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Mitochondria are important organelles not only as efficient ATP generators but also in controlling and regulating
many cellular processes. Mitochondria are dynamic compartments that rearrange under stress response and
changes in food availability or oxygen concentrations. The mitochondrial electron transport chain parallels
these rearrangements to achieve an optimum performance and therefore requires a plastic organization within
the inner mitochondrial membrane. This consists in a balanced distribution between free respiratory complexes
and supercomplexes. Themechanisms by which the distribution and organization of supercomplexes can be ad-
justed to the needs of the cells are still poorly understood. The aim of this review is to focus on the functional role
of the respiratory supercomplexes and its relevance in physiology. This article is part of a Special Issue entitled:
Dynamic and ultrastructure of bioenergetic membranes and their components.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Mitochondria are fascinating organelles that reside in eukaryotic
cells. Although known mostly for their role in meeting the cell's energy
requirements in the form of ATP through oxidative phosphorylation
(OXPHOS), mitochondria also have functions in several other physio-
logical processes. These include buffering cytoplasmic calcium [1], con-
trolling cellular redox status, generating and releasing reactive oxygen
species (ROS), releasing metabolites that regulate critical processes
and pathways such as succinate and α-ketoglutarate [2], regulating ap-
optosis [3], adapting cells to changes in substrate availability through
different signaling pathways [4], and remodeling their structure and
dynamics as sensor of their quality control [4]. Mitochondria are thus
central to maintaining the delicate balance between life and death and
need to be tightly regulated. This regulation occurs both through long-
term responses at the level of expression, transcription and translation
and through short-term posttranscriptional responses. Recent findings
suggest that an additional level of short-term regulation is the dynamic
supra-organization of the respiratory complexes in the inner
mitochondrial membrane. This review examines the function of the
respiratory supercomplex (SC) assembly and its relevance to physi-
ological processes.
c and ultrastructure of bioener-
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2. Organization of respiratory complexes in the inner
mitochondrial membrane

Mitochondrial respiratory complexes (complexes I to IV) are respon-
sible for the oxidation of the reducing equivalents, in the form of NADH
or FADH2, originating in different metabolic pathways (glycolysis, fatty
acid oxidation or the Krebs cycle). Oxidation of NADH and FADH2 is
coupled to the pumping of protons into the intermembrane space, and
the resulting proton gradient is used by the ATPase (complex V) to gen-
erate utilizable energy in the form of ATP. NADH reducing equivalents
enter themitochondrial electron transport chain (mtETC) through com-
plex I, whereas FADH2 reducing equivalents enter the mtETC through
complex II or other dehydrogenases such as electron-transferring-
flavoprotein (ETF) dehydrogenase. The electrons are then passed to
coenzyme (CoQ), and subsequently to complex III, cytochrome c, and
complex IV, which passes them to oxygen as the final acceptor.

The organization of respiratory complexes in the inner membrane
has been an object of intense debate. The respiratory components
were initially proposed to be closely packed to guarantee accessibility
and thus high efficiency in electron transport [5,6]. However, this orig-
inal model was progressively abandoned and replaced by the fluid
or random collision model [7]. In the fluid model, the respiratory
complexes are viewed as independent entities embedded in the inner
membrane, with CoQ and cytochrome c acting as mobile carriers that
freely diffuse in the lipid membrane. In a landmark study published in
1986, Hackenbrock and co-workers confirmed that this model offered
better explanation for the structural organization of the mtETC [7]. How-
ever, new evidence from yeast and mammalian mitochondria demon-
strated that it was possible to purify stable associations of respiratory
complexes [8,9] and a reformulation of the solid model proposed that
respiratory complexes are organized in larger structures (respiratory
ense.
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supercomplexes, SCs), allowing a more efficient transport of electrons
(Fig. 1). This ignited debate between the defenders of each of themodels,
which has revealed that neithermodel can satisfactorily account for all of
the experimental evidence [10], further exacerbates the discrepancy be-
tween the two models [11,12].

The main lines of evidence supporting the existence of SCs are the
specific co-migration of respiratory complexes on blue native electro-
phoresis and the co-purification of themby sucrose gradient centrifuga-
tion [8,13,14]. However, both these procedures require solubilization of
the mitochondrial inner membrane with detergents, and it is therefore
reasonable to maintain a skeptical position regarding the reality of SCs
as functional in vivo entities. One of the main criticisms of the SC theory
was the belief that SCs could only be isolated with one detergent
(digitonin), and that other detergents yielded only free complexes;
however, the opposite turned out to be the case: with all detergents
except dodecyl-maltoside revealing the presence of SCs [15]. Aside
from the detergent issue, the solid model fails to accommodate
the well-supported experimental evidence for the kinetics of the
mtETC reactions [16]. This made us reluctant to accept the existence
of respiratory SCs as functional mtETC entities: whether or not they
were solubilization artifacts, there was no direct evidence that the
respirasome, an SC assembled from complexes I, III and IV, was
able to respire. We reasoned that if SCs are genuine biological enti-
ties, they must satisfy the following conditions: the migration of a
particular complex should be dependent on the presence of the
other complexes with which it is proposed to interact, and the for-
mation of complexes and SCs should be asynchronous. By using
cell lines in which one complex was genetically eliminated, we
were able to determine whether the migration of the other com-
plexes in the putative SC assemblies was affected. This genetic
Fig. 1. Schematic representation of the different models proposed to explain the organiza
(B) Schägger's revival of the Solid model, and (C) the plasticity model [15]. The shape and color c
resented as small red-filled stars and cytochrome c as red-filled triangles. Only one complex unit
stoichiometrymay vary. Thequestionmark indicates putative associations or supercomplexesw
named respirasomes, since they can transfer directly electrons from NADH to oxygen.
From [15] with some modifications.
analysis showed that most putative SCs do indeed reveal genuine in-
teraction between complexes. There were, however, exceptions that
confirmed the original concern that co-migration on gels or gradi-
ents is insufficient evidence of interaction. The dynamic assembly
of complexes and supercomplexes in intact cells can also be moni-
tored by metabolic labeling of mtDNA-encoded proteins. Using this
approach, we established that there is a gap of several hours be-
tween the labeling of free complexes and the incorporation of
labeled complexes into SCs. Our interpretation that this shows SC
assembly was recently questioned by the proposition from Ugalde's
laboratory that respiratory complex I exists in a partially assembled
state and that its assembly is completed only through interaction
with complex III and complex IV in what they call the pre-respirasome
[17]. While this group's analysis was conceptually similar to ours,
there were critical differences in the experimental setup. They depleted
respiratory complexes from cells in culture by treating themwith doxy-
cycline, a specific and reversible inhibitor of mitochondrial ribosomes.
They then removed the drug and monitored the re-assembly of com-
plexes and SCs by tracking different respiratory complex subunits by
western blot. The key difference from our metabolic labeling approach
is that we did not deplete respiratory complexes, but instead tracked
their assembly in normally respiring mitochondria.

