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Abstract 

Despite the maturity reached by targeted proteomic strategies, reliable and 

standardized protocols are urgently needed to enhance reproducibility among different 

laboratories and analytical platforms, facilitating a more widespread use in biomedical 

research. To achieve this goal, the use of dimensionless relative retention times (iRT), 

defined on the basis of peptide standard retention times (RT), has lately emerged as a 

powerful tool. The robustness, reproducibility and utility of this strategy were examined 

for the first time in a multicentric setting, involving 28 laboratories that included 24 of 

the Spanish network of proteomics laboratories (ProteoRed-ISCIII). According to the 

results obtained in this study, dimensionless retention time values (iRTs) demonstrated 

to be a useful tool for transferring and sharing peptide retention times across different 

chromatographic set-ups both intra- and inter-laboratories. iRT values also showed 

very low variability over long time periods. Furthermore, parallel quantitative analyses 

showed a high reproducibility despite the variety of experimental strategies used, either 

MRM (multiple reaction monitoring) or pseudoMRM, and the diversity of analytical 

platforms employed.  

KEYWORDS: 

Proteomics; liquid chromatography; targeted proteomics; reproducibility; 

standardization; inter-laboratory validation; multiple reaction monitoring.  

Introduction 

Quantitative analysis of specific target proteins present in complex proteomes has 

turned out to be one of the most attractive tools available in modern proteomics[1-3].  

Collectively known as targeted proteomics, these techniques track the 

presence/absence of protein-specific peptides (proteotypic peptides[4, 5]) in the 

samples studied and, under specific experimental conditions, are amenable to produce 

absolute quantification data[6-12]. 

Despite having low resolution and medium mass accuracy, triple quadrupole mass 

spectrometers are the instrument of choice to perform targeted analysis[13]. These 

instruments offer excellent sensitivity, high selectivity and dynamic range as well as 

high speed to monitor in a single liquid chromatography coupled to mass spectrometry 

(LC-MS) analysis tens or hundreds of proteotypic peptides corresponding to many 

different proteins. In this targeted approach (Multiple Reaction Monitoring, or MRM), 

often described as tandem mass spectrometry in space, peptides are selected in the 

first quadrupole or Q1 according to the m/z (mass to charge) ratio of the precursor ion, 
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fragmented by collision-induced dissociation (CID) in the collision cell, Q2 or second 

quadrupole and finally, predefined peptide-specific fragments are selected in the 

second mass filter (Q3 or third quadrupole), followed by the measurement of the 

intensity of the transmitted ions or transitions. Other mass spectrometers perform 

targeted experiments as well, but peptide selection and fragmentation is usually 

accomplished with ions trapped in the same place, with multiple separation steps 

taking place over time (tandem mass spectrometry in time)[14, 15].  Methods 

developed using the last type of mass spectrometers are often described as 

pseudoMRM methods.  

However, monitoring too many transitions in a single LC-MS targeted experiment could 

increase the total cycle time up to a point where there are no sufficient data points to 

reconstruct with adequate resolution the chromatographic elution profiles of the 

targeted peptides, affecting to the global quality of the data. In these cases, targeted 

proteomics strategies may benefit from a great enhancement in efficiency if targeted 

peptides are monitored solely around the expected retention time (scheduled 

approaches)[16, 17]. Concatenating multiple retention time windows, each 

corresponding to different sets of target scheduled peptides, the otherwise limited 

number of peptides that can reasonably be measured in one LC-MS run can be greatly 

increased, without compromising the accuracy of quantitation or the sensitivity of the 

detection. Additionally, targeted signal acquisition in the expected time window 

provides additional experimental evidence supporting that the detected signal is 

actually generated by the selected peptide and fragments. Therefore, scheduled 

approaches favour a significant increase of the number of individual proteotypic 

peptides that can be reasonably analysed per LC-MS run, extending the number of 

transitions measured per proteins and/or the number of different proteins studied[18, 

19]. 

