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Introduction: Giardiosis remains one of the most prevalent enteric parasitic 
infections globally. Earlier molecular-based studies conducted in Egypt have 
primarily focused on paediatric clinical populations and most were based 
on single genotyping markers. As a result, there is limited information on the 
frequency and genetic diversity of G. duodenalis infections in individuals of all 
age groups.

Methods: Individual stool samples (n  =  460) from outpatients seeking medical 
care were collected during January–December 2021  in Kafr El-Sheikh 
governorate, northern Egypt. Initial screening for the presence of G. duodenalis 
was conducted by coprological examination. Microscopy-positive samples were 
further confirmed by real-time PCR. A multilocus sequence typing approach 
targeted amplification of the glutamate dehydrogenase (gdh), beta-giardin (bg), 
and triose phosphate isomerase (tpi) genes was used for genotyping purposes. 
A standardised epidemiological questionnaire was used to gather basic 
sociodemographic and clinical features of the recruited patients.

Results: Giardia duodenalis cysts were observed in 5.4% (25/460, 95% CI: 3.6–
7.9) of the stool samples examined by conventional microscopy. The infection 
was more frequent in children under the age of 10  years and in individuals 
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presenting with diarrhoea but without reaching statistical significance. Stool 
samples collected during the winter period were more likely to harbour G. 
duodenalis. All 25 microscopy-positive samples were confirmed by real-time 
PCR, but genotyping data was only available for 56.0% (14/25) of the isolates. 
Sequence analyses revealed the presence of assemblages A (78.6%, 11/14) and 
B (21.4%, 3/14). All assemblage A isolates were identified as sub-assemblage AII, 
whereas the three assemblage B sequences belonged to the sub-assemblage 
BIII. Patients with giardiosis presenting with diarrhoea were more frequently 
infected by the assemblage A of the parasite.

Conclusion: This is one of the largest epidemiological studies evaluating G. 
duodenalis infection in individuals of all age groups in Egypt. Our molecular data 
suggest that G. duodenalis infections in the surveyed population are primarily 
of anthropic origin. However, because assemblages A and B are zoonotic, some 
of the infections identified can have an animal origin. Additional investigations 
targeting animal (domestic and free-living) and environmental (water) samples 
are warranted to better understand the epidemiology of giardiosis in Egypt.
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1 Introduction

Giardiosis by Giardia duodenalis (syn. G. lamblia, G. intestinalis) is 
the most frequently reported intestinal protozoan infection worldwide, 
with an estimated 280 million people being infected each year (1). The 
pathogen has a ubiquitous distribution, although most human cases 
occur predominantly in humid and temperate regions (2–4). As other 
members of the Giardia genus, G. duodenalis has a direct life cycle 
(monoxenus) without intermediate hosts. Infection occurs by ingestion 
of the transmissive cyst stage, either directly through contact with 
infected individuals or animals or indirectly from food or water 
contaminated with faecal material. In the duodenum, excystation 
releases vegetative trophozoites (two per cyst) into the small intestinal 
lumen, where they divide by binary fission and attach to the host 
epithelium via a ventral adhesive disc. Encystation of the trophozoite 
to the cyst stage occur in the colon and is promoted by exposure to bile. 
The life cycle is completed when cysts are excreted into the environment 
with the faeces of infected hosts (5). Giardia duodenalis cysts are 
environmental-resistant and can stay viable for prolonged periods of 
time under appropriate conditions of humidity and temperature. 
Giardia duodenalis cysts are also resistant to chemical disinfectants 
(e.g., chlorine and ozone) commonly used in the water industry (6, 7).

The clinical manifestations of human giardiosis vary from 
asymptomatic carriage to a wide diversity of symptoms including 
acute or chronic diarrhoea, dryness, abdominal discomfort, nausea, 
vomiting, flatulence, weight loss, and anaemia resulting from vitamin 
A, iron, and zinc deficiencies (8–10). In poor-resource areas giardiosis 
has been associated with impairment of growth and cognitive 
development during childhood (11). The pathogenic effect of 
giardiosis occurs through multiple mechanisms including functional 
disruption of the epithelial barrier, shortening of brush border 
microvilli, gut microbiota dysbiosis, apoptosis of enterocytes, 
electrolyte/nutrient/water malabsorption, and anion hypersecretion, 
among others (12, 13). The severity of the disease is possibly dogged 

by multiple factors such as the virulence of the parasite (14), the 
immunological and nutritional status of the host (15), the occurrence 
of coinfection with other pathogens (16), and the frequency of cases 
refractory to treatment (17). Young children, the older adults, and 
immunocompromised individuals are more susceptible to the 
infection (18, 19). In developing countries, infections by G. duodenalis 
are concomitant with poor sanitary conditions, poor water quality, 
and overcrowding (20, 21).

