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Abstract
Background: The beam-hardening effect due to the polychromatic nature
of the X-ray spectra results in two main artifacts in CT images: cupping in
homogeneous areas and dark bands between dense parts in heterogeneous
samples. Post-processing methods have been proposed in the literature to
compensate for these artifacts, but these methods may introduce additional
noise in low-dose acquisitions. Iterative methods are an alternative to com-
pensate noise and beam-hardening artifacts simultaneously. However, they
usually rely on the knowledge of the spectrum or the selection of empirical
parameters.
Purpose: We propose an iterative reconstruction method with beam hardening
compensation for small animal scanners that is robust against low-dose acqui-
sitions and that does not require knowledge of the spectrum, overcoming the
limitations of current beam-hardening correction algorithms.
Methods: The proposed method includes an empirical characterization of the
beam-hardening function based on a simple phantom in a polychromatic statis-
tical reconstruction method. Evaluation was carried out on simulated data with
different noise levels and step angles and on limited-view rodent data acquired
with the ARGUS/CT system.
Results: Results in small animal studies showed a proper correction of the
beam-hardening artifacts in the whole sample, independently of the quan-
tity of bone present on each slice. The proposed approach also reduced
noise in the low-dose acquisitions and reduced streaks in the limited-view
acquisitions.
Conclusions: Using an empirical model for the beam-hardening effect,
obtained through calibration, in an iterative reconstruction method enables a
robust correction of beam-hardening artifacts in low-dose small animal studies
independently of the bone distribution.
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2 STATISTICAL BEAM-HARDENING COMPENSATION

1 INTRODUCTION

Mass attenuation coefficients of tissues typically
decrease as energy increases. This dependence,
together with the polychromatic nature of the spectra,
causes a preferential absorption of low-energy pho-
tons, inducing an increase of the spectrum mean energy.
This energy shift, known as beam hardening, leads to
two well-known artifacts in uncorrected reconstructed
images: cupping in homogeneous regions and dark
bands between dense areas in heterogeneous regions.1

Several strategies have been proposed in the litera-
ture to compensate for this effect. The use of physical
filters is an effective way to decrease the number of
low-energy photons reaching the patient, but this strat-
egy alone is not enough to get rid of the artifacts. The
method implemented in most commercial CT scanners
is the water-linearization, based on a characterization
of the energy-dependency of water attenuation.2,3 How-
ever, since it assumes the object to be homogeneous, it
only corrects the cupping artifact. To correct both cup-
ping and dark-band artifacts, Joseph et al.4 addressed
the correction of dark bands by proposing a method
that includes the bone thickness in a second-order
polynomial. The coefficients of this polynomial, which
control the dark-band reduction, can be found ana-
lytically using the spectrum or empirically by visual
inspection. Kyriakou et al.5 and Schuller et al.6 followed
the same idea but extended the second-order poly-
nomial to a combination of original and overcorrected
images. The optimum coefficients of the combination
were calculated by maximizing flatness,5 which has
been shown to not completely compensate for the dark
bands7, or by minimizing the entropy,6 which leads to
certain overcompensation of the dark bands in real
studies. One important drawback of all the previous
methods is that the optimum parameters depend on
the bone distribution in the slice, thus hindering the
possibility of finding a unique set of optimum coeffi-
cients for the whole volume.A more accurate estimation
of the coefficients was performed in,8,9 based on the
epipolar consistency conditions. However, the resulting
images showed a non-realistic texture in soft tissue
and the authors were unsure about its performance in
clinical CT.

We recently proposed a post-processing method
(2DCalBH) based on the characterization of the energy-
dependent attenuation of soft tissue and bone by means
of a calibration procedure,10 which showed a proper
compensation of the dark bands in all cases together
with a good recovery of the monochromatic values.
However, the main limitation of this method, shared by
most previous post-processing methods, is the need
of a preliminary bone segmentation, which can be
challenging in low-dose acquisitions.

