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Summary
Background Neuroimaging-based brain-age delta has been shown to be a mediator linking cardiovascular risk factors 
to cognitive function. We aimed to assess the mediating role of brain-age delta in the association between modifiable 
risk factors of dementia and longitudinal cognitive decline in middle-aged and older individuals who are asymptomatic, 
stratified by Alzheimer’s disease pathology. We also explored whether the mediation effect is specific to cognitive 
domain.

Methods In this cohort study, we included participants from the ALFA+ cohort aged between 45 years and 65 years 
who were cognitively unimpaired and who had available structural MRI, cerebrospinal fluid β-amyloid (Aβ)42 and 
Aβ40 measurements obtained within 1 year of each other, modifiable risk factors assessment, and cognitive evaluation 
over 3 years. Participants were recruited from the Barcelonaβeta Brain Research Center (Barcelona, Spain). Included 
individuals underwent a first assessment between Oct 25, 2016, and Jan 28, 2020, and a follow-up cognitive assessment 
3·28 (SD 0·27) years later. We computed brain-age delta and composites of different cognitive function domains 
(preclinical Alzheimer’s cognitive composite [PACC], attention, executive function, episodic memory, visual 
processing, and language). We used partial least squares path modelling to explore mediation effects in the 
associations between modifiable risk factors (including cardiovascular, mental health, mood, metabolic or endocrine 
history, and alcohol use) and changes in cognitive composites. To assess the role of Alzheimer’s disease pathology, we 
computed separate models for Aβ-negative and Aβ-positive individuals.

Findings Of the 419 participants enrolled in ALFA+, 302 met our inclusion criteria, of which 108 participants were 
classified as Aβ-positive and 194 as Aβ-negative. In Aβ-positive individuals, brain-age delta partially mediated (percent 
mediation proportion 15·73% [95% CI 14·22–16·66]) the association between modifiable risk factors and decline in 
overall cognition (across cognitive domains). Brain-age delta fully mediated (mediation proportion 28·03% 
[26·25–29·21]) the effect of modifiable risk factors on the PACC, wherein increased values for risk factors correlated 
with an older brain-age delta, and, consequently, an older brain-age delta was linked to greater PACC decline. This 
effect appears to be primarily driven by memory decline. Mediation was not significant in Aβ-negative individuals 
(3·52% [0·072–4·17]) on PACC, although path coefficients were not significantly different from those in the 
Aβ-positive group.

Interpretation Our findings suggest that brain-age delta captures the association between modifiable risk factors and 
longitudinal cognitive decline in middle-aged and older people. In asymptomatic middle-aged and older individuals 
who are Aβ-positive, the pathology might be the strongest driver of cognitive decline, whereas the effect of risk factors 
is smaller. Our results highlight the potential of brain-age delta as an objective outcome measure for preventive 
lifestyle interventions targeting cognitive decline.

Funding La Caixa Foundation, the TriBEKa Imaging Platform, and the Universities and Research Secretariat of the 
Catalan Government.
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4.0 license.

Introduction
Age-related changes in the brain affect cognitive 
abilities.1,2 Many studies have explored the relationships 
between lifestyle, brain structure, and cognitive function, 

suggesting that the adoption of healthy lifestyles might 
slow cognitive decline.3 Hypertension, obesity, and 
diabetes have been associated with brain atrophy and 
accelerated cognitive decline, and these associations are 
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jdgispert@barcelonabeta.org similar to those observed between depression and anxiety 
and cognitive and brain function.4 These findings 
highlight the importance of understanding the role that 
brain-related markers have on the associations between 
modifiable risk factors and age-related cognitive 
deterioration.5

Leveraging neuroimaging data to estimate brain age as 
a proxy for an individual’s biological brain age is 
a promising method for identifying individual differences 
in biological brain ageing.6 Machine learning-based 
models can predict an individual’s brain age by learning 
the association between chronological age and cerebral 
features from structural MRI in individuals who are 
cognitively unimpaired. The brain-age delta, calculated 
by subtracting chronological age from predicted brain 
age, quantifies an individual’s deviation from their 
corresponding chronological age. Higher brain-age delta 
(ie, an older-appearing brain for a given chronological 
age) has been associated with modifiable risk factors for 
dementia6,7 and poorer cognition.2,6 Additionally, the 
brain-age delta captures the clinical severity of 
Alzheimer’s disease and other brain diseases.8 In this 
regard, we have previously shown that brain-age delta is 

positively associated with biomarkers and risk factors of 
Alzheimer’s disease as well as markers of neuro-
degeneration in middle-aged or older (45–90  years) 
individuals who are cognitively unimpaired.9

Currently, several interventions to modify risk factors 
to prevent dementia are being tested in intervention 
trials.10,11 These trials typically recruit middle-aged or 
older individuals without dementia and include a variety 
of interventions, such as nutritional counselling, 
exercise, cognitive training, social engagement, and 
management of metabolic and vascular risk factors. The 
common endpoint of these trials is a cognitive test or 
a composite and, due to the high variability associated 
with such measures, large sample sizes are normally 
required.12 Previous research has indicated that, in 
clinical trials of Alzheimer’s disease-modifying 
treatments, smaller sample sizes might be needed when 
using atrophy measures compared with measures of 
cognitive function.13 In line with these results, brain-age 
delta could be used to reduce between-subject variability, 
potentially serving as a measure for trial enrichment or 
as an endpoint.14 The potential uses of brain-age delta 
might include identification of individuals at higher risk 

Research in context

Evidence before this study
We searched PubMed with no language restrictions for studies 
describing the mediating effect of brain age on the associations 
between risk factors for cognitive decline and cognitive 
outcomes, as well as the effects of Alzheimer’s disease 
pathology in this association. We used the search terms: brain-
age AND (cognition AND [risk factors OR lifestyle]). Among the 
53 identified published studies, only one had a similar objective 
to our study—studying the mediating role of brain-age delta 
between modifiable risk factors and cognition. This previous 
study used structural equation modelling to show the 
mediation effect of brain-age gap in the association between 
modifiable risk factors (evaluated using two cardiovascular risk 
scores) and cross-sectional cognitive functioning (measured 
through four general cognitive assessments). The results of this 
study indicated a significant mediation effect for grey matter 
and white matter brain age (ie, multimodal brain age), yet not 
for grey matter brain age. Other studies explored the 
associations between brain age and cognition or focused on the 
links between brain age and modifiable risk factors separately.