Diagnosis of giardiosis is primarily conducted by microscopy 
analysis of stool samples in most clinical microbiology laboratories, 
particularly in poor-resource settings (22). In recent years, PCR-based 
methods have been increasingly shown to be  sensitive and cost-
effective alternatives to microscopy examination of stools. Advantages 
of molecular assays over conventional microscopy include highly 
sensitive and specific identification of parasite DNA and rapid 
turnover with little hands-on work (23–26). When coupled to Sanger 
or next-generation amplicon sequencing, PCR methods allow species 
and genotype confirmation (27). Nucleotide sequence analyses of the 
small subunit ribosomal RNA (ssu rRNA), glutamate dehydrogenase 
(gdh), beta-giardin (bg), and triose phosphate isomerase (tpi) genes 
have evidenced that G. duodenalis is indeed a multi-species complex 
composed of eight (A-H) assemblages that differ widely in host range 
and specificity, with assemblages A and B responsible for ~95% of 
human infections (4, 28). Canine-adapted assemblages C-D, feline-
adapted assemblage F, and ungulate-adapted assemblage E can 
occasionally cause human infections (4, 28). Giardiosis is endemic in 
Egypt. Human infections have been estimated at 9.2–80.2% by 
conventional microscopy, at 19.0–38.4% by ELISA, at 7.9% by rapid 
diagnostic tests, and at 11.5–42.3% by PCR (Table 1) (29–53). Most of 
the epidemiological studies were carried out on paediatric populations 
presenting with gastrointestinal manifestations. Molecular studies 
demonstrated that assemblage B (55.3%, 587/1,061) is more prevalent 
than assemblage A (36.9%, 392/1,061), with assemblage E (2.7%, 
29/1,061), assemblage C (0.1%, 1/1,061) and mixed (4.9%, 52/1,061) 
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TABLE 1 Occurrence and genetic diversity of Giardia duodenalis in human populations in Egypt.

Location Governorate Age 
group

Clinical 
symptoms

Detection 
method

Infection 
rate (%)

Pos./
Total

Assemblage 
(n)

Sub- 
Assemblage 

(n)

Reference

Lower Egypt Cairo All Yes CM 15.5 62/400 – – (29)

PCR 15.0 60/400 A (22), B (38) ND

All Yes CM 30.9 30/97 – – (30)

PCR 42.3 41/97 A (31), B (8), A + B 

(2)

AI (24), AII (7)

Paediatric Yes PCRa – 92/96 A (21), B (54) AII (21) (31)

Paediatric Yes CM 8.0 8/100 – – (31)

ELISA 19.0 19/100 – –

PCR 26.0 26/100 ND ND

Paediatric Yes CM 18.8 33/176 – – (32)

PCR 13.6 24/176 A (4), B (20) ND

Paediatric Yes CM 15.5 184/1,187 – – (33)

PCR 18.9 224/1,187 A (42), B (182) ND

Dakhalia All Both CM 17.8 33/185 – – (34)

ELISA 38.4 71/185 – –

El-Beheira Paediatric Yes CM 24.0 24/100 – – (35)

PCR – 16/24 A (16) AII (16)

Ismaillia Paediatric Yes CM 9.2 12/130 – – (36)

PCR – 15/15 A (1), B (12), A + B 

(1), C (1)

AI/AII (1), BIII 

(1), BIV (1), 

BIII/BIV (2)

Paediatric Yes RDT 7.9 13/165 – – (37)

PCR 21.2 35/165 A (5), B (14), E (1), 

A/B (1), A/E (1)

AII (5)

Paediatric Both CM 9.9 65/660 – – (38)

PCR – 60/65 A (40), B (18), A + B 

(2)

AI (36), AII (4)

Kafr El Sheikh All Both CM 56.9 181/318 – – (39)

PCR – 65/65 A (26), B (32), A + B 

(7)

AII (2), BIII (19), 

BIV (1)

NS NS PCRa – 48 A (16), B (32) AI (2), AII (3) (41)

Several All NS PCRa – 18/52 A (1), B (14), E (3) ND (40)

Paediatric Both CM 29.2 47/161 – – (41)

PCRa – 35/47 A (27), B (8) AII (27), BIII (8)

Paediatric Both PCR 11.3 66/585 A (31), B (34), A + B 

(1)

AII (31) (44)

Sharkia Paediatric Both ELISA 41.3 62/150 – – (42)

Paediatric Both CM 9.8 61/617 – – (43)

PCR – 37/61 A (7), B (30) ND

All Both CM 17.9 17/95 – – (44)

Suez Canal Paediatric Both CM 13.5 88/650 – – (45)

PCR – 88/88 A (50), B (36), A + B 

(2)

AI (29), AII (20), 

AI + AII (1)

West Delta Paediatric Both CM 18.1 57/315 – – (46)

PCR – 57/57 A (9), B (21), A + B 

(27)

ND

(Continued)
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infections being also detected at much lower rates (Table 1) (29–53). 
This study aimed to determine the prevalence and molecular diversity 
of G. duodenalis in outpatients seeking medical care in northern 
Egypt. To do so, conventional microscopy was used as screening 
method and molecular (PCR and Sanger sequencing) methods as 
confirmatory and genotyping methods.