The discrepancy between Ugalde's model and our own is not trivial,
and requires some detailed attention. The asynchrony that we detect is
compatible with both the random collision model and the solid model
since it accommodates the existence of free complexes and super-
complexes without making any assumptions about which would be
the functional entity. It is important to consider that in our model there
is no obvious necessity to assign SCs a respiratory function. They could
instead play structural roles in the inner mitochondrial membrane or
tion of the OXPHOS system. (A) Hackenbrock's random-collision model or fluid model,
ode for representing the individual complexes can be seen in panel A; coenzyme Q is rep-
of each type is represented in the different supercomplex associations, although the actual
hichexistence is not fully confirmed. Supercomplexes containing complexes I to IV are also
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provide an inactive store of respiratory complexes ready for ac-
tivation when needed. In contrast, Ugalde's model is only compatible
with the solid model and obligatorily views the respirasome as the
functional respiratory unit. These differences suggest some testable
predictions. First, Ugalde'smodel predicts that in the absence of complex
IV complex I cannot be assembled. This was tested in a cell line
homoplasmic for a mutation in mitochondrial cytochrome c oxidase 2
(COX2) [18]. The COX2 mutant is unable to assemble complex IV and
has no complex IV activity; however, we could detect free complex I in
native gels, and more importantly this complex I had NADH dehydroge-
nase activity. These results provide evidence against the Ugalde's
proposal that complex I is an obligate scaffold for complex III and IV as-
sembly and that respiratory activity (including NADH dehydrogenase
activity) is acquired only when complexes I, III and IV combine together
in SCs.

Two other criteria for functional respiratory SCs are that they should
contain CoQ and cytochrome c and be able to transfer electrons among
their components and fromNADH to O2. These conditions have all been
demonstrated experimentally, supporting a respiratory function for SCs
[15]. These series of experiments led to our proposal of the plasticity
model, which accommodates the solid and the fluid models by regard-
ing the organization of the respiratory complexes as a network of differ-
ent associations as well as individual complexes (Fig. 1C). In agreement
with this view, metabolic flux control kinetics studies can also discrim-
inate between the random collision and the solid model. Thus, in the
former, each enzyme would be rate limiting while in the latter, the
whole system would behave as a single unit where the inhibition of
any of its components would affect the whole pathway. Flux control
analysis performed in bovine heart mitochondria and submitochondrial
particles cannot discard any model and support partially the solid
model [19]. Taken together these results, the plasticity model can better
accommodate the kinetic evidence.

SC formation, stabilization and function are also critically influenced
by the lipid composition of the inner mitochondrial membrane. In pa-
tients with Barth syndrome, where cardiolipin remodeling is impaired,
SCs are unstable, leading to the mitochondrial dysfunction underlying
the disease [20–23]. The importance of protein–lipid interaction has
been demonstrated in cardiolipin- and phospholipid-deficient yeast
strains, in which SC formation and complex activities are defective
[22,23]. The importance of lipid composition in SC stabilization is sup-
ported by studies with reconstituted proteoliposomes [24–26].
Fig. 2. Confirmed roles for supercomplexes. (A) Scheme illustrating that detachment of
complexes I and III significantly increases ROS production [24]. (B) Plasticity model of
mETC organization, showing CI associations with a dedicated CoQ pool coexisting with
CIII + CIV associations and free CII, CIII, and CIV. SCAFI modulates CIV-containing super-
complexes, thereby regulating the proportions of free CIII and CIV and generating three
states for CIV [32]. CII represents all the delivery of electrons to the CoQ pool thought
FADH2. DHOH: dihydroorotate dehydrogenase; G3PDH: glycerol-3-phosphate dehydro-
genase; ETF-QO: electron transfer flavoprotein-ubiquinone oxidoreductase; SQR: sulfide
CoQ reductase; Choline DH: choline dehydrogenase; Proline DH: proline dehydrogenase.
3. Roles of respiratory supercomplexes

The interdependency of SC formation and complex stability has been
shown in several genetic models, in which low SC levels are detected in
the absence of complex III [27], complex IV [28], or cytochrome c [29].
However, we recently found that this dependency, consistently ob-
served in cultured cells grown at 20% oxygen, might not occur at more
physiological oxygen concentrations [30], indicating that its physiolog-
ical significance remains to be determined. By the same token, the
assembly of functional complex I in the absence of SC formation again
questions Ugalde's proposal [17,18] (author's unpublished results). It
has been postulated that SCs would increase the efficiency of electron
flux through substrate channeling or enhanced catalysis [19,31]. How-
ever, the individual complexes of the respiratory chain can be isolated
in relatively pure formand retain functionality [7].Moreover, the kinetic
behavior of CoQ as a homogeneous pool freely diffusing between the
dehydrogenases and complex III argues against a role of SCs in respira-
tory function [16]. The pool behavior of CoQ and the existence of SCs are
reconciled by our recent demonstration of two distinct CoQ pools: one
dedicated to reducing equivalents coming from NADH and a second, in-
dependent pool coming from FADH2. By modulating the relative levels
of complexes I and III, we have shown that these two CoQ pools com-
pete for the delivery of electrons to complex III [32].
A third role proposed for SCs is an acceleration of electron transport
concomitant with sequestration of reactive intermediates to prevent
generation of reactive oxygen species [25,33]. Ghelli et al. [33] showed
that mitochondria with a missense mutation in cytochrome b, which
drastically impairs complex III activity and associated ATP synthesis
causing high superoxide production, show almost a normal activity
when complexes I + III or II + III were measured. Also the levels of
SCs containing complex III were slightly increased [33], suggesting
that SCs maintain mitochondrial function by promoting the sequestra-
tion of reactive oxygen species (ROS) despite the mutation. In the
study by Maranzana et al. [24], complex-I-containing SCs were either
disrupted with detergents or their assembly was prevented by blocking
complex I + III interactions using reconstituted proteoliposomes at a
high lipid/protein ratio; these independent approaches demonstrated
that ROS generation by complex I was increased in the absence of SC
formation (Fig. 2A) [25].