Added value of this study
Considering potential underlying pathology is fundamental 
when studying age-related cognitive decline in middle-aged 
and older individuals who are cognitively unimpaired. 
Alzheimer’s disease is the most prevalent condition associated 
with cognitive decline in older people. Compared to cross-
sectional measurements of cognition, longitudinal 
measurements are considerably more sensitive to detect early 
and subtle changes. Modifiable risk factors, other than 
cardiovascular factors, have been associated with cognitive 

decline. Based on these established associations, we built on 
previous literature and stratified individuals by β-amyloid 
pathology into Aβ-positive and Aβ-negative groups according 
to their cerebrospinal fluid Aβ42/Aβ40 levels. We estimated 
separate models for longitudinal changes in the preclinical 
Alzheimer’s cognitive composite (PACC), as well as other 
composites in specific cognitive domains. We included 
modifiable risk factors that have demonstrated effects on age-
related cognitive changes, including cardiovascular, mental 
health, mood, metabolic and endocrine disease history 
measurements, and alcohol use. Our study identified that brain-
age delta fully mediated the effect of modifiable risk factors on 
cognitive changes, as measured with PACC (mediation 
proportion 28·03%) in Aβ-negative individuals. In Aβ-positive 
individuals, risk factors might not be as strong of drivers of 
cognitive changes as with Alzheimer’s disease pathology. This 
finding might indicate the potential of brain-age delta to 
capture the association between modifiable risk factors and 
longitudinal cognitive decline that is not driven by Alzheimer’s 
disease pathology.

Implications of all the available evidence
Our results highlight that brain-age delta mediates the 
associations between modifiable risk factors and memory-
related cognitive decline in Aβ-negative individuals who are 
cognitively unimpaired. These findings suggest that brain-age 
delta can be a potential biomarker for interventions targeting 
risk factors of cognitive decline. Further research is needed to 
address the application of brain-age delta in this context and its 
potential as a diagnostic biomarker, prognostic biomarker, 
response endpoint biomarker, and predictive biomarker.
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of cognitive decline (diagnostic or prognostic biomarker), 
monitoring the efficacy of an intervention (response 
endpoint biomarker), and identifying responders to 
an intervention (predictive biomarker).15

Emerging research indicates that brain-age delta can 
mediate the relationship between modifiable risk factors 
for dementia and cognitive functions.16 This previous 
study reported a significant association between 
cardiovascular risk factors and cross-sectional cognitive 
functioning, through either direct or indirect pathways. 
However, when assessing age-related cognitive decline in 
the middle-aged and older individuals who are cognitively 
unimpaired, it is crucial to consider potential underlying 
pathologies—the most prevalent in this age range being 
Alzheimer’s disease. In addition, longitudinal 
measurements of cognition are more sensitive to early 
cognitive changes and are unaffected by potential 
selection bias (ie, requiring patients to be cognitively 
unimpaired at baseline might limit the cross-sectional 
effect of age on cognitive measures at baseline).17

In this study, we hypothesised that brain-age delta 
could be an objective brain-related marker and could be 
used to assess the association between modifiable risk 
factors and cognitive decline, by which older brain-age 
delta would be linked with cognitive decline. Our main 
objective was to evaluate the mediating role of brain-age 
delta in the association between modifiable risk factors of 
cognitive decline and longitudinal cognitive functioning 
in middle-aged and older adults who are cognitively 
unimpaired, stratified by the presence of Alzheimer’s 
disease pathology. Our second aim was to explore 
whether the mediating role of brain-age delta was evident 
across different cognitive domains, including attention, 
executive function, memory, visual processing, and 
language.

Methods
Study design and participants
In this cohort study, we used the ALFA+ cohort, which 
was a nested longitudinal study within the Alzheimer 
and Families (ALFA) parent cohort. The cohort is 
composed of 2743 participants who are cognitively 
unimpaired and was enriched for family history of 
Alzheimer’s disease and genetic risk factors for 
Alzheimer’s disease recruited from Barcelonaβeta Brain 
Research Center (Barcelona, Spain).18 Eligible participants 
were aged between 45 and 65 years during ALFA and had 
a T1-weighted MRI that had successfully previously 
passed a quality control procedure, cerebrospinal fluid 
(CSF) β-amyloid (Aβ) measurements obtained within 
1 year of each other, and more than 85% of completed 
clinical data (more details in appendix 2 p 2). We further 
restricted this selected sample to individuals who 
underwent a first and a follow-up cognitive assessment. 
The first assessment was performed between Oct 25, 2016 
and Jan 28, 2020. Participants characterised as 
Aβ-negative but tau-positive (ie, non-Alzheimer’s disease 

pathologic change), and, therefore, not within the 
Alzheimer’s continuum, were excluded. The final sample 
of included participants completed the MRI acquisition 
within the same month as the first assessment, and the 
temporal gap between the CSF tests and the first 
assessment and MRI acquisition was a maximum of 
12 months. The mean time between the first assess-
ment and follow-up cognitive assessment was 
3·28 (SD 0·27) years.

The ALFA+ study was registered at ClinicalTrials.gov 
(NCT02485730) and the Independent Ethics Committee, 
Parc de Salut Mar, Barcelona, Spain, approved the study 
protocol and the consent form. All participants signed 
the study’s informed consent form.

Procedures
All ALFA+ participants underwent high-resolution three-
dimensional T1-weighted MRI scanning in the same 3T 
Philips Ingenia CX scanner (Philips Healthcare, 
Amsterdam, Netherlands) with the following parameters: 
echo time 4·6 ms and repetition time 9·9 ms, flip angle 
8°, and voxel size 0·75 × 0·75 × 0·75 mm. The acquired 
images were previously subjected to segmentation using 
FreeSurfer (6.0), followed by a quality control procedure 
for segmentation errors, explained in detail elsewhere.19 
All participants included in this study had already 
successfully passed this quality control procedure. After 
the initial Freesurfer segmentation, tissue regions were 
further parcellated into 183 different anatomical regions 
of interest using the cortical Desikan-Killiany atlas and 
subcortical aseg on FreeSurfer labelling pipelines. More 
details about the quality control and segmentation atlases 
are in the appendix 2 (pp 2–3). All volumes were 
residualised with respect to total intracranial volume 
using linear models.