2 Materials and methods

2.1 Ethical statement

The study was conducted in accordance with the Declaration of 
Helsinki, and approved by the Kafrelsheikh University Research Ethics 
Committee (protocol code MKSU 50–1-10). Signed informed 
consents were obtained from all patients that volunteer to participate 
in the study. Stool samples and associated epidemiological and clinical 
data were anonymized to protect the privacy of the participants.

2.2 Patient recruitment and sample 
collection

Single fresh stool specimens from outpatients seeking medical 
attention at the Kafrelsheikh University Hospital (Kafr El-Sheikh 
governorate, Egypt) were collected during the period January–
December 2021 without specific exclusion criteria. Each stool sample 
was collected in a screw-capped container and labelled with a unique 
identifier code. Information regarding sex, age, location, and sampling 
date were also recorded. Faecal consistency was categorised as either 
diarrheic or formed. Samples were submitted for microscopy 
examination within 3 h of collection.

2.3 Microscopy examination

2.3.1 Direct wet smear
Direct saline (0.85% NaCl) and Lugol’s iodine wet mounts were 

prepared from freshly passed stool specimens for the detection of 
G. duodenalis cysts and trophozoites according to standard procedures 
(54). Cover slips were gently put over microscopy glass slides to spread 

out the emulsion and then examined under a light microscope using 
a low-power (10×) objective for screening and a high-power (40×) 
objective for confirmation of presumptive and positive findings.

2.3.2 Concentration using the formalin-ethyl 
acetate sedimentation method

The formyl-ether concentration method was used according to 
recommended procedures (54). Briefly, 4 g of fresh faecal material was 
homogenised in 10 mL of 10% formalin and sieved through surgical 
gauze as a mechanical filter to remove faecal debris. The sieved 
suspension was transferred into a clean 15 mL centrifuge tube and 
3 mL of ethyl acetate were added. After vigorous shaking, the mixture 
was centrifuged for 10 min at 500 × g. The supernatant was carefully 
discarded, and faecal smears made from the sediment and examined 
as described in sub-section 2.3.1.

2.3.3 Concentration using the zinc sulphate 
flotation method

The zinc sulphate flotation method was used according to 
recommended procedures (54). Briefly, 4 g of fresh faecal material was 
homogenised in 10 mL of 10% formalin and sieved through surgical 
gauze as a mechanical filter to remove faecal debris. The sieved 
suspension was transferred into a clean 15 mL centrifuge tube and 
another 10 mL of 10% formalin were added. The mix was centrifuged 
for 10 min at 500 × g. After discarding the supernatant, a 33% zinc 
sulphate solution (specific gravity: 1.18) was added to the sediment, 
followed by homogenisation and centrifugation for 2 min at 500 × g. 
Faecal smears were made with 1–2 drops of the surface film and 
examined as described in sub-section 2.3.1.

Aliquots of all Giardia-positive stool samples at microscopy 
examination were stored in 70% ethanol and shipped to the National 
Centre for Microbiology, Health Institute Carlos III (Majadahonda, 
Spain) for downstream molecular testing.

2.4 DNA extraction and purification

Genomic DNA was isolated from about 200 mg of faecal samples 
yielding positive results for G. duodenalis at microscopy examination 
by using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions. Extracted and purified 

Location Governorate Age 
group

Clinical 
symptoms

Detection 
method

Infection 
rate (%)

Pos./
Total

Assemblage 
(n)

Sub- 
Assemblage 

(n)

Reference

Upper 

Egypt

Assiut Paediatric Yes CM 38.6 27/70 – – (47)

PCR – 22/27 B (22) ND

Paediatric Both CM 24.2 40/165 – – (48)

PCR – 35/40 A (16), B (11), A + B 

(8)

–

Beni-Suef Paediatric Yes CM 27.7 36/130 – – (49)

PCR – 28/36 A (3), B (25) AII (3), BIII (4), 

BIV (5)

Fayium Paediatric Both PCRa – 25/40 E (25) – (53)

CM, Conventional microscopy; ELISA, Enzyme linked immunosorbent assay; ND, Not determined; NS, Not specified; PCR, Polymerase chain reaction; RDT, Rapid diagnostic test.aMolecular 
study based on selected Giardia-positive samples.