Although the assembly of individual respiratory complexes in the
inner mitochondrial membrane into distinct SCs is established, the
factors required for this assembly are unknown. Recently, reports
from three independent laboratories have described two related
Saccharomyces cerevisiae proteins (renamed by the three groups as
rcf1 and rcf2) that may be relevant to assembly between complexes III
and IV [34–36]. However, the ablation of these proteins impairs overall

image of Fig.�2
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respiration and growth quality in non-fermentable substrates
[34–36]. This could be interpreted as support for the solid model,
and therefore as evidence against the fluid and plasticity models.
However, these proteins are required for the assembly of the COX3
subunit into mature complex IV, and their ablation thus impairs
complex IV assembly [34–36]. Mammalian orthologs have been
identified for rcf1 (HIG1A and HIG2A). HIG1A interference does not
influence respiratory complexes or SCs [36] and this protein has
been ascribed a role in the regulation of mitochondrial γ-secretase
function [37]. HIG2A interference induces a very moderate reduction
in the respirasome levels but, as occurs in yeast, complex IV assembly
is also impaired to the same extent [36]. These proteins should there-
fore be regardedmore as complex IV assembly factors than as SC assem-
bly factors. A true SC chaperone would allow assembly of SCs but not of
the individual complexes. The first protein for which these properties
have been identified, Cox7a2l, is required for stable interaction between
complexes III and IV and has been renamed supercomplex assembly
factor I (SCAFI) [32]. Mouse cells expressing mutated Cox7a2l do not
build SCs containing complex III + IV or the respirasome, an effect res-
cued by expression of wild-type Cox7a2l. Screens of mouse strains
showed that C57Bl/6J and Balb/cJ mice harbor a mutation in Cox7a2l
that renders it unstable, and their mitochondria are consequently un-
able to build respiratory SCs containing complex IV. Cox7a2l/SCAFI
thus defines three populations of complex IV: the fraction assembled
with complexes I and III in the respirasome, which can receive electrons
only from NADH; the fraction assembled with complex III alone, which
receives electrons only from FAD-containing enzymes; and a non-
interacting fraction that can receive electrons from any substrate
(Fig. 2B). SCAFI modulates the interaction between complexes III and
IVwithout affecting the stability of the individual complexes, thus satis-
fying the requirement for a bona fide SC assembly factor. The plasticity
model is substantially validated by the identification of SCAFI as a mod-
ulator of CIV assembly into SCs and by the viability of animals whose
mitochondria lack SCAFI, and therefore cannot form complex IV-
containing SCs [32].

A recent study of mitochondria from S. cerevisiae questioned the
functional relevance of mitochondrial SCs [38]. However, there are sev-
eral problems with extrapolating these results to mammalian mito-
chondria. First, the mtETC of S. cerevisiae is very different from that of
mammals because it lacks complex I, and the analysis therefore relates
only to assemblies containing complexes III and IV. Second, the authors
do not present a parallel analysis of the status of interaction between re-
spiratory complexes. For their analysis they poisoned the mtETC with
inhibitors of complex III or with carbon monoxide (a complex IV
toxin), and performed experiments at low oxygen, even exposing cells
to the absence of oxygen. Unfortunately, however, they did not explore
the consequences of this rather strong manipulation on the structure
and function of the mtETC. Furthermore, they used several genetically
modified strains for which they did not experimentally confirm the as-
sumed structure of the mtETC under their growth conditions. The con-
clusions of this studymoreover contradict the results of other studies in
S. cerevisiae that propose that the mtETC functions as a single unit [39].
Specifically, we showed that substrates for NADH (pyruvate + malate)
and FADH2 (succinate) have an additive effect on respiratory activity
when added to mitochondria with SCs containing III + IV, but that
this additive behavior is lacking or very reduced in the absence of com-
plex IV plus III superassembly. This additive effect allows mitochondria
to optimize the simultaneous use of different carbon substrates whose
oxidization generates variable proportions of NADH and FADH2 [32].

Several attempts have been tried to quantify the proportion of the
respiratory SC that is assembled in the respirasomes under defined con-
ditions, combining blue native electrophoresis and in gel histochemical
enzymatic activity of the respiratory complexes [40,41]. However, the
data available are not accurate enough to enable a proper quantification
of these phenomena. In order to achieve quantification; proteomics ap-
proach such as iTRAQ [42] would be needed to estimate and determine
precisely SC distribution upon different conditions since mitochondrial
SC organization is a dynamic process.

4. SC dynamics and turnover

The demonstration that the structural organization of the mtETC is
variable and complex and that differences in this organization are relat-
ed to differences in function has important implications for our under-
standing of the regulation of this system. Dynamic superassembly of
mtETC complexes allows the cell to adapt to different carbon sources
and varying physiological conditions, and greater understanding of
these processes promises insight into the implication of the OXPHOS
system in human disease.

The growth of yeast with glucose or lactose as the carbon source
shows that the dynamics of SC formation varies with cell growth and
physiological conditions [8]. In mammalian cell lines, SC assembly is
increased by growth in the presence of galactose instead of glucose,
thereby forcing the mtETC to work at maximum capacity (authors'
unpublished observations). When interpreting results from cultured
cells it is important to consider the state of confluence, since this
strongly affects mitochondrial energy production and metabolism.
Overconfluent enter a pseudo-hypoxic state accompanied by acidifi-
cation of the media, which compromises oxygen consumption and
reduces the maximal respiration rate [43–45]. Under these condi-
tions, mitochondrial SCs undergo reorganization similar to that
occurring in hypoxia (personal observations). Study of the control
of cytochrome oxidase flux has revealed that the assembly status of
SCs is altered in the uncoupled condition [46] and is also affected by
both the voltage (ΔΨ(m)) and the proton (ΔpH(m)) gradient [47].
In the latter study, the same observations were made for NADH dehy-
drogenase and bc(1) complexes, suggesting a dynamic equilibrium
between SCs and individual complexes, and thus supporting the plastic-
itymodel [15]. It was recently reported that hypoxia andmitochondrial
matrix pH also regulate SC assembly and activity in plants [48]:
sustained hypoxia and low pH result in a drop in the activity of SC-
assembled complex I in favor of individual complex I activity, a situation
reversed upon re-oxygenation.

Many of themost dynamic and rapid cellular processes aremediated
by posttranslational modifications. Activation of kinases and phospha-
tases and their downstream targets occurs over short time frames, en-
abling the cell to adapt to emerging challenges. Phosphorylation/
dephosphorylation, acetylation/deacetylation, and redox alterations
can affect SC components, potentially altering SC stability or function.
OXPHOS activity is affected by several posttranslational modifications
[49–52], but these studies did not address whether SCs were disrupted
or stabilized. In the context of heart preconditioning, where mitochon-
dria have been postulated to exert a protective role [53,54], precondi-
tioning has been linked to complex V phosphorylation in ATPase
subunit β. In order to model these phosphorylation events and their
physiological relevance, the yeast ATPase subunit β has been subjected
to series of mutations with nonphosphorylatable and phosphomimetic
analogs corresponding to the mammalian sequence [55]. Some of the
mutations have an effect on ATPase activity and the formation and
stability of the free F1 component of complex V. Interestingly, phosphor-
ylation of T58 promoted a decrease in the formation and stability of
complex V dimers, and thus ATPase activity. This is the first evidence
that a posttranslational modification can alter SC levels. Although
similar studies could be performed with phosphoproteins from other
respiratory complexes, no such analysis has been reported yet.

