this last case, pore formation may be achieved by both viral glycoproteins and viroporins. 

We would like to propose the possibility that pore-forming glycoproteins play a key role mainly during 

virus entry and in some cases also during virus budding, while viroporins come into action when 

viruses need to exit the cell. In conclusion, some viruses could have developed glycoprotein 

structures capable of destabilizing membranes that totally or partially replace viroporin function. 

Viroporin activity might be fully replaced in viruses, such as HIV-2, that lack typical viroporins.  



 
Besides these glycoproteins, there are currently about a dozen proteins that qualify as typical 

viroporins (Table 1). However, most work on the structure-function of viroporins has concentrated 

on four of these proteins.  

  

5. PICORNAVIRUS 2B  

  

Picornavirus proteins arise from a large polyprotein precursor that is cleaved by viral 

proteases [25]. The picornavirus 2B gene codes for a protein of about 100 residues, depending on 

the virus species considered (Table 1). The 2B product contains two hydrophobic regions (Figure 1). 

At least one of these regions spans the membrane by means of an amphipathic helix. Using the two-

hybrid system, it was determined that there are 2B homointeractions [26,27]. The formation of 2B 

homooligomers has been confirmed by an elegant approach involving fluorescence resonance energy 

transfer microscopy [28]. In fact, it seems that most of the 2B protein located at membranes 

oligomerizes as dimers and tetramers [14]. It was initially shown that both poliovirus 2B and 3A 

proteins had a permeabilizing effect on cells, though attention soon turned to just the 2B protein 

[29,30]. Notably, the 2BC precursor is the most permeabilizing viral protein, perhaps due to the 

conformation adopted by 2B in this precursor, or to differences in the subcellular location of 2B and 

2BC, or to an intrinsic, still unveiled activity of 2BC [31,32]. Certainly 2C alone is devoid of 

permeabilizing capacity in cells. All three proteins, 2B, 2BC and 3A, interact with membranes and are 

found to mostly localize at intracellular membranes [33-36]. The subcellular location of each of these 

proteins when individually expressed may be altered by coexpression of combinations of the three 

[37].  

Not only do 2B, 2BC and 3A enhance membrane permeabilization, but they are also able to 

promote intracellular membrane remodelling [33-35,38], leading to disruption of the vesicle system 



 
and glycoprotein trafficking, including the expression of receptors on the cell surface [30,39]. 

Unfortunately, poliovirus lacking the 2B gene is not viable, since intracellular membrane remodelling 

is a prerequisite for viral genome replication [35]. Poliovirus and coxsackievirus 2B and 2BC variants 

have been analyzed in detail [32,36].  

Using liposomes, it has been possible to estimate the size of the pore formed by 2B at 6 Å in 

diameter [14]. This pore size allows the diffusion of molecules of MW under 1.000 Da. Along with 

pore size, the degree of 2B oligomerization might be conditioned by the lipid composition of the 

membranes. The formation of this hydrophilic pore by poliovirus 2B is a hallmark in our knowledge 

of viroporins. Besides ions, small molecules can pass through these pores; a behaviour that is very 

similar to that noted in animal virus-infected cells [35].  

  

6. ALPHAVIRUS 6K  

  

Alphavirus 6K is synthesized as part of a larger precursor that is proteolytically cleaved [40]. 

Immediately after synthesis and prior to exit from the endoplasmic reticulum, the 6K protein could 

form a complex with E1 and p62 (precursors of E2 and E3), persisting as such during transport to the 

cell surface [41]. Mature glycoproteins become incorporated in the new virions, whereas 6K is mostly 

excluded [41,42]. The 6K protein crosses the membrane once and only its N terminus is located in 

the ER lumen [15]. 6K has several roles: it provides sites for protease cleavage, it may participate in 

viral glycoprotein trafficking and, finally, 6K enhances membrane permeability [43-45]. Alphavirus 