TABLE 1 (Continued)
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DNA samples were eluted in 200 μL of PCR-grade water and kept at 
4°C until subsequent molecular testing.

2.5 Molecular identification and 
characterization of Giardia duodenalis

Detection of G. duodenalis DNA was achieved using a real-time 
PCR (qPCR) method targeting a 62-bp region of the gene codifying the 
small subunit ribosomal RNA (ssu rRNA) gene of the parasite (55). For 
assessing its molecular diversity at the assemblage and sub-assemblage 
levels, we adopted a sequence-based multilocus genotyping (MLST) 
scheme targeting the genes encoding for the glutamate dehydrogenase 
(gdh), β-giardin (bg), and triose phosphate isomerase (tpi) proteins of 
G. duodenalis. To maximise the options of amplification success at these 
markers, only Giardia isolates that tested positive by qPCR and yielded 
cycle threshold (CT) values <32 were tested for genotyping purposes. A 
semi-nested PCR was used to amplify a 432-bp fragment of the gdh gene 
(56), and nested PCRs were used to amplify 511 and 530 bp fragments 
of the bg and tpi genes, respectively (57, 58).

2.6 PCR and gel electrophoresis standard 
procedures

Information regarding the oligonucleotides and PCR cycling 
conditions used for the detection and genotyping of G. duodenalis is 
summarised in Supplementary Tables 1, 2. The qPCR protocol 
described above was carried out on a Corbett Rotor Gene™ 6,000 
real-time PCR system (Qiagen), with reaction mixes containing 2× 
TaqMan® Gene Expression Master Mix (Applied Biosystems, CA, 
United  States). All the semi-nested and nested PCR procedures 
mentioned above were performed on a 2720 Thermal Cycler (Applied 
Biosystems). Reaction mixes consistently included 2.5 units of 
MyTAQ™ DNA polymerase (Bioline GmbH, Luckenwalde, Germany) 
and 5–10 μL of MyTAQ™ Reaction Buffer containing 5 mM dNTPs 
and 15 mM MgCl2. Laboratory-confirmed positive and negative DNA 
samples of human origin were routinely used as controls and included 
in each round of PCR. PCR amplicons were visualised on 1.5% D5 
agarose gels (Condalab, Madrid, Spain) stained with Pronasafe 
(Condalab) nucleic acid staining solutions.

2.7 Sequence analyses

Amplicons of the anticipated size were directly sequenced in both 
directions using the corresponding internal primer sets 
(Supplementary Table 1) in 10 μL reactions. DNA sequencing was 
conducted by capillary electrophoresis using the BigDye® Terminator 
chemistry (Applied Biosystems) on an ABI 3730xl sequencer analyser 
(Applied Biosystems). Raw sequencing data was examined with 
Chromas Lite version 2.1 software1 to generate consensus sequences. 
These sequences were compared with reference sequences deposited 
at the National Centre for Biotechnology Information (NCBI) using 

1 http://chromaslite.software.informer.com/2.1

the BLAST tool.2 Representative nucleotide sequences generated in 
this study have been deposited in GenBank under accession numbers 
PP035393–PP035398 (gdh locus), PP035399–PP035400 (bg locus), 
and PP035401 (tpi locus).

2.8 Phylogenetic analyses

To analyse the phylogenetic relationship among G. duodenalis 
assemblages and sub-assemblages at the gdh, bg, and tpi markers, 
maximum-likelihood trees were constructed using MEGA version 11 
(59), based on substitution rates calculated with the general time 
reversible model and gamma distribution with invariant sites (G + I). 
Bootstrapping with 1,000 replicates was used to determine support 
for the clades.

2.9 Statistical analyses

Associations between G. duodenalis infections and potential risk 
factors (sex, age, sampling season, and stool consistency) were 
evaluated by bivariate analysis using the Pearson’s chi-square test or 
Fisher’s test, as required. The significance level was set at 0.05. All 
statistical analyses were performed using R free software (60).

3 Results

In the present survey, 460 individual stool samples were collected 
from outpatients seeking medical care. The male/female ratio was 
0.84. Participating patients had a median age of 13 years (0.1–60; 
standard deviation: 18.8). Near half of the participating patients were 
children under the age of 10 (44.8%, 206/460) and presented with 
diarrhoea (54.1%, 249/460; Table 2).