CSF samples were obtained by lumbar puncture 
following standard procedures.20 CSF Aβ42 and Aβ40 
were measured with robust prototype assays as part of 
the Roche NeuroToolKit assays, a panel of automated 
immunoassays on COBAS e 411 and e 601 instruments 
(Roche Diagnostics International, Rotkreuz, 
Switzerland). CSF phosphorylated tau was measured 
using the electrochemiluminescence immunoassay 
Elecsys Phosphor-Tau (181P) CSF on a fully automated 
cobas e601 instrument (Roche Diagnostics International, 
Rotkreuz, Switzerland). All measurements were done on 
coded and randomised samples at the Clinical 
Neurochemistry Laboratory, Sahlgrenska University 
Hospital, Mölndal, Sweden, by board-certified laboratory 
technicians who were masked to diagnostic and other 
clinical data. Participants were categorised as Aβ-positive 
or Aβ-negative according to their CSF Aβ42/Aβ40 ratio 
using a pre-established cutoff of 0·071.20 Participants 
were categorised as CSF tau-positive if CSF 
phosphorylated tau was greater than 24 pg/ mL.20

Brain age was estimated using our previously published 
prediction brain-age model.9 In brief, we computed two 

For more on Freesurfer see 
https://surfer.nmr.mgh.harvard.
edu/fswiki

See Online for appendix 2



Articles

e279 www.thelancet.com/healthy-longevity   Vol 5   April 2024

separate XGBoost regressor models from the XGBoost 
python package for female and male participants using 
183 FreeSurfer volumes and thickness from the UK 
BioBank cohort as input. We trained these two models 
with the UK BioBank cohort and used it to predict brain 
age in participants from the ALFA+ cohort, after which 
we applied an established age-bias correction.21 More 
details can be found in the appendix 2 (pp 3–4). By 
subtracting chronological age from the bias-corrected 
predicted brain age, we obtained the brain-age delta. 
Among the 183 brain variables used to train the model, 
we assessed the contribution of each variable to brain-age 
prediction using the UK Biobank dataset. As a result, 
brain-age delta incorporated information from various 
regions. Regions significantly influencing brain-age 
prediction include the volumes of the amygdala, nucleus 
accumbens, lateral ventricles, hippocampus, entorhinal 
cortex, and insula. Additionally, cortical thickness 
measures, such as those of the superior temporal cortex, 
transverse temporal cortex, pars triangularis, inferior 
parietal cortex, and left frontal pole, also had a substantial 
role in the prediction.

We computed cognitive composite scores at baseline and 
follow-up for five different cognitive domains (attention, 
executive function, episodic memory, visual processing, 
and language). Attention was measured using the Digit 
Span and the Symbol Span subtests of the Wechsler Adult 
Intelligence Scale (WAIS-IV), and the Trail Making Test 
(TMT; part A). Executive function was measured using the 
TMT (part B), the Coding and the Matrix Reasoning 
subtests of the WAIS-IV, and the Flanker Inhibition Test. 
Episodic memory was measured using the Free and Cued 
Selective Reminding Test, the Memory Binding Test, the 
Logical Memory subtest of the Wechsler Memory Scale 
(WMS-IV), and the Picture Sequence Memory Test. Visual 
processing was measured using the Visual Puzzles of the 
WAIS-IV, and the Judgement of Line Orientation from 
the Repeatable Battery for the Assessment of 
Neuropsychological Status. Finally, language was assessed 
using the Semantic Fluency Test. We also computed a 
preclinical Alzheimer’s cognitive composite (PACC) score, 
which was designed to detect subtle cognitive changes in 
preclinical Alzheimer’s disease.22 Cognitive change was 
computed by subtracting baseline from follow-up scores. 
More details on how cognitive domain composites were 
calculated can be found in the appendix 2 (pp 4–5).

We assessed modifiable risk factors for dementia in 
middle-aged and older individuals recognised by the 
2020 Lancet Commission on dementia prevention23 and 
factors that have been reported to have effects on 
cerebrovascular events and cognitive dysfunction.3 These 
included cardiovascular, metabolic, mood and mental 
health, and lifestyle risk factors.

To assess these factors, we used all relevant measures 
available in the ALFA+ cohort associated with these 
factors. We used continuous blood pressure measures 
and self-reported history of cardiovascular disease to 

assess hypertension and cardiovascular health. We 
assessed obesity factors through measurements of BMI 
and waist-to-hip ratio. Metabolic and endocrine diseases 
were evaluated by clinical history, as well as blood 
cholesterol concentration and glycated haemoglobin 
(HbA1c) concentration. To study lifestyle factors, we 
included measurements for alcohol intake using the 
Spanish standard drink unit and smoking status (coded 
as follows: 0 never smoked, 1 previous smoker, and 
2 current smoker). For the assessment of depression and 
anxiety, we used the Hospital Anxiety and Depression 
Scale (HADS) along with self-reported history of 
psychiatric disorders. Additionally, participant history of 
neurological disorders was systematically assessed in all 
participants by asking whether they had ever been 
diagnosed with such conditions, with responses being 
recorded as yes or no. Detailed information about all the 
included measures can be found in the appendix 2 
(pp 5–7).

Statistical analysis
Sociodemographic characteristics and clinical data were 
compared between Aβ groups. Normality of the 
distribution for continuous sociodemographic 
characteristics and clinical data was assessed using the 
Kolmogorov-Smirnov test and visual inspection of 
histograms. For variables that exhibited a normal 
distribution with homogeneous variances, we used 
independent t tests for comparisons. In cases where these 
assumptions were not met, we used Mann-Whitney U 
tests. The comparison of categorical characteristics 
involved χ² tests, preceded by an examination to ensure the 
necessary assumptions for cell frequencies were satisfied.