6Ks are composed of about 60 residues (Table 1) including a long stretch of very hydrophobic amino 

acids that confer the capacity to interact with membranes [40]. Some amino acids are acylated, 

increasing their ability to persist on the membranes [40]. Recently, a domain able to become 

partitioned among membranes was identified in Sindbis virus 6K [17]. This domain is required to 

enhance membrane permeability. The individual expression of 6K promotes membrane 



 
permeabilization [17,45]. These studies have been complemented by the analysis of 6Kdeficient 

togavirus variants. The 6K protein is not essential for virus particle formation, nor for early viral 

infection steps such as the binding, uptake and uncoating of the infecting virus along with the 

formation of early nonstructural virus protein [46,47]. Total deletion of the 6K gene still permits virus 

replication, although virus yields are diminished [48,49]. 6K-defficient viruses retain their capacity for 

glycoprotein processing; virus budding being the most affected step of virus replication [49,17]. It has 

been suggested that 6K might exert its actions on glycoprotein packing and on its interaction with 

membrane lipid [50]. Interestingly, Sindbis viruses that lack 6K are compensated, at least in part, by 

the synthesis of HIV-1 Vpu [51]. The recent discovery of a cation-selective ion channel activity of 6K 

proteins from BFV and RRV when inserted into planar lipid bilayers [15], has opened new routes for 

further exploring the mechanisms of action of alphavirus 6K protein.  

  

7. HIV-1 Vpu  

  

HIV-1 Vpu is an oligomeric, type I transmembrane phosphoprotein [52-54].  

Vpu is translated from a bicistronic mRNA that also encodes the envelope glycoprotein. The vpu gene 

is unique to HIV-1, it is not encoded by HIV-2, nor by simian lentivirus with the exception of SIVcpz. 

However, the envelope glycoprotein of lentivirus may display Vpu-like activity in the absence of Vpu 

protein [23]. The HIV-1 Vpu protein contains 81 amino acid residues distributed along an N-terminal 

hydrophobic region of 27 amino acid residues and a C-terminal hydrophilic region, connected by a 

short stretch of basic amino acid residues (Figure 1). In the HIV-1 life cycle, Vpu has at least two roles 

that correspond to two domains.  

The N-terminal transmembrane segment is critical for Vpu enhancement of virus particle 

release from infected cells [55]. The C-terminal cytoplasmic domain is required for CD4 degradation 



 
in host cells [56]. Most Vpu protein localizes at the ER and the Golgi apparatus; a small amount of 

protein, which is nevertheless excluded from the virus particles, localizing at the cytoplasmic 

membrane [57,58]. According to this cellular location, Vpu induces modifications in compartments 

in the secretory pathway and the cell membrane. Thus, Vpu impairs normal trafficking of membrane 

proteins other than CD4, such as MHC-I and alphavirus glycoproteins [51,59]. In addition, Vpu 

disrupts cell membrane integrity inducing permeability to small molecules upon expression in 

Escherichia coli and in mammalian cells [60]. According to secondary structure predictions, Vpu and 

lysin from red abalone (Haliotis rufescens) have been reported to be similar [61].  

Several lines of evidence reflect the ion channel activity of Vpu. Purified Vpu forms ion 

channels with a slight preference for cations in planar lipid bilayers [62]. When expressed in Xenopus 

oocytes, Vpu increases cation selective membrane conductance [63]. Further, it has been recently 

shown that amiloride derivatives block Vpu ion channel activity [64]. However, the Vpu protein and 

its mRNA are both unstable in oocytes. There is some dispute over whether Vpu acts as an ion channel 

at the cell surface or only as an intracellular ion channel [65,66].   

The Vpu protein contains three helical units, one of which is an amphipathic transmembrane 

helix. Synthetic Vpu transmembrane helices have been shown to selfassemble in a lipid bilayer to 

form channels [63]. Molecular dynamic simulations of ion channels formed by bundles of Vpu 

transmembrane helices suggest the most likely channel assembly is a pentamer, but higher or lower 

order oligomers may also be formed [16]. Further studies based on FTIR spectroscopy combined with 

a global molecular dynamics search protocol, indicate that tryptophans may occlude the pore of the 

pentameric bundle of helices by forming a stable assembly, whereas the gating mechanism might 

consist of conformational changes that take place in the transmembrane peptide [67]. When 

extended transmembrane segments of Vpu were used, arginines (Arg 31) pointed into the pore 

forming a positive charged ring that could act as a putative selectivity filter [68].  