3.1 Microscopy

Overall, 5.4% [25/460, 95% Confidence Interval (CI): 3.6–7.9] of 
faecal samples examined by microscopy tested positive for G. duodenalis. 
Neither gender, age group nor stools consistency were positively 
associated with a higher likelihood of having a G. duodenalis infection. 
Despite this lack of statistical significance, the pathogen was more 
frequently found in paediatric patients under 10 years of age (7.8%) and 
in patients presenting with diarrhoea (7.2%). Giardia infections were 
similarly present in males and in females (5.7% vs. 5.2%, respectively). 
In contrast, outpatients attended during the autumn period were less 
likely (p = 0.027) to harbour the pathogen (Table 2).

3.2 Confirmation of Giardia duodenalis by 
qPCR

All 25 faecal DNA samples with a Giardia-positive result by 
conventional microscopy examination tested also positive by 

2 http://blast.ncbi.nlm.nih.gov/Blast.cgi
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qPCR. Yielded CT values ranged from 20.2 to 31.9 (median: 22.5; 
standard deviation: 4.0). Most (84.0%, 21/25) of the qPCR-positive 
samples yielded CT values <30 (Table 3).

3.3 Genotyping and sub-genotyping of 
Giardia duodenalis isolates

The molecular diversity of the 25 G. duodenalis-confirmed isolates 
was investigated at the assemblage and sub-assemblage levels at three 
(gdh, bg, and tpi) genetic markers. Successful PCR amplifications and 
sequencing data were generated for 48.0% (12/25, gdh), 20.0% (5/25, 
bg), and 12.0% (3/25, tpi) of the samples investigated at the three loci 
(Table 3). Overall, 56.0% (14/25) of the Giardia-positive samples were 
successfully genotyped at one locus at least. MLST data at the three 
assessed loci was available for a single sample (4.0%, 1/25). Subtyping 
data at a single locus and two loci were available for 36.0% (9/25) and 
16.0% (4/25) of samples, respectively. No genotyping data could 
be  obtained for 44.0% (11/25) of the Giardia-positive samples. 
Assemblage A (44.0%, 11/25) was more prevalent than assemblage B 
(12.0%, 3/25). No A + B mixed infections were detected. No host-
adapted assemblages of canine (C, D), feline (F), or livestock (E) origin 
were identified circulating in the surveyed clinical population 
(Table 3).

Table  4 shows the frequency and molecular diversity of 
G. duodenalis at the gdh, bg, and tpi loci. Out of the 12 gdh 
sequences, nine (75.0%) were assigned to the sub-assemblage 
AII. Of them, seven showed 100% identity with reference sequence 
L40510. The remaining two sequences differed from it by 1–2 
single nucleotide polymorphisms (SNPs) in the form of ambiguous 
(double peak) positions. Sub-assemblage BIII was identified in 
three (25.0%) isolates, all of them differing among them and by 
1–7 SNPs with reference sequence AF069059. Most of the SNPs 
detected correspond to clear mutations. No isolates belonging to 

sub-assemblage BIV were detected. All five bg sequences were 
identified as sub-assemblage AII. Four of them were identical to 
reference sequence AY072723, whereas the remaining one differed 
form it by a single SNP in the form of a double peak at 
chromatogram inspection. All three tpi sequences were identified 
as sub-assemblage AII and showed 100% identity with reference 
sequence U57897. No assemblage B isolates could be genotyped 
at the bg and tpi loci.

Our statistical analyses also revealed that the distribution of 
assemblages A and B was independent of all the variables (gender, age 
group, stool consistency and sampling season) considered as potential 
risk factors in the present study (Table 2).

Phylogenetic analyses conducted at the gdh (Figure  1), bg 
(Figure 2) and tpi (Figure 3) loci clearly showed that our G. duodenalis 
sequences formed well-supported clades with appropriate reference 
sequences retrieved from GenBank.

4 Discussion

Giardiosis remains a public health concern globally, with 
young children living in poor-resource settings carrying the bulk 
of the infection. Interestingly, large case/control and longitudinal 
studies conducted in endemic areas (most of them targeting 
paediatric populations) have shown that G. duodenalis infection 
was not associated with acute diarrhoea (61) or even has a 
protective effect against it (62, 63). These data highlighted to the 
need of clarifying the circumstances under which G. duodenalis 
infection may be involved in the development of diarrheal disease 
(either acute or persistent) and whether specific Giardia genotypes 
exhibit enhanced pathogenicity over other genotypes (61). This 
study assessed the frequency and genetic diversity of G. duodenalis 
infection in outpatients seeking medical care in northern Egypt. 
Strengths of the survey include (i) the recruiting of patients 

TABLE 2 Frequency of Giardia duodenalis infections and genotypes according to the gender, age group, stool consistency, and sampling season of the 
surveyed human population (n  =  460).