Iterative reconstruction methods are a good alter-
native for low-dose studies. Yan et al. proposed a
non-statistical method that iteratively computed the vol-

ume fraction of two known tissues11 with the information
of the spectrum and the attenuation coefficients of
the tissues. To improve robustness to noise, De Man
et al.12 proposed a maximum-likelihood iterative algo-
rithm that decomposed the linear attenuation coefficient
into photoelectric and Compton scatter components.
The weight of each component was constrained based
on prior tissue assumptions. Following this line, Elbakri
and Fessler13 developed a statistical method based on
Poisson distributions, modeling the object as composed
of known tissues that had to be segmented. This model
was improved in14 by allowing pixels to contain mix-
tures and including the segmentation in the cost function
where it is iteratively updated. However, all the previous
methods need the knowledge of the spectrum to charac-
terize the beam-hardening effect produced by soft tissue
and bone. To eliminate the need for spectrum knowl-
edge, we recently proposed a method15 that analytically
approximated the beam-hardening function of soft tis-
sue and bone with the 1D beam-hardening function of
the water plus two parameters that can be empirically
tuned. However, similarly to Joseph et al., the optimum
coefficients in all these methods depend on the distri-
bution of bone, thus hindering the possibility of finding a
unique set of optimum coefficients for the whole volume.

In this work, we substitute the analytical approxima-
tion of the beam-hardening function with the empirical
estimation proposed in.10 The algorithm iteratively mini-
mizes the Poisson likelihood and uses ordered subsets
to accelerate computation.Preliminary results were pre-
sented in an earlier conference16 based on simulated
data using an ideal calibration phantom made up of
soft tissue and bone. The present work extends these
experiments, proposing a realistic calibration phantom
made up of equivalent materials. We evaluated the
algorithm on simulated data under low-sampling and
low-SNR conditions, and real data with two sparse-view
rodent studies acquired with the CT subsystem of an
ARGUS/CT (SEDECAL) scanner.17

2 MATERIALS AND METHODS

The proposed method, 2DIterBH, is based on the
combination of the statistical reconstruction algorithm
proposed in.15 which we will refer to as 1DIterBH in
this work, with the beam hardening function model used
in 2DCalBH.10 We summarize here the equations for
completeness, indicating the changes in the original for-
mulations. We model the sinogram measurements as
independently distributed Poisson random variables18

contaminated by extra background counts, primarily
scatter:

Yi ∼ Poisson

{
∫ Ii(𝜀)e

− ∫
Li

𝜇(𝜀)dl

d𝜀 + ri

}
, i = 1,… , N

(1)
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STATISTICAL BEAM-HARDENING COMPENSATION 3

where 𝜇(𝜀) is the attenuation coefficient at each energy
𝜀, the integral in the exponent is taken over the line Li fol-
lowed by the ray, Ii(𝜀) is the incident intensity, the term ri
accounts for mean scatter and other background signals
for the i-th ray and N is the number of rays.

We assume that the object is composed of only two
substances,soft tissue and bone.Image segmentation is
avoided by modeling the tissue fraction in each pixel as
a function of the estimated density in that pixel.14,15 The
resulting model for the attenuation coefficient at voxel j
is as follows:

𝜇j (𝜀) =
2∑

k=1

mk (𝜀) 𝜌j f
j
k

(
𝜌j
)

=
(

ms (𝜀) f j
s
(
𝜌j
)
+ mb (𝜀) f j

b

(
𝜌j
))

𝜌j (2)

where tissue fraction functions, f j
s(𝜌j) and f j

b(𝜌j), are
built following the displacement model in14 that con-
siders mixed pixels at the boundaries and ms and
mb denote the mass attenuation coefficients of soft
tissue and bone, respectively. The coefficients were
obtained with a third-order polynomial fitting15 using
linear least-squares regression. This resulted in:

fs =
⎧⎪⎨⎪⎩

1 0.0 ≤ 𝜌 ≤ 1.1

−7.87 + 20.286𝜌 − 14.706𝜌2 + 3.268𝜌3 1.1 < 𝜌 < 1.9

0 1.9 ≤ 𝜌

(3)

fb =
⎧⎪⎨⎪⎩

0.0 0 ≤ 𝜌 ≤ 1.1

1 − fs 1.1 < 𝜌 < 1.9

1 1.9 ≤ 𝜌

(4)

where density ρ has units in g/cm3. Thresholds for soft
tissue (1.1 g/cm3) and bone (1.9 g/cm3) were deter-
mined taking into account the values provided by the
National Institute of Standard and Technology (NIST).19