Selection of proteotypic peptides is usually based on previous data either from 

repositories (PeptideAtlas, SRM Atlas)[20, 21] or obtained in a discovery, non-targeted 

analysis, typically using LC-MS shotgun experimental approaches that, in addition to 

peptide sequences, also provide information about the chromatographic retention times 

of the peptides of interest. At first glance, translation of peptide retention times from the 

discovery phase to a targeted proteomics protocol should be straightforward. In 

practice, empirically measured peptide retention times (RT) are only valid for each 

specific experimental set up resulting from the influence of many different parameters, 

such as solvents, gradient, column length, dead volumes in the LC system, type of 

stationary phase used, column aging and many others. To solve this issue, Escher and 
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collaborators proposed a normalized, dimensionless retention time value (named iRT 

score) for peptides as a useful tool for transferring and sharing peptide retention times 

across chromatographic set-ups both intra- and inter-laboratories[22]. The iRT score 

for a given peptide is calculated and normalized relative to a set of synthetic peptides 

and its value should remain stable across a wide range of LC configurations. 

The use of retention time standards allows the normalization of peptide RT to a 

“universal” scale, that can be useful to facilitate sharing of targeted analysis methods 

across different experimental setups and laboratories, pinpoint wrong signal 

assignments to particular peptides, or design scheduled targeted methods[23]. We 

think that these are crucial issues in the context of projects that require the coordination 

of multiple participants, such as the Human Proteome Project[24, 25]. 

To assess the robustness and reproducibility of iRT values in the context of a multi-

centric study, the Spanish network of proteomics laboratories ProteoRed-ISCIII 

[26](www.prb2.org/es/proteored) has coordinated a new multicentric study, PME10, in 

which a total number of 28 (n=24 from ProteoRed-ISCIII) different laboratories have 

taken part. The global objective of PME10 was to evaluate the suitability of retention 

time standards to improve targeted proteomic analyses. To achieve this goal, 

participants were requested to estimate relative retention times (iRT) from a provided 

set of retention time standards and their empirically measured retention times. Then an 

averaged set of relative RT values is obtained and used as a global iRT scale to 

assess its capability of predicting empirical RTs in hypothetical scheduled assays. For 

that purpose, a single centralized pre-digested sample was analysed under different 

chromatograpic conditions.  

Finally, in the context of the Spanish Human Proteome Project[25] (spHPP-

Chromosome 16) we evaluated the accuracy and reproducibility of a quantitative 

analysis of 16 peptides belonging to a set of chromosome 16 – encoded proteins 

previously detected in MCF7 cell line, and for which validated MRM methods had been 

already set up in the context of the HPP project.  

PME10 adds up to previous multicentric experiments illustrating ProteoRed´s 

commitment with the improvement of the accuracy, reproducibility and robustness of 

different proteomic methodologies[27-29]. Previous multicentric experiments have 

evaluated the sensitivity, efficacy and robustness of targeted proteomic approaches 

[30-32] but this is the first inter-laboratory study, to our knowledge, that has combined 

this methodology and the evaluation of normalized chromatographic retention times. 
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MATERIALS AND METHODS 

A more detailed description of the materials, methods and instrumentation used is 

provided as Supplementary information (supplementary Table 3).  

1) Materials 

Each participant received a dried study sample containing a mixture composed of: a) 

20 micrograms of a tryptic digest of MCF7 human breast cancer cell line total 

proteome; b) the MSRT1 calibration mix peptide standard mixture, kindly supplied by 

SIGMA-ALDRICH (St. Louis, MO), composed by 14 isotopically labeled synthetic 

peptides (average of 4000 fmol/peptide, Table 1) and c) 16 isotopically labeled heavy 

peptide standards (400 fmol/peptide, Table 1) corresponding to 16 human proteins for 

which SRM methods had been set up and validated by the Spanish chr16 spHPP 

consortium (data not shown). Peptides were labeled either with 13C6 
15N1 Leu (+7Da), 

13C6 
15N2 Lys (+8Da) or 13C6 

15N4 Arg (+10Da). MSRT1 calibration peptide mixture is a 

LC-MS platform standard intended to test chromatographic parameters such as LC 

resolution, peptide elution profiles, and retention time prediction. It has been designed 

to span a wide range of chromatographic elution times. The amounts of individual 

peptides vary to display relatively similar electrospray responses. Normalized retention 

time (iRTs) values relative to the previously described Biognosys standards[22] were 

also provided (Supplementary Table 1). 