The mitochondrial network is controlled by a balance between fu-
sion and fission [56–60]. The reorganization of mitochondrial cristae
during fusion and fission requires SCs to be relocated in order to main-
tain proper OXPHOS function. This requires their disassembly and reas-
sembly. Several proteins are implicated in maintaining the cristae
junctions tight, including the dynamin-related GTPase protein OPA1
[61,62] and the conserved adaptor Fcj1/mitofilin [63]. In a recent
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studywe defined the relationship between SCs andmitochondrial ultra-
structure [64]. Genetic ablation or overexpression of OPA1 revealed that
SC assembly stability and function require an intact cristae structure.
Induction of apoptosis promotes the rupture of cristae junctions,
which releases cytochrome c to the cytosol, thereby destabilizing SCs.
This constitutes the first experimental evidence of a direct link between
mitochondrial inner membrane organization and SC arrangement,
establishing a strong correlation of cristae ultrastructure and the incor-
poration of functional SCs.

The integrity of mitochondrial membranes and thus SC levels is also
determined by the control of mitochondrial quality through the action
of proteases or selective elimination by mitophagy. Dissipation of
membrane potential by the uncoupler CCCP promotes mitochondrial
fragmentation andmitophagy [65,66].Work byCogliati et al. [64] show-
ing that cristae remodeling destabilizes SCs, together with our finding
that CCCP decreases SC levels, suggests that mitophagy likely reduces
SC formation and function; however, as yet no specific studies in this
respect have been reported.

Last but not the least, the use by mitochondria of different fuels de-
termines the metabolic switch. We recently showed that starvation,
which triggers a preferential use of fatty acid instead of glucose as the
OXPHOS fuel, reduces the levels of SC containing complex I. This re-
sponse results in more free complex III accessible to electrons coming
from FADH2, revealing a role of mitochondrial SCs in the adaptation to
substrate availability [32].

5. Physiological relevance of SC function

A considerable body of evidence gathered in recent years points to
an involvement of mitochondria in several disease processes and
aging [67–78]. Given the fundamental and diverse roles of mitochon-
dria, any malfunction is likely to lead to disease. An immediate effect
of impaired mitochondrial function is increased ROS production,
which itself affects mtETC activity and creates a vicious cycle that
promotes a further decline of mitochondrial fitness. ROS have a strong
influence on the maintenance and performance of SCs, and a growing
number of studies show that ROS levels are correlated with a decrease
in SC assembly and disease.

The vicious cycle of ROS andmitochondrial dysfunction has been ex-
tensively studied in models of aging [75,79]. Mitochondrial ROS are
emerging as signalingmolecules that can have beneficial or detrimental
effects, depending on their concentration. In the physiological range,
ROS participate in homeostasis asmodulators of growth factor signaling
[80], activators of uncoupling proteins [81] and regulators of mitochon-
drial biogenesis [82]. In contrast, above the physiological threshold ROS
are pathological causing lipid peroxidation, protein oxidation and
mitochondrial DNA damage. Aging-dependent decay of mitochondrial
function is directly linked to increased ROS production, but little is
known about the molecular mechanisms involved. Recent hypotheses
propose that the decline in mitochondrial function with age is related
to the decrease in the levels of SCs in heart [83] and brain rat cortex
[84]. Contrasting with this explanation, in rat skeletal muscle the
highest molecular weight SCs accumulate in older animals, perhaps as
a consequence of amolecularmechanism that enhances the catalytic ac-
tivity of the respirasomeby better channeling of fuels and by preventing
ROS generation [85].

Since mitochondria produce ATP through the coupling of the mtETC
to ATP synthase, tissues with a high-energy demand, such as the highly
contractile heart, are deeply dependent on mitochondrial function.
Mitochondria are involved in the progression of hypertrophy and
heart failure (HF) [86,87], but although it is clear that mitochondrial
function is diminished in failing hearts, the restructuring of mitochon-
drial SCs has not been studied in depth. In a canine model of HF, Rosca
et al. found a decrease in state 3 mitochondrial respiration in both
subsarcolemmal and interfibrillar mitochondria, accompanied by a
reduction in complex-I-containing SCs [88] that was not due to a
modification in the lipid content of the inner mitochondrial membrane
[89]. These authors conclude that the destabilization of the SCs is in-
stead due to changes in the phosphorylation of specific complex IV sub-
units that alter protein–protein interactions or the stability of SCs
containing complex IV [89]. Moreover, in Angiotensin II (AngII) models
of cardiac insult it has been reported the ROSmediate crosstalk between
the cytoskeleton network and mitochondrial function and integrity
[90–92]. Although thisfinding appears to run counter to the detrimental
action of ROS on mitochondrial integrity [93], so far no-one has studied
HF and SC destabilization in the context of cardiac insult and HF.

In cancer, cell metabolism switches towards glycolysis (the
Warburg effect) accompanied by a depression in OXPHOS. The
mechanisms underlying this metabolic switch are not well under-
stood. Mitochondrial function is impaired by K-ras expression and
activation in a sequence of events. First, mitochondrial membrane
potential and oxygen consumption decrease and ROS production
is enhanced [94]. As a consequence, complex I content and activity
decay and ROS defense mechanisms are depressed [94,95]. This mi-
tochondrial response translates into a switch towards glycolysis,
lactate production and apoptosis that leads to tumor formation
and proliferation [94]. The possible influence of SC organization
on the depression of the OXPHOS system, increased ROS production
and tumorigenesis was not proposed until recently [96]. These authors
suggest that ROS produced in tumorigenesis would alter SC formation,
leading primarily to disruption of complex I assembly and activity and
thus promoting a second peak of ROS generation, which would amplify
the mitochondrial defect.

6. Unsolved questions and concluding remarks

To date, the knowledge on howmitochondrial SCs are organized and
its relevance in physiology is increasing with the help of the newmeth-
odological approaches aswell as geneticmodels. However there are still
several open questions regarding the structural organization of the SCs.
Onemajor unresolved question is the degree of interaction between the
different CoQ pools, and by the same token, if there is a unique CoQ pool
for FADH2 derived electrons or dedicated pools for different FADH2

donors. The role of the different SCs containing I + III and how complex
IV integration into the different SCs is regulated are still unknown. It is
necessary to develop methodologies to accurately estimate the amount
of SCs in vivo, since the data derive from Blue Native are conditioned by
the use of detergents to solubilize the membrane. Equally, the true
stoichiometry between complexes when associated in SC requires a
more robust proteomic analysis.

Mitochondrial physiology and biogenesis are deeply involved in the
initiation and progression of many pathological situations and aging.
Production of ROS, altered quality control balance, energy deficiency
and decrease in mitochondrial respirasome formation are some of the
features controlled by mitochondria that are impaired with aging and
disease. Cell fate is determined by the internal crosstalk among signal-
ing pathways that determines decisions about which fuel source to
use and even whether to live or die. Mitochondria are key organelles
in modulating and switching metabolism to optimize the performance
of the cell. Reorganization of SCs in the inner mitochondrial membrane
in response to different stimuli, carbon sources or stress conditions is
revealing an important and novel adaptive mechanism controlled by
mitochondria. These findings suggest exciting and challenging ap-
proaches to controlling disease by adjusting SC levels to meet cells'
physiological requirements at a given moment.