 
Despite Vpu's multifunctional role in the virus life cycle, HIV-1 carrying a truncated vpu gene 

is still able to replicate. The steps affected in vpu-deficient variants are the correct assembly and exit 

of virus particles [69]. A large proportion of mutant particles remains attached to the cell surface, 

being the size and shape of these progeny virions also altered. In good agreement with these findings, 

vpu expression is able to correct defects in Sindbis viruses lacking the 6K gene [51].  

  

8. INFLUENZA VIRUS M2  

  

The M2 protein is encoded by a small genomic influenza virus RNA fragment [65]. This RNA 

fragment also codes for another protein known as M1. M2 or M1 synthesis occurs on different 

mRNAs, generated by differential splicing. M2 is a type III integral membrane phosphoprotein made 

up of 96 amino acids, which can be divided into three regions: an extracellular 23-residue fragment, 

a 19-amino acid transmembrane domain and a final 54 residues comprising the cytoplasmic tail [65]. 

The M2 protein forms homooligomers whose active state is a tetramer. A break-through in 

elucidating M2 functioning emerged from studies on its individual expression in Xenopus laevis 

oocytes [70]. M2 synthesis in this system leads to increased permeability towards ions, with the 

consequent decrease in membrane potential. The current M2 activity model indicates this protein 

may act at two different stages during influenza virus infection (See reviews:[65,71]). M2 allows the 

entry of protons into virions promoting virus uncoating in endosomes [72]. In addition, the ion 

channel activity of M2 might lead to a pH balance in influenza virus-infected cells, between that of 

the acid lumen of the TGN and the pH of the cytoplasm [72-74]. Detailed analyses of the structure 

and function of M2 as an ion channel are reviewed in this issue.  



 
M2 also has effects on glycoprotein processing and trafficking. The M2 proteins impairs the 

correct glycosilation of the viral glycoprotein and slows HA delivery to the plasma membrane [74,75]. 

In addition, M2 reduces the apical secretion of cellular proteins in MDCK cells [76,77].  

The antiviral compound amantadine, which blocks the entry of all strains of influenza virus 

[78], inhibits M2 [73] and also hinders the proper budding of virus particles [79].  

In direct contrast to the above model of M2 functioning is the finding that this protein 

increases membrane permeability to small molecules, as occurs with other viroporins [80]. 

Moreover, influenza virus entry does not occur at low pH when the pH gradient is destroyed [12,81]. 

An M2-deficient variant is able to undergo multiple cycles of replication in cultured cells, further 

suggesting that M2 is not essential for virus entry [82]. In this M2-deficient variant, virus production 

is decreased with respect to wild type influenza virus [82,83], consistent with observations in other 

animal viruses lacking the viroporin gene [49,69]. The possibility that M2 activity is differentially 

required for infectivity according to virus strain has been argued [83].  

  

9. OTHER VIROPORINS  

  

As well as the viroporins described above, there are other examples that have received less 

attention. The structural features of a number of animal virus proteins fits in well with the typical 

viroporin structure. In some cases their membrane permeabilization capacity has also been proven. 

This is true of the SH protein of respiratory syncytial virus and the p10 protein of avian reovirus. 

[84,85]. Another recent example is the small hydrophobic protein, p7, that resembles alphavirus 6K, 

encoded by species of the Flaviviridae family. Human hepatitis C virus (HCV) p7 has been found to be 

associated with secretory pathway compartments, a small fraction also being located at the plasma 

membrane [86]. HCV p7 forms hexamers and functions as a calcium channel in black lipid membranes 



 
[87]. Further, the p7 protein of bovine viral diarrhea virus (BVDV) facilitates virus release from the 

plasma membrane [88]. A nice example of a potassium channel protein encoded by algae virus 

corresponds to Kcv protein from Paramecium bursaria chlorella virus (PBCV-1) [89,90]. The Kcv 

protein contains two membrane-spanning domains linked by a strech of 44 amino acids. Kcv fused to 

GFP has a preferential localization at the endoplasmic reticulum and much less at the plasma 

membrane [91].  

Other proteins proposed as viroporins because of their structural features need further 

investigating to establish their membrane permeabilization capacity. One promising candidate is the 

10.6 KDa polypeptide encoded by the alpha 1 ORF gene in bovine ephemeral fever rhabdovirus 

(BEFV). This protein has the hydrophobic and highly basic regions characteristic of a viroporin, but its 

functional role remains to be explored [92]. Recently, a new vaccinia virus gene, A14.5L ORF, has 

been predicted to encode a hydrophobic protein comprised of 53 amino acids. Although the A14.5L  

product is not essential for virus replication in tissue cultured cells, deletion of this gene reduces the 

virulence of vaccinia virus in mice [93].  