In addition, every participant also received a second dried aliquot of pure MSRT1 

peptide standards (average 3000 fmol/peptide), and of the labeled peptide standards 

mixture (800 fmol/peptide, Supplementary table 2). Samples were sent ready for LC-

MS analysis. 

2) Sample Preparation Protocol: 

Participants were suggested to dissolve the dried peptide mixtures in a small volume of 

20-30% Acetonitrile, 0.1% formic acid in water, and to dilute this stock solution with 

0.1% formic acid in water to reduce the acetonitrile concentration to 2-5% at the 

moment of the analysis.  Participants were suggested to inject 0.2-1 g of MCF7 digest, 

40-200 fmol MSRT1 peptides and 4-20 fmol of heavy peptide standards per run. 

3) Analysis conditions: 

a. Chromatography: 
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PME10 participants were recommended to analyse the sample using three different 

liquid chromatography (LC) gradients of increasing length. More precisely, a linear 

gradient of 0-40% acetonitrile in water in 60, 90 and 120 minutes was recommended, 

while relatively permissive conditions were allowed in other LC parameters. Specific 

analysis conditions are detailed in Supplementary table 3, but a brief outline of the 

conditions is as follows: C18-based reversed phase chromatographic columns internal 

diameters ranged from 50 m to 2.1 mm; flow rates were 220 nL/min to 300 L/min; 

sample load: 0.4-2 g. In general, most of the participants employed nanoLC 

conditions (flow rates 220-500 nL/min) while only two laboratories used microLC 

conditions (flow rates 700-1000 nL/min). Finally, a unique participant employed 

standard analytical LC conditions (300 L/min) 

b. Mass spectrometry: 

According to the type of instrumentation (Supplementary table 3), 13 triple quadrupole 

mass spectrometers were used, including 9 ABSciex 5500 Qtrap instruments. The rest 

of instruments used included 10 different versions of the Thermo Orbitrap family, 2 

ABSciex 5600 TripleTOF QTOF mass spectrometers, two three dimensional ion-traps 

(Bruker AmaZon Speed) and finally, one Thermo QExactive instrument. The list of 

precursors and fragment ion m/z values to be monitored as well as the recommended 

dwell times, declustering potentials and collision energies were made available to the 

participants either as tables (Supplementary tables 4a and 4b) or skyline files (not 

shown). For MSRT1 peptides the transitions listed are the ones suggested in the 

Sigma-Aldrich webpage. The consensus SRM parameters for 16 heavy (standard) -

light (endogenous) peptide pairs corresponding to 16 proteins encoded in the 

chromosome 16, plus nine additional non isotopically labeled peptides, was obtained 

from the Spanish spHPP-Chromosome project, totalling 164 transitions. Therefore, the 

list includes the transitions corresponding to at least one labeled standard peptide for 

each of the 16 Chromosome 16-encoded proteins.  

Some participants adapted the acquisition parameters to the specific instrument and 

experimental setups, either for SRM or other targeted approaches (pseudoSRM). 

Participants using Thermo Orbitrap (OT) instruments were suggested to apply parallel 

reaction monitoring (PRM) acquisition methods similar to those described in PME8 

study[29]. In some cases, for analysis in OT or other instruments, it was necessary to 

shorten the list of targeted precursor ions. In such cases, the analysis was limited to 

the 14 MSRT1 standard peptides, plus the 16 chromosome 16-encoded protein peptide 
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heavy-light pairs. Due to the limited amount of sample available, optimization of 

acquisition parameters was beyond the aim of the study.  

4) Study design:  

Samples were prepared and distributed to the 28 participants (24 from Spain, and one 

from Russia, Sweden, Switzerland and United States, respectively). The participants 

were invited to analyse at least one run of the sample containing the pure MSRT1 

standard and three independent runs of the PME10 sample for each of the three 

suggested gradient lengths, summing a total of 12 LC-MS runs. Extracted ion 

chromatograms (XIC) corresponding to target peptides were first used to obtain their 

specific retention times and next to calculate the corresponding iRT values. 