Variable Samples (n) Positive (n) Frequency (%) p value Assemblage A (n) Assemblage B (n)

Gender

Male 210 12 5.7 0.971 6 1

Female 250 13 5.2 6 2

Age group (yrs.)

0–10 206 16 7.8 0.967 8 1

11–35 150 9 6.0 4 2

36–60 104 0 0.0 0 0

Stool consistency

Formed 211 7 3.3 0.102 3 1

Diarrheic 249 18 7.2 9 2

Season

Summer 136 5 3.7 0.027 3

Autumn 69 0 0.0 0 0

Winter 137 12 8.8 6 0

Spring 118 8 6.8 3 3

Bolded values indicate statistical significance.
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belonging to all age groups (allowing better insight of the infection 
through lifespan) with and without diarrhoea (allowing the study 
of the infection according to clinical status and the genetic variant 

of the parasite) and (ii) the adoption of a MLST approach to better 
understand the genetic diversity of the G. duodenalis 
isolates obtained.

TABLE 3 Multilocus sequence typing results of the 25  G. duodenalis-positive human samples successfully genotyped at any of the three loci 
investigated in the present survey.

Sample ID Age 
(yrs.)

Gender Season Stool 
consistency

CT value 
in qPCR

gdh bg tpi Assigned 
genotype

1 47 Female Spring Diarrheic 22.1 AII AII – AII

3 30 Male Spring Diarrheic 21.7 AII – AII AII

4 9 Female Spring Diarrheic 22.2 AII – – AII

10 31 Female Summer Diarrheic 21.6 AII AII AII AII

17 39 Male Summer Diarrheic 21.3 AII – – AII

23 10 Male Summer Diarrheic 22.4 – – – Unknown

27 32 Male Winter Diarrheic 20.2 AII AII – AII

28 4 Female Winter Diarrheic 21.3 AII – – AII

29 2 Female Winter Diarrheic 22.5 – – – Unknown

42 8 Male Winter Diarrheic 22.5 – AII – AII

48 4 Female Winter Formed 30.9 – – AII AII

82 1 Female Summer Diarrheic 29.6 – – – Unknown

103 9 Male Summer Formed 27.1 – – – Unknown

107 1 Male Spring Diarrheic 29.5 – – – Unknown

139 22 Female Winter Diarrheic 21.5 – – – Unknown

140 55 Male Winter Formed 20.2 AII – – AII

141 22 Female Winter Formed 20.2 AII AII – AII

173 22 Female Spring Diarrheic 24.4 BIII – – BIII

177 21 Female Spring Diarrheic 25.7 BIII – – BIII

180 51 Male Spring Formed 23.9 BIII – – BIII

187 1 Male Spring Diarrheic 26.7 – – – Unknown

225 17 Female Winter Formed 31.0 – – – Unknown

310 12 Male Winter Diarrheic 31.6 – – – Unknown

399 6 Male Winter Diarrheic 28.8 – – – Unknown

400 1 Female Winter Formed 31.9 – – – Unknown

The age, gender, sampling season, and stool consistency of the infected individuals are also shown.

TABLE 4 Frequency and molecular diversity of G. duodenalis identified at the gdh, bg, and tpi loci in the human population under study.

Marker Assemblage Sub-assemblage No. 
isolates

Reference 
sequence

Stretch Single nucleotide 
polymorphisms

GenBank 
ID

gdh A AII 7 L40510 64–491 None PP035393

1 L40510 64–491 C273Y, A409R PP035394

1 L40510 67–491 G458K PP035395

BIII 1 AF069059 40–455 A55G, C99T, C141T, T147C, 

G150A, A164R, C309T

PP035396

1 AF069059 40–455 A55G, C99T, C141T, T147C, 

G150A, C309T

PP035397

1 AF069059 40–455 C309T PP035398

bg A AII 4 AY072723 102–592 None PP035399

1 AY072723 102–594 T164Y, C540Y PP035400

tpi A AII 3 U57897 294–805 None PP035401

GenBank accession numbers are provided. bg, β-giardin; gdh, Glutamate dehydrogenase; K, G/T; R, A/G; tpi, Triose phosphate isomerase; Y, C/T.
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In the present study, G. duodenalis infection rates were similarly 
found in males and females (5.7% vs. 5.2%). This finding aligns with 
those previously reported in studies conducted in the Egyptian 
provinces of El-Dakahlia, El-Gharbia, and Damietta (52) and the 
West Delta region (46). Conversely, males were more likely to 
harbour G. duodenalis infections in studies conducted in Egypt (30, 
48) and other Mediterranean and Middle East countries including 
Algeria (64), Saudi Arabia (65) and Yemen (66). Taken together, 
these findings suggest that behavioural and occupational factors 
likely play a role in the risk of human transmission and infection. 