Several phage proteins also show the typical viroporin structure [94]. These proteins are able 

to modify membranes and can open large pores in bacterial cells. Because of this capacity, they have 

been denoted holins. To our knowledge, no viroporins have been described in plant viruses. The 

analysis of plant virus genomes could, nonetheless, uncover their existence. Indeed, this could be the 

case of the small hydrophobic protein (p6) of Closteroviruses, which is known to be involved in virus 

movement from cell to cell [95].  

  

10. FUTURE PROSPECTS  

  



 
Despite significant developments in the field of viroporins since our last review on this topic, 

we foresee that this decade will bring further insight into this fascinating group of viral proteins. 

Several questions related to the functions of viroporins await clarification and future research lines 

will no doubt attempt to address questions such as:  

Subcellular localization of viroporins  

Immunolocalization studies performed on virus infected cells indicate that most of the 

viroporin is located intracellularly, while little or none is detected at the plasma membrane. This 

might suggest that viroporin acts by releasing a signal from an intracellular compartment to the 

plasma membrane, where viroporin activity is detected. Alternatively, perhaps only the small 

amounts of viroporin observed at the plasma membrane can account for the enhanced membrane 

permeability. By retaining some viroporins at intracellular compartments, it has been possible to 

block their membrane permeability enhancing capacity. This suggests the protein needs to reach the 

plasma membrane to act. Finally, it should be kept in mind that the destiny of a viroporin could be 

determined or modulated by the synthesis of other viral components [37].  

Interaction of viroporins with other molecules  

 Another question of interest would be to determine if viroporins interact with other viral or cellular 

proteins. If this were the case, viroporin trafficking through the vesicle system could be regulated, as 

could the formation of the actual pore. For instance, if a viroporin molecule interacts with a given 

viral glycoprotein, dissociation of this interaction could promote viroporin oligomerization and pore 

formation [41,96].  

Ion channels or hydrophilic pores  

An essential point that needs to be established is whether viroporins form pores allowing the 

passage of different ions and small molecules or if their architecture itself corresponds to specific 

ion-channels with a controlled gating mechanism [71]. In general, ion channels are selective for a 

given ion and do not permit the passage of other ions or molecules. Moreover, the gating of these 



 
channels is regulated. Phenomena observed in virus-infected cells or in systems that express some 

of these viroporins would appear to indicate the presence of pores at the plasma membrane (Figure 

2).  

Which is their exact mode of action?  

The key question is to understand, in molecular terms, how a protein that forms pores can 

enhance virus budding from cells. A possibility is that the dissipation of ionic gradients in regions of 

virus assembly promotes virion exit from cells [97].  

Are there different viroporin subfamilies?  

 The discovery of new viroporins and subsequent analysis of their activity will provide information on 

the molecular uniformity of this group of proteins. Present knowledge suggests there are different 

viroporin subfamilies, since their structure and function differs when analyzed in detail. This question 

would need to be addressed by comparative studies on several viroporins.  

Viroporins and antiviral chemotherapy  

The fact that some compounds such as amiloride derivatives or amantadine are able to block 

Vpu, M2 and p7 suggests the possibility of finding additional selective agents towards viroporin 

function. Inhibiting viroporin activity would lead to diminished virus production. This alone might be 

sufficient for the immune system to eradicate the virus infection. Notwithstanding, regardless of their 

therapeutic potential or lack of anti-viral activity, new anti-viroporin compounds will be extremely 

useful for evaluating the mode of action of these proteins in cell culture systems.  
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FIGURE LEGENDS  

  

Figure 1. Sequences of selected viroporins. Boxes indicate hydrophobic regions. Basic amino acid 

residues are shown in bold and some aromatic residue clusters are underlined.  



 
  

Figure  2.  Schematic  representation  of  the  pore  formed  by  viroporins.  



 
  

Table 1. List of several viroporins indicating the number of amino acid residues and some 

references.  