Furthermore, for quantification purposes, we asked the participants to calculate the 

light/heavy (L/H) ratios for each of the signals detected for the 16 peptides included in 

the labeled standard mixture. 

5) iRT Calculations: 

Participants were suggested to submit the data through a standardized spreadsheet file 

for a centralized analysis. In order to normalize all observed retention times to a 

common iRT scale, participants were requested to plot the reference MSRT1 iRT 

values (Supplementary table 1), against their observed experimental retention times for 

each of the recommended LC-MS runs (60, 90 and 120 min). Reference MSRT1 iRT 

values were calculated according to the iRT scale defined by Escher et al[22]. 

Calculation of a linear regression fit in each plot (figure 1) results in a linear equation 

for each run, in the form:  

iRT = mRT(obs) + b 

The equations were used, together with the experimental retention times, to calculate 

the iRTs of all the observed peptides in two variants: an external estimation, where the 

conversion equation was obtained from plotting the MSRT1 iRT values versus the 

measured RTs of the pure MSRT1 peptides; and an internal estimation, where the 

equation was obtained from plotting the MSRT1 iRT values versus the RTs of the 

MSRT1 peptides spiked in the cell extract (see an example in fig.1). 

The iRT values from all participants and gradients were collected, filtered for outliers 

(values outside the range defined as 1.5 times the inter-quartile range extending from 

quartiles one and three respectively), averaged for every peptide and used to 
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reconstruct a global (in the scope of the multi-centric experiment) iRT scale on which 

the predictive capability of measured RTs can be tested. 

4- Quantification of MCF7 proteins 

For each isotopically labelled heavy peptide corresponding to the Chromosome 16 –

encoded proteins, participants were requested to calculate the light to heavy ratio (L/H), 

for each of the three technical replicas of each LC gradient. Averaged L/H ratios were 

calculated considering all values, as well as standard deviations. Finally, absolute 

amounts, expressed as fmol of protein per g of MCF7 total proteome, were calculated. 

As in previous ProteoRed Multicentric experiments (PME), we suggested the 

participants to submit their results for a centralized analysis. Templates as well as 

specific details were made available through the ProteoRed webpage 

(http://www.legacy.proteored.org/).  

RESULTS AND DISCUSSION 

Sharing chromatographic methods for proteomic analyses among laboratories is not 

straightforward, given the widely diverse array of instruments and experimental setups 

(e.g., from shotgun to targeted approaches), as many variables must be precisely 

tuned and integrated. In this regard, methods allowing a reliable prediction of peptide 

RT might be of great benefit. The use of peptide RT as the reference parameter for 

method sharing has demonstrated relevant restrictions, even when variables, such as 

gradient, column dimensions and type of stationary phase, or LC-system dead volumes 

were relatively controlled, as was also observed in this study..Figure 2 shows the RT 

values for two different sets of synthetic peptides (fig. 2a, 2b) obtained in different 

laboratories with a 90 min gradient and a relatively limited range of instrumental setups. 

Similar, results were obtained upon use of 60 and 120 minutes gradients 

(Supplementary figures 2 a-d). Data variability or distribution is illustrated by the 

standard deviation (SD) and the interquartile range (IQR) that in 90 min gradients were 

in the range of 8.5 and 10.5, respectively, in most cases. With respect to IQR, which 

depicts the range required to cluster the central 50% of the RT values, most of the 

values grouped around 10 minutes. Analysis of the results from 60 and 120 min 

gradients, demonstrated small, albeit consistent changes in the dispersion values 

(supplementary figures 2a-d). Thus, SD and IQR values were in the range of 7 and 7.5 

for 60 min gradients and, 10 and 14 for 120 min gradients, respectively. A different 

landscape results upon RT normalization (iRTs). Each participant laboratory reported 

the estimated sets of iRT peptide values in each of the LC-MS runs in both, external 

and internal settings (see Materials and methods). Figures 3 a-d summarize the results 
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obtained, which in this case have been plotted considering all the three different 

gradients from each laboratory, either using external or internal conversion equations. 