Confounders in neuroimaging and cognition studies are 
well established, including age, sex, and education. We 
included these variables as confounders in this study. To 
adjust for age and sex effects, we performed multiple 
linear regression to residualise all modifiable risk factors, 
cognitive composites, and brain-age delta, as previously 
described.16 Cognitive composites were further residualised 
by years of education. Missing values were imputed with 
the mean value of the corresponding variable.

To examine the controlled mediation of brain-age delta 
on the relationship between different risk factors and 
cognitive changes, we employed partial least squares 
path modelling (PLS-PM).24 PLS-PM is an iterative 
algorithm that computes latent variables, maximising 
covariance with observed variables while estimating 
regressions for the weights of these variables. PLS-PM 
also calculates path coefficients between latent variables. 
This effectiveness in capturing shared and unique 
variances enables PLS-PM to account for potential 
correlations among the observed variables and makes it a 
robust technique suitable for high-dimensional and 
inter-related data. Additionally, PLS-PM allows the 
inclusion of a large set of observed variables with a 
smaller sample size compared with other methodologies. 

For more on the XGBoost 
python package see https://

xgboost.readthedocs.io/en/

For the UK Biobank brain 
imaging documentation see 
https://biobank.ctsu.ox.ac.uk/
crystal/crystal/docs/brain_mri.

pdf
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More detailed information about the PLS-PM modelling 
is available in the appendix 2 (pp 7–8). In our model, we 
incorporated a latent variable for modifiable risk factors 
(ie, latent risk factors), comprising observed variables 
explained in the assessment of modifiable risk factors. 
We also introduced a latent variable for cognitive changes 
(ie, unit latent change), consisting of different cognitive 
domains. For our model, we iteratively selected the 
modifiable risk factors from all participants (ie, 
considering both Aβ-positive and Aβ-negative 
individuals) for the analyses. Initially, we conducted PLS-
PM with all available risk factors. We then systematically 
removed variables with mean weights lower than 0·1 and 
with 95% CIs that encompassed 0·0. We recalculated the 
model with the remaining variables and repeated this 
procedure, optimising the model’s fit and ensuring 
representation of all the groups of risk factors (eg, 
cardiovascular health, mood and mental disorders, 
metabolic and lifestyle factors).

To determine the extent to which brain-age delta 
mediates the relationship between risk factors and 
cognitive changes in Aβ-positive and Aβ-negative 
individuals, we first built a model in which we derived 
a latent factor from the PACC and five cognitive domains 
(attention, executive function, language, episodic 
memory, and visual processing composites) to represent 
cognitive changes. The latent variable of unit latent 
change (all composites) was constructed from the 
univariate latent change scores of each specific cognitive 
domain. We next built a model to predict change on the 
PACC alone. We used non-parametric 1000-iterations 
bootstrapping to calculate bias-corrected and accelerated 
CIs at a 95% level (95% BCa CI). The p values were 
subsequently derived from these CIs. Differences 
between the weights of the variables conforming the 
latent variables and between the path’s coefficients were 
assessed by comparing their 95% CI BCa.

We did two sensitivity analyses. First, we additionally 
adjusted the models for the time between the CSF 
acquisition date and the date of the first assessment to 
further address potential variations in the temporal 
aspects of our data. We also repeated the models 
excluding individuals with missing values.

To explore potential differences in the mediating role of 
brain-age delta across different cognitive domains, we 
constructed separate models for each of the cognitive 
domains and used the same PLS-PM procedure. 
Specifically, we modelled five PLS-PM models, namely 
attention-based, executive-based, memory-based, 
language-based, and visual processing-based PLS-PM 
models (appendix 2 pp 8–9).

Significance was defined as p<0·05. Correction for 
multiple comparisons was performed using false 
discovery rate correction (FDR).25 We used the FDR 
correction by family of tests, according to Aβ status and 
to the effect paths. The resulting corrected p value (pFDR; 
0·012) was applied as the new threshold for significance 

in all individual tests. We assessed the assumptions of 
the linear regression model through quantile–quantile 
(Q–Q) plots, Shapiro-Wilk tests, and visual inspections 

All 
participants 
(n=302)

Aβ-negative 
participants 
(n=194)

Aβ-positive 
participants 
(n=108)

p value

Cohort demographics

Age, years 60·80 (4·66) 60·12 (4·43) 62·020 (4·83) <0·0001

Sex

Female 179 (59%) 113 (58%) 66 (61%) 0·71

Male 123 (41%) 81 (42%) 42 (39%) 0·67

APOE ε4 carriers 166 (55%) 86 (44%) 80 (74%) <0·0001

Education, years 13·62 (3·54) 13·80 (3·43) 13·30 (3·71) 0·21

Cerebrospinal fluid Aβ42/Aβ40, pg/mL 0·07 (0·02) 0·09 (0·01) 0·05 (0·01) <0·0001

Brain-age delta –0·54 (3·67) –0·41 (3·78) –1·09 (3·47) 0·091

Modifiable risk factors

HADS anxiety 4·86 (3·26) 4·94 (3·34) 4·72 (3·11) 0·74

HADS depression 1·95 (2·34) 1·94 (2·40) 1·97 (2·30) 0·68

HADS total 6·81 (5·09) 6·88 (5·18) 6·69 (4·92) 0·76

BMI, kg/m² 26·35 (4·84) 26·47 (5·37) 26·12 (4·30) 0·35

Standard drink unit of alcohol per week 30·17 (28·76) 30·53 (26·16) 29·49 (32·57) 0·80

Cholesterol concentration, mg/dL 201·36 (31·50) 203·15 (32·48) 199·86 (29·57) 0·56

Glycated haemoglobin concentration 5·41 (0·36) 5·42 (0·36) 5·40 (0·36) 0·80

Smoking

Never smoked 124 (41%) 78 (40%) 46 (43%) 0·81

Previous smoker 41 (14%) 28 (14%) 13 (12%) ..

Current smoker 135 (45%) 86 (44%) 49 (45%) ..