From the previous equation, we consider the contribu-
tion of each tissue type to the line integral along the i-th
ray as:

tis (𝜌) =
p∑

j=1

aij f
j
s
(
𝜌j
)
𝜌j (5)

tib (𝜌) =
p∑

j=1

aij f
j
b

(
𝜌j
)
𝜌j (6)

where aij are the elements of the system matrix (hav-
ing units in cm). With the assumption of the two-tissue
model and Equations (5) and (6),we rewrite Equation (1)
as:

Ȳi(𝜌) = Iie
−F

(
tis,tib

)
+ ri ;→ Ii = ∫ I0i

(𝜀)d𝜀 (7)

where F(ts, tb) is the beam-hardening function, defined
as

F (ts, tb) = − log ∫ I (𝜀)
I

e−ms(𝜀)ts−mb(𝜀)tb d𝜀 (8)

where the dependence on ray i is dropped for simplicity.

A. Algorithm

We use the negative log-likelihood to estimate the
density vector 𝜌, which for Equation (1) is given by

−L (𝜌) =
N∑

i=1

hi (F (ts (𝜌) , tb (𝜌))) , (9)

where

hi (l) = −Yi log
(
Iie−l + ri

)
+ Iie−l + ri . (10)

For regularization, we added a 3D roughness
penalty function with the convex edge-preserving Huber
potential20,21 to improve spatial resolution uniformity:

R(𝜌) =
Np∑
j=1

1
2

∑
k∈Nj

wjk ⋅ 𝜓(𝜌j − 𝜌k);

𝜓(t) =

⎧⎪⎪⎨⎪⎪⎩
|t|2
𝛿

|t| ≤ 𝛿

𝛿|t| − 𝛿

2
|t| > 𝛿

(11)

where Nj is a neighborhood of pixels near pixel j, wjk =
wkj , 𝜓 is the convex edge-preserving Huber potential,
and 𝛿 a threshold to apply the blurring depending on
the difference of the pixel and its neighbors.

The combination of the likelihood with the regulariza-
tion results in a new cost function:

Φ(𝜌) = −L(𝜌) + 𝛽R(𝜌) (12)

where the scalar parameter β controls the tradeoff
between the data-fit and the penalty terms.

We derived an iterative algorithm based on separa-
ble quadratic surrogates13,15 resulting in the following
update:

𝜌n+1 = 𝜌n − D−1∇Φ (𝜌n) (13)

where D is a diagonal matrix that influences the rate
of convergence. Instead of designing D to ensure a
monotonically decrease of the cost function, we choose
the elements of D by using the following pre-computed

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.17239 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [08/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 STATISTICAL BEAM-HARDENING COMPENSATION

curvature13:

dj = 𝛼 (ms(𝜀eff ) + mb(𝜀eff ))
2

N∑
i=1

aij

(∑
j

aij

)
Yi (14)

where α is a parameter to accelerate the convergence.
Finally,we use an ordered subsets approximation of (13)
to increase speed.22

B. Beam-hardening function

Using (8) to compute the beam-hardening function
F(ts, tb) would require knowledge of the spectrum that
is often unavailable. Instead, we characterize it using
a calibration step with a phantom composed of soft
tissue- and bone-equivalent materials,as proposed in.10

The independent variables used in 2DCalBH were the
traversed thickness of each tissue.10 That approxima-
tion cannot be used in the proposed iterative method,
the goal of which is to estimate the density map, as
shown in Equation (13).For this reason,we use the mass
thickness independent variables in the beamhardening
function. The transformation into mass thicknesses, ts
and tb, is done by adding an additional multiplication
of each mask by the density of the material (Figure 1),
extracted from NIST.