Acknowledgements

We thank Simon Bartlett (CNIC) for English editing and Concepción
Jiménez for management. This study was supported by grants from the
Ministerio de Ciencia e Innovación (SAF2012-32776 & CSD2007-
00020); the Comunidad de Madrid (CAM/API1009); and the Marie



449R. Acin-Perez, J.A. Enriquez / Biochimica et Biophysica Acta 1837 (2014) 444–450
Curie Career Integration Grant (UEO/MCA1108). RA-P is an investigator
of the Ramon y Cajal research program from theMinisterio de Economía
y Competitividad. The CNIC is supported by the Ministerio de Economía
y Competitividad and the Pro-CNIC Foundation. All authors declare that
they have no competing interests.
References

[1] H. McBride, L. Scorrano, Mitochondrial dynamics and physiology, Biochim. Biophys.
Acta 1833 (2013) 148–149.

[2] I.A. Stanley, S.M. Ribeiro, A. Giménez-Cassina, E. Norberg, N.N. Danial, Changing
appetites: the adaptive advantages of fuel choice, Trends Cell Biol. (2013), http:
//dx.doi.org/10.1016/j.tcb.2013.07.010.

[3] L. Galluzzi, O. Kepp, C. Trojel-Hansen, G. Kroemer, Mitochondrial control of cellular
life, stress, and death, Circ. Res. 111 (2012) 1198–1207.

[4] M. Liesa, O.S. Shirihai, Mitochondrial dynamics in the regulation of nutrient utiliza-
tion and energy expenditure, Cell Metab. 17 (2013) 491–506.

[5] E.C. Slater, Keilin, Cytochrome, and the Respiratory Chain, 2003.
[6] D. Keilin, E.F. Hartree, Activity of the cytochrome system in heart muscle prepara-

tions, Biochem. J. 41 (1947) 500–502.
[7] C.R. Hackenbrock, B. Chazotte, S.S. Gupte, The random collision model and a critical

assessment of diffusion and collision in mitochondrial electron transport, J.
Bioenerg. Biomembr. 18 (1986) 331–368.

[8] H. Schägger, K. Pfeiffer, Supercomplexes in the respiratory chains of yeast andmam-
malian mitochondria, EMBO J. 19 (2000) 1777–1783.

[9] C.M. Cruciat, S. Brunner, F. Baumann, W. Neupert, R.A. Stuart, The cytochrome bc1
and cytochrome c oxidase complexes associate to form a single supracomplex in
yeast mitochondria, J. Biol. Chem. 275 (2000) 18093–18098.

[10] G. Lenaz, R. Fato, G. Formiggini, M.L. Genova, The role of coenzyme Q in mitochon-
drial electron transport, Mitochondrion 7 (2007) S8–S33(Suppl.).

[11] I. Wittig, H. Schägger, Supramolecular organization of ATP synthase and respiratory
chain in mitochondrial membranes, Biochim. Biophys. Acta 1787 (2009) 672–680.

[12] V. Strecker, Z. Wumaier, I. Wittig, H. Schägger, Large pore gels to separate mega
protein complexes larger than 10 MDa by blue native electrophoresis: isolation of
putative respiratory strings or patches, Proteomics 10 (2010) 3379–3387.

[13] H. Eubel, J. Heinemeyer, H.P. Braun, Identification and characterization of
respirasomes in potato mitochondria, Plant Physiol. 134 (2004) 1450–1459.

[14] F. Krause, N.H. Reifschneider, D. Vocke, H. Seelert, S. Rexroth, N.A. Dencher,
“Respirasome-” like supercomplexes in green leaf mitochondria of spinach, J. Biol.
Chem. 279 (2004) 48369–48375.

[15] R. Acín-Peréz, P. Fernández-Silva, M.L. Peleato, A. Pérez-Martos, J.A. Enriquez, Respi-
ratory active mitochondrial supercomplexes, Mol. Cell 32 (2008) 529–539.

[16] G. Lenaz, M.L. Genova, Kinetics of integrated electron transfer in the mitochondrial
respiratory chain: random collisions vs. solid state electron channeling, Am. J. Phys-
iol. Cell Physiol. 292 (2007) C1221–C1239.

[17] D. Moreno Lastres, F. Fontanesi, I. García-Consuegra, M.A. Martín, J. Arenas, A.
Barrientos, et al., Mitochondrial complex I plays an essential role in human
respirasome assembly, Cell Metab. 15 (2012) 324–335.

[18] E. Balsa, R. Marco, E. Perales-Clemente, R. Szklarczyk, E. Calvo, M.O. Landázuri, et al.,
NDUFA4 is a subunit of complex IV of the mammalian electron transport chain, Cell
Metab. 16 (2012) 378–386.

[19] C. Bianchi, M.L. Genova, G. Parenti Castelli, G. Lenaz, The mitochondrial respiratory
chain is partially organized in a supercomplex assembly: kinetic evidence using
flux control analysis, J. Biol. Chem. 279 (2004) 36562–36569.

[20] M. McKenzie, M. Lazarou, D.R. Thorburn, M.T. Ryan, Mitochondrial respiratory chain
supercomplexes are destabilized in Barth Syndrome patients, J. Mol. Biol. 361
(2006) 462–469.

[21] F. Gonzalvez, M. D'Aurelio, M. Boutant, A. Moustapha, J.-P. Puech, T. Landes, et al.,
Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis
inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene
mutation, Biochim. Biophys. Acta 1832 (2013) 1194–1206.

[22] T. Wenz, R. Hielscher, P. Hellwig, H. Schägger, S. Richers, C. Hunte, Role of phospho-
lipids in respiratory cytochrome bc(1) complex catalysis and supercomplex forma-
tion, Biochim. Biophys. Acta 1787 (2009) 609–616.

[23] K. Pfeiffer, V. Gohil, R.A. Stuart, C. Hunte, U. Brandt, M.L. Greenberg, et al.,
Cardiolipin stabilizes respiratory chain supercomplexes, J. Biol. Chem. 278
(2003) 52873–52880.

[24] G. Lenaz, A. Baracca, G. Barbero, C. Bergamini, M.E. Dalmonte, M. del Sole, et al.,
Mitochondrial respiratory chain super-complex I–III in physiology and pathology,
Biochim. Biophys. Acta 1797 (2010) 633–640.

[25] E. Maranzana, G. Barbero, A.I. Falasca, G. Lenaz, M.L. Genova, Mitochondrial respira-
tory supercomplex association limits production of reactive oxygen species from
complex I, Antioxid. Redox Signal. 19 (2013) 1469–1480.