History of cardiovascular diseases* 116 (38%) 74 (38%) 42 (39%) 0·97

History of psychiatric diseases 93 (31%) 56 (29%) 37 (34%) 0·38

History of neurological diseases 75 (25%) 43 (22%) 32 (30%) 0·19

History of metabolic or endocrine 
diseases†

198 (66%) 121 (62%) 77 (71%) 0·13

Cognition

PACC

First assessment 0·01 (0·67) 0·04 (0·67) –0·02 (0·68) 0·51

Second assessment 0·05 (0·71) 0·13 (0·69) –0·10 (0·74) 0·014

Change 0·03 (0·41) 0·09 (0·39) –0·08 (0·43) <0·0001

Attention

First assessment –0·01 (0·78) 0·03 (0·75) –0·07 (0·84) 0·29

Second assessment 0·05 (0·75) 0·13 (0·69) –0·09 (0·81) 0·018

Change 0·06 (0·54) 0·11 (0·53) –0·01 (0·55) 0·16

Executive function

First assessment –0·03 (0·78) 0·05 (0·73) –0·18 (0·90) 0·029

Second assessment –0·07 (0·82) 0·06 (0·71) –0·31 (0·95) 0·0021

Change –0·05 (0·44) 0·01 (0·41) –0·13 (0·47) 0·011

Language

First assessment 0·08 (0·99) 0·05 (1·02) 0·14 (0·95) 0·42

Second assessment –0·01 (1.01) 0·01 (0·97) –0·03 (1·07) 0·75

Change –0·09 (0·82) –0·05 (0·81) –0·18 (0·83) 0·18

Memory

First assessment 0·01 (0·63) 0·02 (0·64) –0·01 (0·60) 0·67

Second assessment 0·04 (0·62) 0·09 (0·63) –0·03 (0·59) 0·14

Change 0·02 (0·38) 0·05 (0·34) –0·03 (0·44) 0·095

(Table 1 continues on next page)
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for homoscedasticity and linearity. Analyses were 
performed with Python (3.8.5) and R (4.2.1).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
Of the 419 participants enrolled in ALFA+, 117 participants 
who did not meet the eligibility criteria were excluded 
from the analyses. Among these excluded participants, 
11 participants were characterised as CSF Aβ negative 
but tau-positive (ie, non-Alzheimer’s disease pathologic 
change). 302 study participants were included in the 
analysis (table 1) and followed up between Nov 4, 2019, 
and Jan 11, 2023. As expected, Aβ-positive individuals 
showed a greater decline in the PACC and executive 
function, compared with Aβ-negative individuals. There 
were no differences between groups in decline in the 
other cognitive domains.

In the PLS-PM analysis performed on the entire list of 
participants, the selected variables for modifiable risk 
factors were HADS anxiety, HADS total, BMI, smoking 
status, history of cardiovascular disease, metabolic and 
endocrine disease, neurological disease, and psychiatric 
disease (appendix 2 pp 8–9). The latent risk factor block 
had a Dillon Goldstein’s rho of 0·778. Notably, HADS 
total and history of cardiovascular disease had the 
strongest weight in this latent risk factors, whereas 
metabolic and endocrine disease history had the lowest 
weight (appendix 2 p 12). For the latent variables of unit 
latent change (all composites), we found that the 95% CI 
of the weights of the latent change scores for executive 
function, PACC, language, and visual processing crossed 
the 0·0 value (appendix 2 p 12). The attention composite 
had the strongest weight in this latent risk factors 
(appendix 2 pp 10, 12). The unit latent change (all 
composites) block had a Dillon Goldstein’s rho of 0·743. 
This model achieved satisfactory fitting performance on 
the data and suggested that the observed data were well 

captured by the latent variable. We also extracted the 
latent scores of each individual and examined the 
relationships between the constructed latent variables 
and brain-age delta (appendix  2 p 12).

For the assessment of the mediating role of brain-age 
delta in the relationship between risk factors and cognitive 
changes determined by the unit latent change (all 
composites; table 2; figure A, B), the model computed in 
the Aβ-negative group revealed that the modifiable risk 
factors exhibited a significant direct effect on cognitive 
changes (β –0·226 [95% BCa CI –0·355 to –0·111]; 
pFDR<0·0001) and a significant indirect effect (–0·042 
[–0·095 to –0·013]; pFDR=0·0091), with the effect sizes 
being small (see s values in appendix 2 p 10). This 
indicates that brain-age delta partially mediated (percent 
mediation proportion 15·73% [95% CI 14·22 to 16·66]) 
the association between modifiable risk factors and 
decline in cognition, across all cognitive domains 
(table 2). Latent risk factors was positively associated with 
older brain-age delta (β 0·221 [95% BCa CI 0·116 to 
0·378]; p<0·0001) and brain-age delta was negatively 
associated with latent cognitive change (β −0·118 [–0·328 
to –0·052]; p=0·0043). In the model computed in the Aβ-
positive participants, the latent risk factor exhibited a 
small significant direct effect on latent cognitive changes 
(β −0·256 [–0·586 to –0·137]; p=0·0010), whereas the 
indirect effect was non-significant (β −0·011 [–0·076 to 
0·056]; pFDR=0·70). Although the latent risk factors were 
positively associated with older brain-age delta (β 0·297 
[0·122 to 0·498], p<0·0001), brain-age delta was not 
significantly associated with the latent cognitive change 
(β −0·042 [−0·223 to 0·148], p=0·65). Despite these 
observed differences in the Aβ-negative and Aβ-positive 
groups, we did not find significant differences in the 
direct or indirect effect sizes between these groups, which 
was assessed by comparing their coefficient estimates 
with 95% CI. The weights of the variables used to form 
the latent risk factors can be found in the appendix 2 
(p 12). The CIs of weight values for both Aβ-negative and 
Aβ-positive individuals overlapped for all variables. In the 
Aβ-negative group, the CI for HADS anxiety included 
0·0, indicating non-significance in forming the latent 
variable. In the Aβ-positive group, HADS anxiety, HADS 
total, and BMI showed similar non-significance.