Our results also indicated that G. duodenalis infections were more 
frequent in children aged less than 10 years than in other age 
groups. This outcome is consistent with the results obtained in 
other microscopy-based studies conducted in Egypt (33, 46). Young 
children might be  more vulnerable to G. duodenalis infections 
because of their poor personal hygiene practices, higher exposure 
to unsanitary environments, and immature immune system 
compared to adults (67, 68). However, it should be noted that other 
surveys have reported higher parasite frequency rates in the 
10–20 years age group (30).

FIGURE 1

Phylogenetic relationship among Giardia duodenalis assemblages and sub-assemblages revealed by a maximum likelihood analysis of the partial gdh 
rDNA gene. Substitution rates were calculated by using the general time reversible model. Numbers on branches are percent bootstrapping values 
over 70% using 1,000 replicates. The filled red circle indicates the nucleotide sequence generated in the present study. The filled green triangles 
indicate reference sequences. Human and animal sequences from Egyptian origin retrieved from GenBank were included in the analysis for 
comparative purposes.
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Despite the fact that G. duodenalis infections were more frequently 
identified in individuals presenting with diarrhoea than in those 
without diarrhoea (7.2% vs. 3.3%), the difference was not statistically 
significant. Remarkably, large cohort studies conducted in sub-Saharan 
countries including the Global Enteric Multicenter Study (GEMS) 
(69), the Malnutrition and Enteric Disease Study (MAL-ED) (70), and 
the Vaccine Impact on Diarrhea in Africa Case–Control Study (VIDA) 
(71) have evidenced that G. duodenalis detection was more common 
among non-diarrheal than diarrheal infected children. The reasons for 
this trend are unclear, but an indirect mechanism triggered by 
G. duodenalis leading to changes in colonisation/infection by other 
enteric pathogens associated with moderate-to-severe-diarrhoea has 
been suggested (71).

Regarding environmental factors, we found that G. duodenalis 
infections were significantly more reported during the winter 
(January–March) months. This is in contrast with other studies 

conducted in Egypt where the parasite was more frequently identified 
during mid-summer and late winter (33). In the absence of robust 
temporal series of human giardiosis in Egypt, assessing the seasonal 
variation of the infection is a difficult task, so available data (including 
those from this study) should be interpreted with caution.

In the present study, all 25 G. duodenalis-positive samples at 
microscopy examination were confirmed by qPCR with CT values <32, 
indicative of moderate-to-high parasite burdens. However, genotyping 
data were only available for 56.0% (14/25) of them. This moderate 
genotyping success rate can be explained by the fact that the gdh, bg, 
and tpi genotyping markers used in the present survey are all single-
copy genes with limited diagnostic sensitivity. In contrast, the qPCR 
assay used here targeted the ssu rRNA marker, a multiple copy gene 
with high diagnostic sensitivity particularly suited for detection 
purposes (27, 28). Our genotyping analyses revealed that assemblage 
A was more prevalent than assemblage B (78.6% vs. 21.4%). Similar 

FIGURE 2

Phylogenetic relationship among Giardia duodenalis assemblages and sub-assemblages revealed by a maximum likelihood analysis of the partial bg 
rDNA gene. Substitution rates were calculated by using the general time reversible model. Numbers on branches are percent bootstrapping values 
over 70% using 1,000 replicates. The filled red circle indicates the nucleotide sequence generated in the present study. The filled green triangles 
indicate reference sequences. Human and animal sequences from Egyptian origin retrieved from GenBank were included in the analysis for 
comparative purposes.
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results have been reported in previous molecular surveys conducted 
in Cairo Governorate (30), El-Beheira Governorate (35), Ismaillia 
Governorate (38), and Sharkia Governorate (44) in Lower Egypt, and 
Assiut Governorate (48) in Upper Egypt. However, it should be noted 
that the opposite trend has been more frequently reported, with 
assemblage B accounting for 55.3% (587/1,061) of the human cases of 
giardiosis genotyped in the country (Table  1). No mixed A + B 
infections were detected in the present study, but seems a relatively 
common finding in other studies. Taken together, these data indicate 
that human G. duodenalis infections are primarily of anthropic nature 
in Egypt. However, and unknown fraction of these infections might 
be  of animal origin, as both assemblages A and B are zoonotic. 
Although probably infrequent, zoonotic transmission events are also 
possible, as demonstrated by the occasional presence of canine-
adapted assemblage C in a symptomatic children in Ismaillia 
Governorate (36) and hoofed-adapted assemblage E in human 
population from different Egyptian governorates (37, 40, 53). 