Similar observations were made when gradient-dependent results were represented 

(data not shown). Overall, both SD and IQR values were in general smaller than those 

from RT and enhanced the reproducibility of the measured iRTs across different 

gradients and laboratories. On the other hand, no particular instrument dependence in 

the calculation of iRTs was observed. This statement was particularly evident when 

considering the MSRT1 peptide set, perhaps reflecting that these peptides have been 

selected due to their suitability as standards for LC-MS based experimental 

approaches. Moreover some MCF7 peptides were poorly or incorrectly detected, 

compromising the overall quality of the study (e.g., peptide GHYTEGAELVDSVLDVVR).  

iRT values remain stable over time  

Once established the stability of IRTs among laboratories and experimental conditions 

(figures 3a-d), we wondered about the potential deviations that may result when the 

analyses are repeated over time. To specifically address this question, a small 

representative subset of six laboratories repeated the analysis after one year, following 

essentially the same working scheme as initially designed. Our results clearly 

demonstrated that data dispersion of the new set of normalized iRTs (figures 4 a-d), is 

significantly lower than that corresponding to the non-normalized RTs (supplementary 

figures 4 a-f), as suggested by both, SD and IQR. We also found a significant reduction 

in data dispersion, probably reflecting the restricted number of participant laboratories 

(n=6 in this 2nd phase versus n=28 in the 1st phase). Nonetheless, median values 

calculated from iRTs are very similar to those obtained in the first inter-laboratory 

experimental phase, demonstrating that iRT values remain stable over time.  

Relative retention time scales and iRT score for predicting and transferring RT 

The two compiled sets, external and internal iRTs for each MCF7 peptide across 

gradients, replicates and laboratories were first filtered for outliers, as defined in the 

materials and method section. Next, the outlier-filtered sets were averaged to obtain a 

final, global iRT score for each of the MCF7 peptides. This scale was then used to 

illustrate the usefulness and robustness of these relative retention times for empirical 

RT prediction and transfer across LC set ups both spatially, in different laboratories, 

and temporally, over a long periods of time. 

For each of the three gradients, the iRT sets (internal and external) were used to 

predict RTs, by interpolating (in the plot that correlates MSRT1 iRT values with MSRT1 
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empirical RTs) in the opposite direction to obtain a predicted RT from a fixed iRT scale 

for all the monitored MCF7 peptides. Then the predictive capability of this approach 

was accepted when the absolute value of the difference between the predicted and the 

empirical RTs that had been initially measured for every peptide lies within discrete 

time windows of up to 1 to 5 minutes. This simulation of a scheduled assay scenario, 

where a certain peptide signal could be monitored at a predicted RT value with a 

restricted time window, can be represented quantitatively (in terms of the percentage of 

laboratories that would successfully detect the peptide signal for all LC-MS runs of a 

certain gradient) using a heatmap format as shown for 90 min gradients in Figure 5 a-b. 

Similar predictive results were obtained for 60- and 120 gradients (Supplementary 

figures 5 a-d). According to our results, the majority of the participant laboratories could 

successfully detect the monitored peptides signals within an acceptable time window 

range for scheduled approaches. Similar results were obtained during the second set 

of analyses performed one year later, and using the same original iRT scale (data not 

shown). 

Overall, these results provide a solid foundation in support of the use of relative 

retention time scales as a valuable tool for sharing and transferring RTs, not only 

across different laboratories but also over long time periods, addressing thus a key 

issue that otherwise hinders the spread and reuse of implemented scheduled targeted 

methods. 

Targeted Quantitative analysis of MCF7 peptides. 