For the assessment of cognitive changes measured with 
PACC (table 2; figure C, D), the model in Aβ-negative 
participants showed that modifiable risk factors did not 
exhibit a significant direct effect on PACC change 
(β −0·113 [–0·252 to 0·023]; p=0·11), but the indirect 
effect was significant (β −0·044 [–0·095 to –0·013], 
pFDR=0·028), with this effect size being small (see s values 
in appendix 2 p 10). This finding indicates that brain-age 
delta fully mediated (percent mediation proportion 
28·03% [26·25 to 29·21]) the association between latent 
risk factor and decline in latent PACC change (table 2), 
although this effect was small. Latent risk factors was 
positively associated with older brain-age delta (β 0·230 

All 
participants 
(N=302)

Aβ-negative 
participants 
(N=194)

Aβ-positive 
participants 
(N=108)

p value

(Continued from previous page)

Visual processing

First assessment –0·01 (0·84) 0·04 (0·84) –0·10 (0·83) 0·16

Second assessment 0·02 (0·82) 0·08 (0·78) –0·08 (0·88) 0·10

Change 0·03 (0·65) 0·04 (0·65) 0·01 (0·66) 0·94

Data are expressed as mean (SD), median (IQR), or n (%). IQR shown for HADS anxiety, HADS depression, and HADS 
total. Aβ=β-amyloid. HADS=Hospital Anxiety and Depression Scale. PACC=preclinical Alzheimer’s cognitive composite. 
*76% of the cases of cardiovascular disease history correspond to hypertension; other cardiovascular diseases included 
are in the appendix 2 (p 4). †86% of the cases of metabolic or endocrine disease history correspond to dyslipidaemia; 
other metabolic or endocrine diseases included are in the appendix 2 (p 4).

Table 1:  Cohort demographics and characteristics for all individuals and by Aβ status
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[0·111 to 0·364]; p<0·0001) and brain-age delta was 
negatively associated with latent PACC change (β −0·192 
[−0·348 to −0·054]; p=0·0082). The total effect was no 
longer significant after correction for multiple 
comparisons (β −0·157 [–0·294 to –0·027]; pFDR=0·074). In 
the model computed in the Aβ-positive group, the 
modifiable risk factors did not exhibit a significant direct 
effect on latent PACC change or a significant indirect 
effect. The latent risk factors in the Aβ-positive group was 
positively associated with older brain-age delta (β 0·297 
[0·122 to 0·498]; p=0·0050). We did not find significant 
differences in the direct nor indirect effect sizes between 
the Aβ-negative and the Aβ-positive groups. These results 
remained even after accounting for inter-individual 
temporal variations between test acquisitions (appendix 2 
p 11) and after excluding individuals with missing values 
(appendix 2 p 11). The weights of the variables used to 
form the latent risk factor in the PACC model of both the 
Aβ-negative and the Aβ-positive groups overlapped for all 
the variables (appendix 2 p 13).

For the assessment across different cognitive domains, 
in the Aβ-negative group, the latent risk factors had 
a significant direct effect on latent cognition change in the 
attention-based (β −0·175 [95% BCa –0·301 to –0·049]; 
pFDR=0·0091), executive function-based (β −0·219 

[–0·350 to –0·108]; pFDR<0·0001), and memory-based 
(β −0·221 [−0·370 to −0·095; pFDR=0·011) models 
(appendix 2 p 14). Only the indirect effect in the memory-
based model was nominally significant. The indirect 
effects in all three models were non-significant after 
correction for multiple comparisons. The β coefficients 
and their 95% CIs did not show large differences in the 
effects between the different cognitive domains (table 2; 
appendix 2 p 13). No direct or indirect effects were found in 
the language-based and visual processing-based models. 
Conversely, in the Aβ-positive group, the latent risk factors 
did not have a significant direct or indirect effect on 
cognitive change in any of the domains. The weights of the 
risk factors for each cognitive domain in Aβ-negative and 
Aβ-positive participants can be found in the appendix 2 
(p 13). In the attention-based model, the weight of BMI 
was higher in the Aβ-negative group, compared to the Aβ-
positive group. The weights of other variables and cognitive 
domains had overlapping CIs in both groups.

Discussion
In the present study, we showed the role of 
neuroimaging-based brain age as a mediator in the 
association between modifiable risk factors for dementia 
and cognitive changes in middle-aged and older 

Total effect Indirect effect

Estimates (95% BCa CI) p value pFDR Estimates (95% BCa CI) p value pFDR Mediation proportion (95% CI)

Cognitive composites from main analyses

Latent variable, all cognitive domains*

Aβ-negative –0·267 (–0·403 to –0·151) <0·0001 <0·0001 –0·042 (–0·095 to –0·013) 0·0021 0·0091 15·73% (14·22 to 16·66)

Aβ-positive –0·267 (–0·606 to –0·169) 0·0010 0·0091 –0·011 (–0·076 to 0·056) 0·62 0·70 4·12% (2·77 to 4·54)

Unit latent change: PACC†

Aβ-negative –0·157 (–0·294 to –0·023) 0·029 0·074 –0·044 (–0·095 to –0·013) 0·0070 0·028 28·03% (26·25 to 29·21)

Aβ-positive –0·085 (–0·294 to 0·134) 0·39 0·48 –0·004 (–0·069 to 0·065) 0·89 0·96 3·52% (0·07 to 4·17)

Cognitive composites from secondary analyses

Unit latent change: attention

Aβ-negative –0·208 (–0·322 to –0·089) <0·0001 <0·0001 –0·032 (–0·079 to 0·001) 0·062 0·12 15·38% (13·97 to 16·66)

Aβ-positive –0·095 (–0·391 to 0·042) 0·070 0·13 –0·027 (–0·100 to 0·018) 0·17 0·25 28·42% (23·18 to 29·32)

Unit latent change: executive function

 Aβ-negative –0·211 (–0·340 to –0·090) 0·0020 0·0091 0·008 (–0·029 to 0·050) 0·56 0·65 3·79% (3·05 to 4·33)

 Aβ-positive –0·139 (–0·566 to –0·002) 0·012 0·042 –0·001 (–0·070 to 0·063) 0·98 0·98 0·72% (0·61 to 1·37)