The acquired beam-hardening function was fit to a
logarithm function so that it can be integrated into the
algorithm:

F (ts, tb) = − ln
(
a ∗ e−(b∗ts+c∗tb) + (1 − a) ∗ e−(d∗ts+e∗tb)

)
,

(15)
where a,b,c,d,and e are the fitting coefficients obtained
by non-linear least-squares with the coefficients equally
weighted.

We use the calibration phantom described in,10 com-
posed of one half -cylinder of soft-tissue equivalent
material and one triangular prism with rounded corners
of bone-equivalent material to have many combina-
tions of mass thicknesses. Since the beam hardening
effect depends on the source energy, it is neces-
sary to calibrate F(ts, tb) for every voltage used in the
scanner.

2.1 Evaluation methods

We simulated a polychromatic spectrum with 50 kVp
and 2.5 mm aluminum filtration to mimic a preclinical
X-ray source. Based on this source model, we gen-
erated a set of transmission polychromatic Poisson
X-ray projections with parallel-beam geometry using the
Michigan Image Reconstruction Toolbox (MIRT), avail-
able at https://github.com/JeffFessler/mirt. The detector
was modeled as a simple photon counting device. The
sinogram had 512 radial bins with 0.1 mm ray spac-
ing,covering 180 degrees.We simulated three scenarios
depending on the number of projections and counts

TABLE 1 Dose scenarios.

Scenario
Number of
projections

Counts per
detector element

Standard-dose 180 106

Low-dose 180 105

Ultra-low-dose 60 105

per detector element, as shown in Table 1. We did not
simulate scatter.

We reconstructed the data using uncorrected Filtered
Back-projection (FBP), FBP+JS,4 FBP+2DCalBH,10 a
penalized weighted least-squares method (PWLS),21

the polyenergetic algorithm proposed in14 (that we call
SegFreePoly in the rest of the document), 1DIterBH15

and the proposed polyenergetic method, 2DIterBH.
Parameters for the JS method and 1DIterBH were

heuristically searched as those that visually reduced the
dark bands,resulting in AJS = 1.44 and BJS = 0.26 cm2/g
and A1DIterBH = 3 and B1DIterBH = 0.06 cm2/g, respec-
tively. The polychromatic model in SegFreePoly was the
same X-ray spectrum used for simulation (ideal case).
The iterative algorithms ran 40 iterations and 12 subsets
and β = 0.1 and δ = 0.005 g/cm3 for the standard-
dose scenario and β = 0.4 and δ = 0.005 g/cm3 for the
low-dose and ultra-low-dose scenarios. The parameter
α was set to 0.1.

We then used a synthetic phantom composed of an
ellipse of soft tissue (1.06 g/cm3) with a major axis of
6 cm and a minor axis of 4.8 cm, one ellipsoid of fat
(0.9 g/cm3), and disks of bone (1.92 g/cm3) with diame-
ters from 0.62 cm to 0.32 cm to simulate standard- and
ultra-low-dose acquisitions (see Table 1). We quantified
the bias as the root mean square error (RMSE) rela-
tive to the reference image (image with the true density
values) in the regions of interest of soft tissue, adipose
tissue, and bone.

Finally,we used two rodent studies (head and abdom-
inal), acquired with the CT subsystem of an ARGUS/CT
(SEDECAL) scanner, a cone-beam micro-CT scanner
based on a flat-panel detector.17 We obtained 180 views
covering 360 degrees with 50 kVp and 1 mm alu-
minum filtration. A 3D version of these algorithms was
implemented substituting the MIRT-CPU kernels with
the GPU-accelerated kernels from FUX-Sim.23 Recon-
structed volumes had a size of 514×514×574 voxels
(0.121 mm3 voxel size). Experiments were carried out
in accordance with the Animal Experimentation Ethics
Committee of the Community of Madrid (Ref. PROEX
332/15), following the EU Directive 2010/63EU and Rec-
ommendation 2007/526/EC, and the enforcement in
Spain from the Real Decreto 53/2013.

All iterative methods were run with 20 iterations and
12 subsets on a computer with an Intel Core i7-8700
CPU,32 GB of RAM,and an NVIDIA GeForce RTX2060.
Run time of PWLS, SegFreePoly and 2DIterBH was
73, 164, and 156 seconds per slice, respectively.
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STATISTICAL BEAM-HARDENING COMPENSATION 5

F IGURE 1 Workflow of the beam-hardening function characterization.