Finally, in addition to the main interest of PME10 multicentric study, that was focused 

on the utility of iRTs to standardize and universalize targeted measurements, 16 

peptides from chr16 proteins were simultaneously quantified in a MCF7 cell extract 

spiked with known quantities of the corresponding heavy versions as internal 

references. The results obtained are shown as fmol/g in figure 6, including (figure 6a) 

or excluding (figure 6b) the quantitative results corresponding to the peptide 

GVVDSEDIPLNLSR. The results show remarkably low inter-laboratory %CV for most 

of the peptides, with the reasonably expected exception of the peptides at the lowest 

and highest concentration. Since all the isotopically labeled standard peptides were 

spiked in at similar concentrations, the larger variability observed at the extreme 

concentrations may be partly explained  by the larger error expected in the 

determination of the ratios at values more divergent from 1:1. Due to the high quality of 

these quantitative results, this multicentric study did not evaluate the expected 

improving effect that the use of scheduled MRM methods, developed taking into 
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account the iRT values, would have on the quantitative data. In fact, we estimated that 

the eventual improvement would be minimal and poorly indicative of the puissance of 

the scheduled approaches. A possible explanation for these highly reproducible results 

is that the centralized preparation of the samples used in this study could have had a 

positive impact on the quality of the quantitative results. A more usual situation, in 

which every participant laboratory had prepared independently the sample, would 

unquestionably increase the dispersion of the quantitative results. An interesting 

example can be observed when quantitative results obtained in the first set of data (27 

participant laboratories, fig. 6a/b) is compared with the second set of quantitative 

results obtained one year later (supplementary figures 6 a/b). In both cases, the 

samples were prepared in a centralized way but in different periods. According to this 

situation, quantitative results were highly similar but significant differences are evident, 

both in terms of absolute quantitative values as well as in terms of data dispersion. On 

the other hand, no significant differences, neither in accuracy nor in variability, were 

observed when comparing the MRM measurements on triple quadrupole instruments 

or other pseudo-MRM targeted approaches. In summary, the high reproducibility of the 

quantitative data demonstrated the reliability of the MRM approaches for the 

quantitative analysis of proteotypic peptides in complex samples. 
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Table 1. PME10 Study sample description. a Each MSRT1 calibration mix synthetic 

peptide (n=14) has been isotopically labeled either with (13C6, 
15N) leucine (+7 Da), 

(13C6, 
15N2) lysine (+8 Da) or (13C6, 

15N4) arginine (+ 10 Da). Amino acid in brackets 

denotes site of label incorporation. b Stable isotope labeled proteotypic peptides 

corresponding to 16 chromosome 16 encoded proteins. Peptides are labeled with 

(13C6, 
15N2) lysine (+8 Da) or (13C6, 

15N4) arginine (+ 10 Da). Amino acid in brackets 

denotes site of label incorporation; [CAM] corresponds to carbamidomethylated 

cysteine. 

 
  

MCF7	tryptic	digest
MSRT1	calibration	mix	(average	

4000	fmol/peptide)a
MCF7	Standard	peptides	(K8,	R10)	

(average	400	fmol/peptide)b

1mg/mL	(V=20	mL) RGDSPASSP[K]	 VSLEDLYNG[K]

GLV[K]	 TAGTIC[CAM]LETF[K]

LGGNETQV[R]	 EGHLSPDIVAEQ[K]

AEFAEVS[K]	 SLEEIYLFSLPI[K]

SGFSSVSVS[R]	 GEATVSFDDPPSA[K]

ADEGISF[R]	 IQDYDVSLD[K]

DISLSDY[K]		 FEELTNLI[R]

LVNEVTEFA[K]	 NALANPLYC [CAM]PDY[R]

DQGGELLSL[R]		 AAPEASGTPSSDAVS[R]

GLFIIDD[K]	 AEAGDNLGALV[R]

LGEYGFQNA[L]	 GVVDSEDIPLNLS[R]

YWGVASFLQ[K]	 YLTVATVF[R]

TDELFQIEGLKEELAYL[R]		 TVLDPVTGDLSDT[R]

AVQQPDGLAVLGIFL[K]		 SPEVLSGGEDGAV[R]

SNLVDNTNQVEVLQ[R]

TAAALAPASLTSA[R]

PME10	STUDY	SAMPLE	COMPOSITION
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Figure 1. Representative example obtained after plotting MSRT1 Peptide Standard 

experimental retention time values (y-axis, using a 90 min gradient) against MSRT1 

reference iRT values (x-axis).  