Unveiling the epidemiology of giardiosis in Egypt is a complex task 
hampered by our limited knowledge of which extent the human, 
animal, and environmental reservoirs contribute to the burden of 
human disease. Ideally, this task should be tackled under a One Health 
approach targeting all three reservoirs in the same spatiotemporal 
frame. Investigations should be directed towards the identification of 
sources of infection and transmission pathways including the 
identification of spillover events involving cross-species transmission 
in the wildlife-domestic interface. More research is also needed to 
investigate waterborne and foodborne transmission of G. duodenalis 
infections. Generating good quality molecular data is essential for 
these purposes.

This study unveiled variations in G. duodenalis assemblage 
frequencies among individuals of different ages and sexes. 
Assemblage A was more prevalently found in children less than 
10 years of age. Of note, assemblage A was also the most common 
G. duodenalis genetic variant circulating in children with diarrhoea 

FIGURE 3

Phylogenetic relationship among Giardia duodenalis assemblages and sub-assemblages revealed by a maximum likelihood analysis of the partial tpi 
rDNA gene. Substitution rates were calculated by using the general time reversible model. Numbers on branches are percent bootstrapping values 
over 70% using 1,000 replicates. The filled red circle indicates the nucleotide sequence generated in the present study. The filled green triangles 
indicate reference sequences. Human and animal sequences from Egyptian origin retrieved from GenBank were included in the analysis for 
comparative purposes.
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aged 2–8 years and was significantly associated with the duration and 
severity of the infection at Cairo Governorate (29). In contrast, 
children with diarrhoea below the age of 6 were more likely infected 
with assemblage B than with assemblage A at Beni-Suef Governorate 
(49). In other study conducted in Algeria, symptomatic children aged 
less than 7 years were predominantly infected with assemblage A, 
whereas assemblage B was more frequent in children older than 
11 years (64). Overall, all the findings mentioned above pointed out 
to a mixed distribution pattern of G. duodenalis assemblages in Egypt 
regardless the geographical region of origin and the human 
population under study, very likely reflecting a complex 
epidemiological scenario characterised by multiple sources of 
infection and transmission pathways.

Currently there is no clear correlation between G. duodenalis 
assemblages and the outcome and severity of the infection, with 
limited studies on this topic (72). Large case–control studies of 
paediatric populations conducted in Ethiopia (73) and Mozambique 
(74) reported similar assemblage distributions among individuals 
with and without diarrhoea, suggesting that the genetic variant of the 
parasite is not an essential factor in the outcome of the infection. 
Although the present study lacks a case/control design, most children 
presenting with diarrhoea harboured the assemblage A of the 
parasite. This results is consistent with those reported in similar 
studies conducted in Australia (75), Bangladesh (76), Egypt (29), 
India (77), Iran (78), Spain (79), Syria (80), Turkey (81), and the 
UK (82).

This study has some design and methodological limitations that 
must be taken into account when evaluating the results obtained and 
the conclusions reached. First, the transversal nature of the study is 
not adequate to follow up the course of giardiosis and to capture 
seasonal variations of the infection. Second, initial screening of 
G. duodenalis infection was conducted by microscopy examination of 
a single stool sample per patient. Because of the limited sensitivity of 
this method, the infection rate reported here is likely an 
underestimation of the true one. Third, results obtained here might 
not be  representative of other epidemiological scenarios or 
geographical areas in Egypt. And fourth, the relatively limited number 
of G. duodenalis isolates successfully genotyped (some of them at a 
single locus) might have biased the estimation of the true molecular 
diversity of G. duodenalis infections and the actual frequency of 
assemblages/sub-assemblages circulating in the investigated human 
population. This fact might have compromised the accuracy of some 
of the results obtained and the conclusions reached and warrants 
further investigations to corroborate the genotyping data 
presented here.

5 Conclusion

Endemic giardiosis continues to pose a significant public health 
threat in Egypt. Children under 10 years old are particularly vulnerable 
to the infection, so improved personal hygiene practices and 
promotion of healthy habits together with better access to safe 
drinking water and sanitary facilities are necessary to minimise the 
risk of transmission and infection. Our molecular findings revealed 
that most human cases of giardiosis were caused by assemblage A, 
which was the G. duodenalis genetic variant more prevalently found 
in individuals with diarrhoea. These results, together with the absence 

of animal-adapted assemblages C-F suggest that G. duodenalis 
infections in the surveyed population are primarily anthropic in 
nature. However, we cannot ruled out that an unknown proportion of 
the infections detected have an animal origin, as both assemblages A 
and B are zoonotic. Additional investigations are warranted to better 
understand the epidemiology of giardiosis in Egypt. Of particular 
interest would be  conducting molecular-based epidemiological 
surveys in animal (domestic and free-living) and environmental 
(water) samples to better improve our knowledge on the sources of 
infection and transmission pathways of the parasite.
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