Unit latent change: language

Aβ-negative −0·095 (−0·225 to 0·047) 0·15 0·20 –0·013 (–0·054 to 0·018) 0·31 0·39 13·68% (10·31 to 16·29)

Aβ-positive –0·091 (–0·126 to 0·369) 0·10 0·16 –0·027 (–0·136 to 0·040) 0·19 0·26 29·67% (27·64 to 33·55)

Unit latent change: memory

Aβ-negative −0·244 (−0·409 to −0·122) 0·0020 0·0091 –0·023 (–0·070 to –0·001) 0·037 0·086 9·42% (8·42 to 10·21)

Aβ-positive –0·109 (–0·413 to 0·100) 0·24 0·32 –0·029 (–0·100 to 0·014) 0·13 0·20 26·61% (21·32 to 27·07)

Unit latent change: visual processing

Aβ-negative 0·139 (–0·012 to 0·282) 0·055 0·13 –0·001 (–0·042 to 0·040) 0·93 0·96 0·72% (0·68 to 0·89)

Aβ-positive –0·256 (–0·458 to –0·030) 0·17 0·25 –0·006 (–0·008 to 0·053) 0·41 0·50 2·34% (0·73 to 2·99)

All partial least squares path models were adjusted for age, sex, and education. BCa CI=bias and accelerated CI. PACC=Preclinical Alzheimer’s cognitive composite. pFDR=false discovery rate correction p value. *This 
latent factor was computed from the PACC and the composites of attention, executive function, language, episodic memory, and visual processing, representing cognitive changes. †This latent factor was 
computed from the PACC changes.

Table 2:  Statistics of mediation effects in the path modelling



Articles

e283 www.thelancet.com/healthy-longevity   Vol 5   April 2024

individuals who were cognitively unimpaired, with 
analyses stratified by the presence or absence of 
Alzheimer’s disease pathology. In individuals without 
Aβ pathology, brain-age delta fully mediated the effect of 
modifiable risk factors on cognitive changes, as 
measured by the PACC, with this effect mostly driven 
by decline in episodic memory (ie, a mediation effect 
was only found in the memory composite). This finding 
might indicate the potential of brain-age delta to capture 
age-related changes in memory performance, which are 
associated with the presence of risk factors but not 
Alzheimer’s disease pathology.

Although these results show a small effect size, they 
also suggest that brain-age delta could be a promising 
proxy for brain ageing and can be used for studying 

non-Alzheimer’s disease-related cognitive decline, 
particularly in memory performance, in the context of 
preventive interventions addressing modifiable risk 
factors. No significant mediation by brain-age delta 
could be detected in individuals who were cognitively 
unimpaired with Aβ pathology. More specifically, no 
direct or indirect effects were found in the specific 
cognitive domains studied individually in Aβ-positive 
individuals, suggesting that modifiable risk factors are 
not the most significant drivers of cognitive changes in 
this group. Conversely, in Aβ-negative individuals, we 
found a direct effect linking modifiable risk factors with 
decline in cognition in attention, executive function, 
episodic memory, and the PACC composite; instead, 
indirect effects could only be detected for the memory 

Figure: Assessment of the mediating role of brain-age delta in the relationship between risk factors and cognitive changes stratified by Aβ groups
(A) Path diagrams of longitudinal cognition for the model including all cognitive domains given as the latent unit latent change: all composites, stratified by Aβ-positive and Aβ-negative groups. 
(B) Direct, indirect, and total effect path coefficients for all cognitive domains. This latent factor was computed from the PACC and from the composites of attention, executive function, language, 
episodic memory, and visual processing, representing cognitive changes. (C) Path diagrams of longitudinal cognition for the PACC model, stratified by Aβ-positive and Aβ-negative groups. (D) Direct, 
indirect, and total effect path coefficients for the PACC. This latent factor was computed from the PACC changes. Aβ-negative individuals shown in purple and Aβ-positive individuals shown in green. All 
models were adjusted for age, sex, and education. Aβ=β-amyloid. BCa CI=bias-corrected and accelerated CI. PACC=Preclinical Alzheimer’s cognitive composite. pFDR=false discovery rate correction p value.
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domain. The 95% CIs for the effects in the Aβ-positive 
group overlapped with that of those in the Aβ-negative 
group, indicating minimal variation between groups. 
This finding suggests that, once Aβ becomes abnormal, 
it increases the variability in how brain structure affects 
subsequent cognitive changes, which brain-age delta 
does not capture to the extent it does in Aβ-negative 
individuals. Our results highlight the need for further 
research aimed at capturing brain-age signatures linked 
to specific pathologies, associated risk factors, and 
cognitive domains beyond Alzheimer’s disease and 
memory.

A previous study validated the mediating role of brain-
age delta in the association between risk factors and 
cognitive decline.16 The results of this previous study 
showed that the indirect effect of the model using only 
grey matter-based brain-age delta was only marginally 
significant. Our study has built on this previous work in 
two important ways. First, we assessed whether the 
presence of Alzheimer’s disease pathology influences the 
indirect effect of grey matter-based brain-age delta. 
Second, we included longitudinal measurements of the 
PACC as well as five individual cognitive domains 
(attention, executive function, language, episodic 
memory, and visual processing). In Aβ-negative 
individuals, brain-age delta fully mediated the association 
between modifiable risk factors and decline in cognition, 
measured with PACC. Furthermore, we only found 
a mediation effect in the memory composite in Aβ-
negative individuals, which was not significant after 
multiple comparisons.

We previously identified brain regions that significantly 
contributed to the brain-age model.9 We showed that 
brain-age delta captures age-related structural changes in 
regions such as the amygdala, entorhinal cortex, and 
hippocampus.9 By showing that brain-age delta is 
associated with cognitive changes, our results build on 
our previous work and align with existing literature 
showing associations between episodic memory 
performance and lower volumes of the medial temporal 
lobe.26 These results, in turn, support the use of brain-age 
delta in assessing cognitive decline. Additionally, we 
found a direct effect of modifiable risk factors on changes 
in attention and executive function composites in Aβ-
negative individuals. However, we did not find associations 
between modifiable risk factors and language and visual 
processing composites. As the literature suggests, the 
decline in attention and executive function is more evident 
with normal ageing, whereas some aspects of language 
function and visual recognition remain largely intact with 
age.27 Overall, these risk factors predominantly affect age-
related cognitive changes, and brain-age delta is 
particularly sensitive to memory-related changes.