[26] S. Bazán, E. Mileykovskaya, V.K.P.S. Mallampalli, P. Heacock, G.C. Sparagna, W.
Dowhan, Cardiolipin-dependent reconstitution of respiratory supercomplexes
from purified Saccharomyces cerevisiae complexes III and IV, J. Biol. Chem. 288
(2013) 401–411.

[27] R. Acín-Peréz, M.P. Bayona-Bafaluy, P. Fernández-Silva, R. Moreno-Loshuertos, A.
Pérez-Martos, C. Bruno, et al., Respiratory complex III is required to maintain com-
plex I in mammalian mitochondria, Mol. Cell 13 (2004) 805–815.

[28] F. Diaz, H. Fukui, S. Garcia, C.T. Moraes, Cytochrome c oxidase is required for the
assembly/stability of respiratory complex I in mouse fibroblasts, Mol. Cell. Biol. 26
(2006) 4872–4881.
[29] U.D. Vempati, X. Han, C.T. Moraes, Lack of cytochrome c in mouse fibroblasts dis-
rupts assembly/stability of respiratory complexes I and IV, J. Biol. Chem. 284
(2009) 4383–4391.

[30] F. Diaz, S. Garcia, K.R. Padgett, C.T. Moraes, A defect in themitochondrial complex III,
but not complex IV, triggers early ROS-dependent damage in defined brain regions,
Hum. Mol. Genet. 21 (2012) 5066–5077.

[31] C. Bianchi, R. Fato, M.L. Genova, G. Parenti Castelli, G. Lenaz, Structural and functional
organization of Complex I in the mitochondrial respiratory chain, Biofactors 18
(2003) 3–9.

[32] E. Lapuente-Brun, R. Moreno-Loshuertos, R. Acín-Peréz, A. Latorre-Pellicer, C. Colás,
E. Balsa, et al., Supercomplex assembly determines electron flux in themitochondri-
al electron transport chain, Science 340 (2013) 1567–1570.

[33] A. Ghelli, C.V. Tropeano, M.A. Calvaruso, A. Marchesini, L. Iommarini, A.M. Porcelli,
et al., The cytochrome b p. 278YNCmutation causative of a multisystem disorder en-
hances superoxide production and alters supramolecular interactions of respiratory
chain complexes, Hum. Mol. Genet. 22 (2013) 2141–2151.

[34] V. Strogolova, A. Furness, M. Robb-McGrath, J. Garlich, R.A. Stuart, Rcf1 and Rcf2,
members of the hypoxia induced gene 1 protein family, are critical components of
the mitochondrial cytochrome bc1–cytochrome c oxidase supercomplex, Mol. Cell.
Biol. 32 (2012) 1363–1373.

[35] M. Vukotic, S. Oeljeklaus, S. Wiese, F.N. Vogtle, C. Meisinger, H.E. Meyer, et al., Rcf1
mediates cytochrome oxidase assembly and respirasome formation, revealing het-
erogeneity of the enzyme complex, Cell Metab. 15 (2012) 336–347.

[36] Y.-C. Chen, E.B. Taylor, N. Dephoure, J.-M. Heo, A. Tonhato, I. Papandreou, et al., Iden-
tification of a protein mediating respiratory supercomplex stability, Cell Metab. 15
(2012) 348–360.

[37] H. Hayashi, H. Nakagami, M. Takeichi, M. Shimamura, N. Koibuchi, E. Oiki, et al.,
HIG1, a novel regulator of mitochondrial γ-secretase, maintains normal mitochon-
drial function, FASEB J. 26 (2012) 2306–2317.

[38] M. Trouillard, B. Meunier, F. Rappaport, Questioning the functional relevance of
mitochondrial supercomplexes by time-resolved analysis of the respiratory
chain, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) E1027–E1034.

[39] H. Boumans, L.A. Grivell, J.A. Berden, The respiratory chain in yeast behaves as a
single functional unit, J. Biol. Chem. 273 (1998) 4872–4877.

[40] M. Sabar, J. Balk, C.J. Leaver, Histochemical staining and quantification of plant mito-
chondrial respiratory chain complexes using blue-native polyacrylamide gel elec-
trophoresis, Plant J. 44 (2005) 893–901.

[41] J. Heidler, V. Strecker, F. Csintalan, L. Bleier, I. Wittig, Quantification of protein com-
plexes by blue native electrophoresis, Methods Mol. Biol. 1033 (2013) 363–379.

[42] R.D. Unwin, Quantification of proteins by iTRAQ, Methods Mol. Biol. 658 (2010)
205–215.

[43] A.M. Weljie, A. Bondareva, P. Zang, F.R. Jirik, 1H NMRmetabolomics identification of
markers of hypoxia-induced metabolic shifts in a breast cancer model system, J.
Biomol. NMR 49 (2011) 185–193.

[44] I. Samudio, M. Fiegl, M. Andreeff, Mitochondrial uncoupling and theWarburg effect:
molecular basis for the reprogramming of cancer cell metabolism, Cancer Res. 69
(2009) 2163–2166.

[45] A. Herling, M. König, S. Bulik, H.-G. Holzhütter, Enzymatic features of the glucose
metabolism in tumor cells, FEBS J. 278 (2011) 2436–2459.

[46] C. Piccoli, R. Scrima, D. Boffoli, N. Capitanio, Control by cytochrome c oxidase of the
cellular oxidative phosphorylation system depends on the mitochondrial energy
state, Biochem. J. 396 (2006) 573.

[47] G. Quarato, C. Piccoli, R. Scrima, N. Capitanio, Variation of flux control coefficient of
cytochrome c oxidase and of the other respiratory chain complexes at different
values of protonmotive force occurs by a threshold mechanism, BBA Bioenerg.
1807 (2011) 1114–1124.

[48] S.J. Ramirez-Aguilar, M. Keuthe, M. Rocha, V.V. Fedyaev, K. Kramp, K.J. Gupta, et al.,
The composition of plant mitochondrial supercomplexes changes with oxygen
availability, J. Biol. Chem. 286 (2011) 43045–43053.

[49] R. Acín-Peréz, E. Salazar, M. Kamenetsky, J. Buck, L.R. Levin, G. Manfredi, Cyclic AMP
produced inside mitochondria regulates oxidative phosphorylation, Cell Metab. 9
(2009) 265–276.

[50] R. Acín-Peréz, B. Hoyos, F. Zhao, V. Vinogradov, D.A. Fischman, R.A. Harris,
et al., Control of oxidative phosphorylation by vitamin A illuminates a funda-
mental role in mitochondrial energy homoeostasis, FASEB J. 24 (2010)
627–636.

[51] H. Cimen, M.-J. Han, Y. Yang, Q. Tong, H. Koc, E.C. Koc, Regulation of succinate dehy-
drogenase activity by SIRT3 in mammalian mitochondria, Biochemistry 49 (2010)
304–311.