  

Virus family  Viroporin  AA residues  References  

  

Picornaviridae  

Poliovirus 2B  

Coxsackievirus 2B  

Poliovirus 3A  

97  

99  

87  

[29,30,32,98]  

[27,99,100]  

[29,30]  

  

Togaviridae  

SFV 6K  

Sindbis virus 6K  

Ross River virus 6K  

60  

55  

62  

[45]  

[17]  

[15]  

Retroviridae  HIV-1 Vpu  81  [60,62]  

Paramyxoviridae  HRSV SH  64  [84]  

Orthomyxoviridae  Influenza A virus M2  97  [13,70,72,80]  

Reoviridae  ARV p10  98  [85]  

Flaviviridae  HCV p7  63  [86,87]  

Phycodnaviridae  PBCV-1 Kcv  94  [90,91]  

Rhabdoviridae  BEFV alpha 10p  88  [92]  

  

SFV: Semliki forest virus  

HIV-1: Human immunodeficiency virus type 1  

HRSV: Human respiratory syncytial virus  

ARV: Avian reovirus  

HCV: Hepatitis C virus  

PBCV-1: Paramecium bursaria chlorella virus  

BEFV: Bovine ephemeral fever virus  

  

  

Human Poliovirus 1 protein 2B  

GITNYIESLGAAFGSGFTQQIGDKVTELTNMVTSTITEKLLKNLVKIISSLVIITRNYEDTT  

TVLATLALLGCDVSPWQWLKKKACDILEIPYAIKQ  

  



 
Human coxsackievirus B3 protein 2B  

GVKDYVEQLGNAFGSGFTNQICEQVNLLKESLVGQDSILEKSLKALVKIISALVIVVRNH 

DDLITVTATLALIGCTSSPWRWLKQKVSQYYGIPMAERQ  

  

Human Poliovirus 1 protein 3A  

GPLQYKDLKIDIKTSPPPECINDLLQAVDSQEVRDYCEKKGWIVNITSQVQTERNINRA  

MTILQAVTTFAAVAGVVYVMYKLFAGHQ  

  

Semliki Forest Virus protein 6K  

ASVAETMAYLWDQNQALFWLEFAAPVACILIITYCLRNVLCCCKSLSFLVLLSLGATARA  

  

Sindbis virus protein 6K  

ETFTETMSYLWSNSQPFFWVQLCIPLAAFIVLMRCCSCCLPFLVVAGAYLAKVA  

  

Ross River virus protein 6K  

GSASFAETMAYLWDENKTLFWMEFAAPAAALALLACCIKSLICCCKPFSFLVLLSLGAS AKA  

  

Human immunodeficiency virus type1 protein Vpu  

MQPIQIAIVALVVAIIIAIVVWSIVIIEYRKILRQRKIDRLIDRLIERAEDSGNESEGEISALVE 

MGVEMGHHAPWDVDDL  

  

Human respiratory syncytial virus protein SH  

MENTSITIEFSSKNKLCEYNVFHNKTFELPRARVNT  

  

Influenza A virus protein M2  

MSLLTEVETPIRNEWGCRCNDSSDPLVVAASIIGILHLILWILDRLFFKCIYRFFEHGLKR 

GPSTEGVPESMREEYRKEQQSAVDADDSHFVSIELE  

  

Avian orthoreovirus protein p10  

MLRMPPGSCNGATAVFGNVHCQAAQNTAGGDLQATSSIIAYWPYLAAGGGFLLIVIIFA  

LLYCCKAKVKADAARSVFHRELVALSSGKHNAMAPPYDV  

FWPYFTLIHMITTIISLLIIISIMTAIL 



 
  

Bovine ephemeral fever virus protein alpha 1  

MEKGLLSNFWNDFKRWSEDRKVEIVIWWSNLESKVRLGFWIILIILLGILAIRIAIKVYQC 

VKFTNQGVKKIKRIIKRKRSIKKYRKT  

  

Hepatitis C virus protein p7  

ALENLVILNAASLAGTHGLVSFLVFFCFAWYLKGRWVPGAVYALYGMWPLLLLLLALP 

QRAYA  

  

Paramecium bursaria chlorella virus protein Kcv  

MLVFSKFLTRTEFSVANPDKKASWIDCI 

YFGVTTHSTVGFGDILP   
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