Regularization parameters, in this case, were β = 10
and δ = 0.01 g/cm3 for the head study and β = 20 and
δ = 0.01 g/cm3 for the abdomen study, in all the itera-
tive methods.Since the spectrum of the real system was
not known,the polychromatic model in SegFreePoly was
approximated by a simulated spectrum with the same
kVp and Al filter. Parameters of JS and 1DIterBH were
selected heuristically as those that visually reduced the
dark bands, as was done for the simulated data. Since it
was impossible to find a set of parameters that result in
an optimum correction for the whole volume, we consid-
ered from here on the slice with the most conspicuous
dark bands as the “calibration slice”. The values of
these JS parameters were AJS = 0.1 and BJS = 0.73
cm2/g and 1DIterBH parameters were A1DIterBH = 2.458
and B1DIterBH = 0.49 cm2/g. The parameter α was
set to 0.5.

The calibration step used a calibration phantom made
up of a semi-circle of equivalent soft tissue material
(radius of 3 cm) and a rounded triangle of bone equiv-

alent material (6 cm of width and 2.5 cm of height),
as described in.10 We used ideal soft tissue and bone
for simulated data and PMMA and the aluminum alloy
AL6082 both for simulated and real data as equivalent
materials to soft tissue and bone24 (Figure 2). R-square
of the fitting in Equation (15) was greater than 0.99 for
all cases.

3 RESULTS

Figure 3 and Table 2 show the results with the
synthetic phantom in the standard-dose scenario. As
expected, the FBP+JS and the FBP+2DCalBH meth-
ods achieved a correction of the dark bands similar to
that of the iterative methods SegFreePoly,1DIterBH and
2DIterBH, while PWLS did not correct them. SegFreeP-
oly, 1DIterBH and 2DIterBH methods obtained the
lowest errors for all tissues.RMSE values for adipose tis-
sue were higher than those for soft tissue in all methods.
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6 STATISTICAL BEAM-HARDENING COMPENSATION

F IGURE 2 Calibration phantom composed of PMMA and
AL6082 (left) and axial slice of the FDK reconstruction (right).

TABLE 2 Root mean square error (RMSE) results (g/cm3) of the
phantom under high-dose scenario.

Method
RMSE in
soft tissue

RMSE in
adipose
tissue

RMSE in
bone

FBP 0.14 0.18 2.66

FBP + JS 0.16 0.17 5.00

FBP + 2DCalBH 0.13 0.18 3.68

PWLS 0.11 0.17 0.24

SegFreePoly 0.07 0.15 0.04

1DIterBH 0.06 0.14 0.04

2DIterBH (ST-Bone) 0.06 0.14 0.04

2DIterBH (PMMA-AL6082) 0.10 0.02 0.08

TABLE 3 Root mean square error (RMSE) results (g/cm3) of the
phantom under ultra-low-dose scenario.

Method
RMSE in
soft tissue

RMSE in
adipose
tissue

RMSE in
bone

FBP 0.24 0.26 2.67

FBP + JS 0.34 0.34 4.86

FBP + 2DCalBH 0.27 0.30 3.71

PWLS 0.11 0.17 2.77

SegFreePoly 0.07 0.15 0,04

1DIterBH 0.06 0.14 0.05

2DIterBH (ST-Bone) 0.06 0.13 0.04

2DIterBH (PMMA-AL6082) 0.10 0.03 0.09

Using a realistic calibration phantom increased the error
in soft tissue and bone with respect to the use of the
ideal phantom but reduced it in adipose tissue.Note that
errors in bone density for the three FBP-based meth-
ods were much higher due to the fact that FBP does not
reconstruct density values.

Figure 4 and Table 3 show the results of the synthetic
phantom in the ultra-low-dose scenario. FBP+JS and
FBP+2DCalBH corrected the dark-bands artifacts but,
as expected,highly increased the low-sampling artifacts,

thus resulting in higher errors in soft tissue than in the
standard-dose scenario. All iterative methods reduced
these low-sampling artifacts with a similar result in the
correction of dark bands and RMSE values.