[52] H. Yu, I. Lee, A.R. Salomon, K. Yu, M. Hüttemann, Mammalian liver cytochrome c is
tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration, Biochim.
Biophys. Acta 1777 (2008) 1066–1071.

[53] E. Murphy, C. Steenbergen, Preconditioning: the mitochondrial connection, Annu.
Rev. Physiol. 69 (2007) 51–67.

[54] A.P. Halestrap, S.J. Clarke, I. Khaliulin, The role of mitochondria in protection of the
heart by preconditioning, Biochim. Biophys. Acta 1767 (2007) 1007–1031.

[55] L.A. Kane, M.J. Youngman, R.E. Jensen, J.E. van Eyk, Phosphorylation of the F(1)F(o)
ATP synthase beta subunit: functional and structural consequences assessed in a
model system, Circ. Res. 106 (2010) 504–513.

[56] L. Griparic, A.M. van der Bliek, The many shapes of mitochondrial membranes, Traf-
fic 2 (2001) 235–244.

[57] A. Santel, M.T. Fuller, Control of mitochondrial morphology by a human mitofusin, J.
Cell Sci. 114 (2001) 867–874.

[58] E. Smirnova, L. Griparic, D.L. Shurland, A.M. van der Bliek, Dynamin-related protein
Drp1 is required for mitochondrial division in mammalian cells, Mol. Biol. Cell 12
(2001) 2245–2256.

http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0005
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0005
http://dx.doi.org/10.1016/j.tcb.2013.07.010
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0015
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0015
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0020
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0020
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0445
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0025
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0025
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0030
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0030
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0030
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0035
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0035
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0040
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0040
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0040
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0045
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0045
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0050
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0050
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0055
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0055
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0055
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0055
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0060
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0060
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0065
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0065
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0065
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0070
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0070
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0075
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0075
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0075
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0450
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0450
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0450
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0085
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0085
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0085
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0090
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0090
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0090
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0095
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0095
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0095
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0100
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0100
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0100
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0100
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0105
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0105
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0105
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0110
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0110
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0110
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0115
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0115
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0115
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0455
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0455
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0455
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0125
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0125
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0125
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0125
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0130
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0130
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0130
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0135
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0135
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0135
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0140
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0140
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0140
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0145
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0145
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0145
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0150
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0150
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0150
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0460
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0460
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0460
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0465
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0465
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0465
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0465
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0465
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0470
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0470
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0470
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0470
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0475
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0475
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0475
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0480
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0480
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0480
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0485
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0485
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0485
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0170
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0170
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0170
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0175
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0175
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0180
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0180
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0180
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0185
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0185
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0190
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0190
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0195
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0195
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0195
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0195
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0490
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0490
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0490
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0205
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0205
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0210
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0210
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0210
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0215
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0215
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0215
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0215
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0220
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0220
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0220
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0225
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0225
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0225
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0230
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0230
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0230
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0230
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0235
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0235
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0235
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0240
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0240
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0240
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0245
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0245
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0250
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0250
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0255
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0255
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0255
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0260
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0260
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0265
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0265
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0270
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0270
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0270


450 R. Acin-Perez, J.A. Enriquez / Biochimica et Biophysica Acta 1837 (2014) 444–450
[59] F. Legros, A. Lombes, P. Frachon, M. Rojo, Mitochondrial fusion in human cells is ef-
ficient, requires the inner membrane potential, and is mediated by mitofusins, Mol.
Biol. Cell 13 (2002) 4343–4354.

[60] S. Cipolat, O. Martins de Brito, B. Dal Zilio, L. Scorrano, OPA1 requires mitofusin
1 to promote mitochondrial fusion, Proc. Natl. Acad. Sci. U. S. A. 101 (2004)
15927–15932.

[61] S. Cipolat, T. Rudka, D. Hartmann, V. Costa, L. Serneels, K. Craessaerts, et al., Mito-
chondrial rhomboid PARL regulates cytochrome c release during apoptosis via
OPA1-dependent cristae remodeling, Cell 126 (2006) 163–175.

[62] C. Frezza, S. Cipolat, O. Martins de Brito, M. Micaroni, G.V. Beznoussenko, T. Rudka,
et al., OPA1 controls apoptotic cristae remodeling independently frommitochondri-
al fusion, Cell 126 (2006) 177–189.

[63] G.B. John, Y. Shang, L. Li, C. Renken, C.A. Mannella, J.M.L. Selker, et al., The mitochon-
drial inner membrane protein mitofilin controls cristae morphology, Mol. Biol. Cell
16 (2005) 1543–1554.

[64] S. Cogliati, C. Frezza, M.E. Soriano, T. Varanita, R. Quintana-Cabrera, M. Corrado, et al.,
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly
and respiratory efficiency, Cell 155 (2013) 160–171.

[65] D. Narendra, A. Tanaka, D.-F. Suen, R.J. Youle, Parkin is recruited selectively to im-
pairedmitochondria and promotes their autophagy, J. Cell Biol. 183 (2008) 795–803.

[66] C. Vives-Bauza, C. Zhou, Y. Huang, M. Cui, R.L.A. de Vries, J. Kim, et al., PINK1-
dependent recruitment of Parkin to mitochondria in mitophagy, Proc. Natl. Acad.
Sci. U. S. A. 107 (2010) 378–383.

[67] E.A. Schon, S. DiMauro, M. Hirano, Human mitochondrial DNA: roles of inherited
and somatic mutations, Nat. Rev. Genet. 13 (2012) 878–890.

[68] S.B. Vafai, V.K. Mootha, Mitochondrial disorders as windows into an ancient organ-
elle, Nature 491 (2012) 374–383.

[69] D.C. Wallace, A mitochondrial paradigm of metabolic and degenerative diseases,
aging, and cancer: a dawn for evolutionary medicine, Annu. Rev. Genet. 39 (2005)
359–407.

[70] D.C. Chan, Fusion and fission: interlinked processes critical for mitochondrial health,
Annu. Rev. Genet. 46 (2012) 265–287.

[71] L.C. Greaves, J.L. Elson, M. Nooteboom, J.P. Grady, G.A. Taylor, R.W. Taylor, et al.,
Comparison of mitochondrial mutation spectra in ageing human colonic epithelium
and disease: absence of evidence for purifying selection in somatic mitochondrial
DNA point mutations, PLoS Genet. 8 (2012) e1003082.

[72] N. Gregersen, J. Hansen, J. Palmfeldt, Mitochondrial proteomics—a tool for the study
of metabolic disorders, J. Inherit. Metab. Dis. 35 (2012) 715–726.

[73] R.J. Youle, A.M. van der Bliek, Mitochondrial fission, fusion, and stress, Science 337
(2012) 1062–1065.

[74] D.-F. Dai, P.S. Rabinovitch, Z. Ungvari, Mitochondria and cardiovascular aging, Circ.
Res. 110 (2012) 1109–1124.