Figure 2. Measured retention times (RT) for MSRT1 (a) and MCF7 (b) peptide sets 

employing a consensus 90-min gradient. For each peptide the following information is 

included: Standard deviation (SD); Interquartile range (IQR), defined as the range 

necessary to cluster the central 50% of RT values; the number of different laboratories 

detecting each specific peptide (#Labs); values within the Q1-1.5IQR, Q3+1.5IQR 

range are represented as whiskers; boxes represent IQR; numbers inside boxes 

indicate the median of the RT values. 

Figure 3. Normalized retention times (iRT) for MSRT1 (a and b) and MCF7 (c and d) 

peptides. Data from the three different gradients (60,90 and 120 min) were considered, 

either using an external (a and c) or an internal estimation (b and d). For each peptide 

the following information is included: Standard deviation (SD); Interquartile range (IQR), 

defined as the range necessary to cluster the central 50% of iRT values; values within 

the Q1-1.5IQR, Q3+1.5IQR range are represented as whiskers; boxes represent IQR; 

numbers inside boxes indicate the median of the iRT values. Dashed vertical lines (fig. 

3a, 3b) indicate iRT values provided by SIGMA. 

Figure 4. iRT values remain stable over time. Normalized retention times (iRT) from 

a second phase of the multicentric analysis (participant laboratories n=6) are shown for 

MSRT1 (a and b) and MCF7 (c and d) peptide sets. Data from all different gradients 

(60, 90 and 120 min) were considered, either using an external (a and c) or an internal 

estimation (b and d). Statistical analysis parameters are depicted as in figure 3 

(Standard deviation (SD), Interquartile range (IQR), whiskers, boxes and numbers 

inside boxes). Dashed vertical lines (fig. 4a, 4b) indicate iRT values provided by 

SIGMA. 

Figure 5. Evaluation of the capacity of iRT scores to predict and to facilitate the 

transference of peptide RT. The efficacy of RT prediction for a hypothetical 

scheduled approach is shown as heat maps. This simulated scenario is recreated by 

subtracting from the predicted RT the experimental RT originally measured for each 

peptide and gradient. The intensity of gray indicates the percentage of laboratories that 

would individually successfully detect the peptides in time windows from 1 to 5 minutes. 

Results are shown for 90 min gradients in Figure 5 either using external (fig. 5a) or 
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internal (Fig 5b) calibration. Similar results obtained for 60- (supplementary Fig. 5a, 5b) 

and 120-gradients (supplementary Fig. 5c, 5d) are also shown.  

Figure 6. Targeted Quantitative analysis of MCF7  peptides. MCF7 peptides (n=16) 

quantification was estimated using either a MRM or a pseudo-MRM experimental 

approach (number of participant laboratories n=28). Data are represented with (figure 

6a) or without (figure 6b) data from GVVDSEDIPLNLSR peptide. The following 

information is shown: standard deviation (SD); boxes represent Interquartile range 

(IQR), defined as the range necessary to cluster the central 50% of iRT values; values 

within the Q1-1.5IQR, Q3+1.5IQR range are represented as whiskers; numbers inside 

boxes indicate the median of the iRT values. 
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Figure 1 
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Figure 2a 
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Figure 2b 
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Figure 3a 
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Significance  

From the very beginning of proteomics as an analytical science there has been a 

growing interest in developing standardized methods and experimental 

procedures in order to ensure the highest quality and reproducibility of the results. 

In this regard, the recent (2012) introduction of the dimensionless retention time 

concept has been a significant advance. In our multicentric (28 laboratories) study 

we explore the usefulness of this concept in the context of a targeted proteomics 

experiment, demonstrating that dimensionless retention time values is a useful 

tool for transferring and sharing peptide retention times across different 

chromatographic set-ups. 
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Highlights 

 Dimensionless retention time (iRT) values for peptides have been proposed 

as a useful tool for transferring and sharing retention times across 

chromatographic set-ups both intra- and inter-laboratories. 

 In a coordinated effort (28 laboratories) we have evaluated the suitability of 

retention time standards to improve targeted proteomic analyses. 

 We have demonstrated that dimensionless retention time values (iRT) are a 

useful tool for transferring and sharing peptide retention times accross  

different chromatographic set-ups. 

 Quantitative analyses showed a high reproducibility despite the variety of 

experimental strategies and analytical platforms employed.    