The risk factors selected by the model included: HADS 
anxiety, HADS total, BMI, smoking status, history of 
cardiovascular disease, metabolic and endocrine disease, 
neurological disease, and psychiatric disease. No 

significant differences in the weights of variables used to 
form the latent risk factors were observed between Aβ-
positive and Aβ-negative individuals in the model 
encompassing all cognition composites. However, 
variables such as HADS total and BMI had a significant 
effect on the latent risk factors in Aβ-negative individuals 
but not in Aβ-positive individuals. Previous literature 
suggests that social and lifestyle factors might influence 
cognition through different mechanisms, in concordance 
with our results. For instance, it has been suggested that 
cardiovascular and metabolic disorders (eg, hypertension, 
diabetes)28 and mood disorders (eg, depression, anxiety)3 
can have a negative effect on cognitive performance. The 
effect of these variables varied across cognition 
composites. In the attention-based model, the weight of 
BMI was significantly higher in Aβ-negative individuals 
compared with the Aβ-positive individuals, consistent 
with previous research linking lower BMI with 
Alzheimer’s disease.29 A similar trend was seen in the 
other cognitive composites. In general, history of 
cardiovascular disease had a higher weight in the latent 
composition of latent risk factors in Aβ-negative 
individuals than in the Aβ-positive individuals. 
Cardiovascular risk factors might accelerate cognitive 
decline by contributing to the development of vascular 
and degenerative brain lesions.30 Conversely, mood and 
history of psychiatric disorders had a higher weight in 
the latent risk factors composition in Aβ-positive 
individuals than in Aβ-negative individuals. Previous 
studies have suggested that late-life depression and 
Alzheimer’s disease reciprocally interact and combine to 
produce neurotoxic effects in some brain regions, such 
as the hippocampus, and these effects are, in turn, 
associated with cognitive impairment.31 Therefore, the 
selected risk factors were consistent with previous 
literature and our results indicate that these factors can 
effectively detect cognitive decline.

With a mediation proportion of 28·03%, brain-age 
delta significantly captures a substantial part of the 
association between risk factors and cognition measured 
with PACC, with the R2 between risk factors and 
cognition being low. Although its effectiveness in 
interventional studies remains speculative, brain-age 
delta could reduce the sample sizes required to show 
efficacy in interventional trials compared with cognitive 
testing. Variability of MRI-derived measures has been 
shown to be smaller than that of cognitive testing,13 and 
future work needs to assess the variability in brain-age 
delta in interventional cases. Another strategy to reduce 
required sample sizes involves reducing between-
participant variability, which can be achieved by 
restricting entry. Our study suggests brain-age delta 
could be employed to select individuals with an increased 
likelihood of cognitive decline, thereby potentially 
reducing variability in cognitive testing based on 
modifiable risk factors. This use of brain-age delta 
underscores its potential importance in the landscape of 
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dementia prevention trials, emphasising the need for 
comprehensive studies to establish its validity and 
reliability. Additionally, to address a current gap in the 
literature, our ongoing research aims to elucidate the 
biological mechanisms underlying differences in brain 
age. With this aim, we are investigating the 
pathophysiological mechanisms measured with CSF that 
might be linked to variations in brain age and their 
subsequent effect on cognitive decline.32

Our study has several strengths and limitations. Given 
the multifactorial nature of brain ageing and cognitive 
ageing, PLS-PM is valuable in unravelling the interplay 
between lifestyle-related risk factors and cognitive 
ageing.33 By establishing latent constructs, our study 
provides a more representative understanding of lifestyle 
factors compared with studies investigating single 
measures in isolation.33 Additionally, our study benefits 
from a large population-based database encompassing 
complete Alzheimer’s disease biomarkers, modifiable 
risk factors, neuroimaging data, and cognitive 
measurements at two different timepoints. However, 
since the ALFA+ cohort included participants in the 
earliest stages of the Alzheimer’s disease continuum, 
the cohort included more participants who were Aβ-
negative than who were Aβ-positive. The presence of 
pathology introduces additional variability, potentially 
affecting the sensitivity of brain-age delta, especially 
given the smaller sample size in the Aβ-positive group. 
The observed findings might therefore be influenced by 
these power differences. In addition, although we have 
incorporated established confounding factors, such as 
age, sex, and education, into our mediation analysis, the 
possibility of unmeasured confounding cannot be 
entirely ruled out. However, the potential effect of 
unmeasured confounding is anticipated to be less 
substantial compared with the confounding accounted 
for in our analyses. Furthermore, although modifiable 
risk factors are addressed, the role of unmodifiable 
factors in dementia incidence is important to assess and 
requires further investigation. The effect of APOE status 
on the mediating effect of brain-age delta was not 
assessed in our study and therefore warrants further 
investigation. Additionally, differences between females 
and males in the lifestyle-brain-cognition pathway are 
expected, considering the existing evidence of sex 
differences in the effects of lifestyle on cognition and 
amyloid burden.33 However, due to sample size 
limitations, additionally addressing sex differences was 
not feasible, and therefore future research exploring 
these differences is needed. In addition, participants in 
the ALFA+ cohort, despite being at risk of developing 
Alzheimer’s disease dementia, were cognitively 
unimpaired and exhibited a lower cardiovascular risk 
profile compared to the general population.18 Therefore, 
it is crucial to acknowledge the potential existence of 
cohort selection bias, which could affect the 
representativeness of the cohort. Replicating the findings 

in independent cohorts would be valuable for validating 
and potentially extending the results to different 
populations.

In summary, we show that brain-age delta is an 
objective biomarker that mediates the association 
between modifiable risk factors and cognitive decline in 
middle-aged and older individuals who are cognitively 
unimpaired without biomarkers for Alzheimer’s disease. 
Our results support brain-age delta as a promising 
biomarker for clinical trials targeting lifestyle changes to 
prevent age-related cognitive decline.
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