[75] A. Bratic, N.-G. Larsson, The role of mitochondria in aging, J. Clin. Invest. 123 (2013)
951–957.

[76] T. Nakamura, D.-H. Cho, S.A. Lipton, Redox regulation of protein misfolding, mito-
chondrial dysfunction, synaptic damage, and cell death in neurodegenerative dis-
eases, Exp. Neurol. 238 (2012) 12–21.

[77] J. Moslehi, R.A. Depinho, E. Sahin, Telomeres and mitochondria in the aging heart,
Circ. Res. 110 (2012) 1226–1237.

[78] A. Salminen, J. Ojala, K. Kaarniranta, A. Kauppinen, Mitochondrial dysfunction
and oxidative stress activate inflammasomes: impact on the aging process and
age-related diseases, Cell. Mol. Life Sci. 69 (2012) 2999–3013.
[79] S. Marchi, C. Giorgi, J.M. Suski, C. Agnoletto, A. Bononi, M. Bonora, et al., Mitochon-
dria–ROS crosstalk in the control of cell death and aging, J. Signal Transduct. 2012
(2012) 329635.

[80] M. Sundaresan, Z.X. Yu, V.J. Ferrans, K. Irani, T. Finkel, Requirement for generation of
H2O2 for platelet-derived growth factor signal transduction, Science 270 (1995)
296–299.

[81] K.S. Echtay, D. Roussel, J. St-Pierre, M.B. Jekabsons, S. Cadenas, J.A. Stuart, et al., Su-
peroxide activates mitochondrial uncoupling proteins, Nature 415 (2002) 96–99.

[82] R.Moreno-Loshuertos, R. Acín-Peréz, P. Fernández-Silva, N.Movilla, A. Pérez-Martos,
S.R. Rodriguez de Cordoba, et al., Differences in reactive oxygen species
production explain the phenotypes associated with common mouse mitochondrial
DNA variants, Nat. Genet. 38 (2006) 1261–1268.

[83] L.A. Gómez, T.M. Hagen, Age-related decline in mitochondrial bioenergetics: does
supercomplex destabilization determine lower oxidative capacity and higher super-
oxide production? Semin. Cell Dev. Biol. 23 (2012) 758–767.

[84] M. Frenzel, H. Rommelspacher, M.D. Sugawa, N.A. Dencher, Ageing alters the supra-
molecular architecture of OxPhos complexes in rat brain cortex, Exp. Gerontol. 45
(2010) 563–572.

[85] A. Lombardi, E. Silvestri, F. Cioffi, R. Senese, A. Lanni, F. Goglia, et al., Defining the
transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use
of a cDNA array, 2D- and Blue native-PAGE approach, J. Proteomics 72 (2009)
708–721.

[86] M. Osterholt, T.D. Nguyen, M. Schwarzer, T. Doenst, Alterations in mitochondrial func-
tion in cardiac hypertrophy and heart failure, Heart Fail. Rev. 18 (2013) 645–656.

[87] M.G. Rosca, B. Tandler, C.L. Hoppel, Mitochondria in cardiac hypertrophy and heart
failure, J. Mol. Cell. Cardiol. 55 (2013) 31–41.

[88] M.G. Rosca, E.J. Vazquez, J. Kerner, W. Parland, M.P. Chandler, W. Stanley, et al.,
Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative
phosphorylation, Cardiovasc. Res. 80 (2008) 30–39.

[89] M. Rosca, P. Minkler, C.L. Hoppel, Cardiac mitochondria in heart failure: Normal
cardiolipin profile and increased threonine phosphorylation of complex IV, Biochim.
Biophys. Acta 1807 (2011) 1373–1382.

[90] E.M. de Cavanagh, M. Ferder, F. Inserra, L. Ferder, Angiotensin II, mitochondria, cyto-
skeletal, and extracellular matrix connections: an integrating viewpoint, Am. J.
Physiol. Heart Circ. Physiol. 296 (2009) H550–H558.

[91] S.I. Dikalov, W. Li, A.K. Doughan, R.R. Blanco, A.M. Zafari, Mitochondrial reactive ox-
ygen species and calcium uptake regulate activation of phagocytic NADPH oxidase,
AJP Regul. Integr. Comp. Physiol. 302 (2012) R1134–R1142.

[92] N. Mariappan, C.M. Elks, M. Haque, J. Francis, Interaction of TNF with angiotensin II
contributes tomitochondrial oxidative stress and cardiac damage in rats, PLoS One 7
(2012) e46568.

[93] R.A. Gottlieb, A.B. Gustafsson, Mitochondrial turnover in the heart, BBAMol. Cell Res.
1813 (2011) 1295–1301.

[94] Y. Hu, W. Lu, G. Chen, P. Wang, Z. Chen, Y. Zhou, et al., K-rasG12V transformation
leads to mitochondrial dysfunction and a metabolic switch from oxidative phos-
phorylation to glycolysis, Cell Res. 22 (2011) 399–412.

[95] A. Baracca, F. Chiaradonna, G. Sgarbi, G. Solaini, L. Alberghina, G. Lenaz, Mitochondri-
al Complex I decrease is responsible for bioenergetic dysfunction in K-ras trans-
formed cells, Biochim. Biophys. Acta 1797 (2010) 314–323.

[96] G. Gasparre, A.M. Porcelli, G. Lenaz, G. Romeo, Relevance of mitochondrial ge-
netics and metabolism in cancer development, Cold Spring Harb. Perspect.
Biol. 5 (2013).

http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0275
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0275
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0275
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0280
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0280
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0280
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0285
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0285
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0285
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0290
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0290
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0290
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0295
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0295
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0295
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0495
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0495
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0495
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0300
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0300
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0305
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0305
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0305
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0310
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0310
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0315
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0315
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0320
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0320
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0320
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0325
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0325
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0330
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0330
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0330
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0330
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0335
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0335
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0500
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0500
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0340
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0340
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0345
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0345
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0350
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0350
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0350
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0355
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0355
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0360
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0360
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0360
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0365
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0365
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0365
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0505
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0505
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0505
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0370
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0370
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0375
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0375
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0375
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0375
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0380
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0380
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0380
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0385
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0385
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0385
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0390
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0390
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0390
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0390
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0510
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0510
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0400
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0400
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0405
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0405
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0405
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0515
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0515
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0515
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0410
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0410
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0410
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0415
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0415
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0415
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0420
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0420
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0420
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0425
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0425
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0430
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0430
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0430
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0435
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0435
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0435
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0520
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0520
http://refhub.elsevier.com/S0005-2728(13)00224-7/rf0520

	The function of the respiratory supercomplexes: The plasticity model
	1. Introduction
	2. Organization of respiratory complexes in the inner mitochondrial membrane
	3. Roles of respiratory supercomplexes
	4. SC dynamics and turnover
	5. Physiological relevance of SC function
	6. Unsolved questions and concluding remarks
	Acknowledgements
	References