Figure 5 shows the result of the head and abdomen
rodent studies for the calibration slice (representative of
nearby slices with similar bone distributions). The post-
processing methods FDK+JS and FDK+2DCalBH cor-
rected the dark bands but increased the low-sampling
artifacts. SegFreePoly reduced the low sampling arti-
facts, but did not fully compensate the dark bands,
showing that the ideal spectrum is not a good approx-
imation in real studies. In contrast, 1DIterBH and
2DIterBH corrected both artifacts, low-sampling streaks
and dark bands. In slices with a bone distribution dif-
ferent from that of the calibration slice, FDK+JS and
1DIterBH did not completely correct the dark bands,
while FDK+2DCalBH and 2DIterBH corrected the dark
bands in the whole sample, independently of the bone
distribution (see Figure 6).

4 DISCUSSION AND CONCLUSIONS

This work presents a new statistical reconstruction algo-
rithm for polyenergetic CT that includes the estimation
of the beam-hardening function based on calibration,
described in,10 in the statistical reconstruction method
for polyenergetic X-ray CT proposed in.15 The method
enables a robust correction of both cupping and dark
bands while reducing the noise and low-sampling arti-
facts present in low-dose acquisitions, and eliminating
the need for prior knowledge of the spectrum14 or empir-
ical parameters15 required by iterative reconstruction
methods previously proposed in the literature.

No effort was done to optimize the algorithms. Bet-
ter initialization obtained with 2DCalBH could reduce
the number of iterations required and runtime could
be reduced on parallelized GPU nodes. To further
reduce the computational time certain steps of the
method could be replaced by deep-learning kernels,
such as the soft thresholding segmentation or the
regularization term. Using pure deep-learning post pro-
cessing algorithms could greatly reduce execution times
but could highly increase the risk of appearance of
hallucinations.25

Evaluation on simulated data showed a similar beam-
hardening correction to that of FDK+2DCalBH and
FDK+JS for high dose data,while also reducing the low-
sampling artifacts present in low-dose studies, as the
method proposed by Elbakri et al.14 and our previous
statistical method, 1DIterBH. The better approximation
of the beam-hardening function provides a lower RMSE
with respect to the true-density values compared to
1DIterBH in all tissues. Errors in adipose tissue were
larger than those in soft tissue for all the methods, prob-
ably due to the assumption of a negligible difference in
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STATISTICAL BEAM-HARDENING COMPENSATION 7

F IGURE 3 Phantom in the standard-dose scenario reconstructed with FBP (a) FBP+JS (b), FBP+2DCalBH (c), PWLS (d), SegFreePoly (e),
1DiterBH (f) and 2DIterBH method calibrated with ideal (g) and realistic (h) phantom.

F IGURE 4 Phantom in the ultra-low-dose scenario reconstructed with FBP (a) FBP+JS (b), FBP+2DCalBH (c), PWLS (d), SegFreePoly (e),
1DiterBH (f) and 2DIterBH method calibrated with ideal (g) and realistic (h) phantom.

the attenuation properties of soft and adipose tissue.
Using the realistic phantom resulted in a higher error
in soft tissue and bone, probably due to a mismatch in
the attenuation properties of the phantom materials and
the tissues. This could be solved by correcting the mass
thickness of PMMA and AL with their effective mass
attenuation coefficients, obtained experimentally from
the beam-hardening function as in.10 Although the errors
were higher in soft tissue, the realistic phantom resulted
in a much lower error in adipose tissue. Future work will
explore if a different soft-tissue equivalent material, like
water, could provide a compromise between both tissue
types.

Since our method currently models the object as
being composed of two materials, further investigation
is needed for scans involving metallic implants. The
method could be extended to a third material such as
titanium.Given its difference in density (4.50 g/cm3) with

respect to bone, there will not be overlap in the tissue
fractions. The major challenge would be the design of
a three-material phantom to properly span the BH func-
tion in the three axes.An alternative to the three-material
phantom could be to modulate the third dimension with
a heuristic function to account for the extra material,
similarly to what is done in.15 Other materials such as
iodine contrast agents would require further study, given
the low difference in density between iodinated and
non-contrast blood.

Evaluation on 3D real data showed similar results to
those obtained in simulated data for the slice used to find
the optimum parameters. Nevertheless, the improve-
ment on the model used both in FDK+2DCalBH and
the proposed method provides a more robust cor-
rection than 1DIterBH and JS, assuring a dark band
elimination over the whole sample, independently of
the bone distribution. The method proposed by Elbakri
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8 STATISTICAL BEAM-HARDENING COMPENSATION

F IGURE 5 Axial slices of two rodent studies used to calibrate the FDK+JS and the simplified statistical reconstruction methods,
reconstructed with uncorrected FDK (a), FDK+JS (b), FDK+2DCalBH (c), SegFreePoly (d), 1DIterBH (e) and the 2DIterBH (f). White arrows
indicate dark-band artifacts.

et al.14 corrected the low sampling artifacts, but did
not fully compensate the dark bands, showing the
need of the knowledge of the full spectrum for this
method.

The reduction of streaks because of the noise model
and the penalty term is not a novel result. In this regard,
we used a simple noise model that does not reflect
the complete physics of the CT acquisition. Future
work could evaluate the possibility of including a more
accurate noise model, for example, considering the
measurements as a sum of energy-scaled Poisson pro-
cesses, each with a different scale factor. However, the
main point of our work is the reduction of the beam-
hardening artifacts in low-dose studies with no need for
heuristic parameters that would depend on the quantity
of tissue traversed.

The streaks produced by low sampling in non-iterative
methods may have similar values than bone and, thus,
will be included in the bone mask,15 reducing the

effectiveness of the methods. In 2DCalBH, such seg-
mentation errors hinder the selection of the appropriate
linearization functions, leading to inconsistent projec-
tion data and an increase of all the values considered
as bone, which will exacerbate the streak artifacts. The
proposed model overcomes such limitation by estimat-
ing the attenuation at each voxel based on piecewise
density-dependent tissue fractions, which are updated
at each iteration and therefore avoids possible segmen-
tation problems in low-dose studies.The selection of the
intervals for the density-dependent tissue fractions was
based on the typical densities for soft-tissue and cortical
bone found in NIST. Further evaluation of the effect of
the definition of these intervals on the recovered density
values is warranted.

The proposed method does not consider spatially
dependent energy fields such as those produced by
beam modulating filters. The effect of these filters
could be added to the estimation of bone mass
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STATISTICAL BEAM-HARDENING COMPENSATION 9

F IGURE 6 A different axial slice of each of the two rodent studies reconstructed with uncorrected FDK (a), FDK+JS (b), FDK+2DCalBH
(c), SegFreePoly (d), 1DIterBH (e) and the 2DIterBH (f). Arrows indicate dark-band artifacts. Color bars corresponding to each image half are
shown at the bottom.

thickness on a ray-by-ray basis, given that we know
the aluminum equivalent thickness of the filter for each
ray.

Although the focus of this work is small-animal sce-
narios, future work will explore the possibility of using
the proposed method in clinical scenarios. To this end,
we will need to evaluate if the same equivalent materi-
als are valid to emulate the attenuation properties with
a size equivalent to the human body thicknesses at the
clinical energies. Also, the scatter effect will have to be
evaluated as it is more important in clinical studies than
in preclinical studies and may lead to an overestimation
of the beam hardening effect during the calibration pro-
cess. Nevertheless, this problem might be mitigated by
the fact that the majority of diagnostic helical CT sys-
tems incorporate antiscatter grids which, combined with
scatter correction methods, could effectively suppress
the scatter effect.

Using an empirical model for the beam-hardening
effect, obtained through calibration, in an iterative
reconstruction method enables a robust correction of
beam hardening artifacts in low dose studies, inde-
pendently of the bone distribution. The incorporation
of this method into a real small animal CT scan-
ner is straightforward, when raw sinogram values are
available, only needing a minor modification of the
standard calibration step available in most commercial
scanners.
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