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1  |  INTRODUC TION

The progressive ageing of the world population is resulting in a 
higher prevalence of age- related disorders, including frailty and car-
diovascular disease (CVD).1,2 In recent decades, frailty has emerged 

as an underlying health condition that largely explains the most 
concerning health problems in older adults, which include hospital-
isation, disability, falls and a high mortality risk.3 Initially confined 
to the elderly, frailty now increasingly affects younger individuals, 
in whom it shows a strong association with multimorbidity and, as 
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Abstract
The	small	GTPase	RhoA	and	the	downstream	Rho	kinase	(ROCK)	regulate	several	cell	
functions and pathological processes in the vascular system that contribute to the age- 
dependent risk of cardiovascular disease, including endothelial dysfunction, excessive 
permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, de-
creased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve 
and adaptive capacity with advanced age and is accompanied by a pro- inflammatory 
and pro- oxidative state that promotes vascular dysfunction and thrombosis. This re-
view	summarises	the	role	of	the	RhoA/Rho	kinase	signalling	pathway	in	endothelial	
dysfunction,	the	acquisition	of	the	pro-	thrombotic	state	and	vascular	ageing.	We	also	
discuss	 the	possible	 role	of	RhoA/Rho	kinase	 signalling	as	 a	promising	 therapeutic	
target for the prevention and treatment of age- related cardiovascular disease.
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in the elderly population, is an important risk factor for harmful 
events.4 These findings position frailty as an important focus of pub-
lic health efforts.

Frailty syndrome describes a clinically recognisable complex 
state in older adults who exhibit increased vulnerability and de-
pendency caused by gradual and progressive abnormal function-
ing of multiple organ systems.5 In recent years, there has been 
a growing interest in the two- way relationship between frailty 
syndrome and CVD.6,7 The disability precipitated by frailty con-
tributes to the appearance of CVD in the elderly; conversely, clin-
ical and subclinical vascular disease are risk factors for frailty.6,7 
This interaction between vascular alterations and frailty appears 
to operate from early stages, with the risk of frailty showing an 
association with elevated levels of the endothelial dysfunction 
marker	ADMA	(asymmetric	dimethylarginine)	in	individuals	with-
out atherosclerotic disease.8	ADMA	is	a	metabolic	byproduct	of	
the continuous metabolism of proteins in the organism and acts 
as a competitive inhibitor of the enzyme eNOS. Therefore, it is 
commonly used as endogenous marker of endothelial dysfunc-
tion.9 This association suggest a relevant role of vascular system 
dysfunction as one of the main mechanisms leading to frailty. 
Progression from endothelial dysfunction to thrombus forma-
tion is dependent on platelet adhesion, since the alteration of 
endothelium- platelet interaction is a well- recognized contributor 
to prothrombotic states.10 However, there has been little research 
into the relationship between endothelial dysfunction in frail el-
derly people and the early actions of platelets before thrombotic 
cardiovascular events such as myocardial infarction and stroke. 
Identification of the mechanisms underlying endothelial and/or 
platelet alterations that lead to cardiovascular events in frailty 
could contribute to measures to detect, treat and prevent CVD 
risk in frail elderly people.

Rho GTPases regulate multiple cellular processes, such as cy-
toskeletal reorganisation, cell migration, microtubule dynamics, 
signal transduction and gene expression,11 and there is a large 

body	 of	 evidence	 that	 activation	 of	 the	 RhoA/Rho	 kinase	 path-
way plays a major role in various forms of CVD and acts as a con-
vergent node in the pathogenesis of endothelial dysfunction.12–14 
Endothelial	 injury	 in	 rats	 and	 RhoA/Rho	 kinase	 activation	 in	
stress- treated EC cultures are associated with increased levels of 
biomarkers	found	in	frail	human	adults,	such	as	ADMA,	endothe-
lin 1 and 8- isoprostane, suggesting a possible implication of the 
RhoA/Rho	kinase	pathway	 in	 the	endothelial	dysfunction	occur-
ring in frailty.15–17 However, studies to date have not specifically 
addressed	 the	 direct	 contribution	 of	 RhoA/Rho	 kinase	 pathway	
activation to frailty syndrome or its role in the increased thrombo-
sis risk in frail older adults.

This	review	summarises	the	role	of	RhoA/Rho	kinase	signalling	in	
endothelial dysfunction, thrombosis and vascular aging and its pos-
sible role as a promising therapeutic target for the prevention and 
treatment of CVD in the elderly population.

2  |  POPUL ATION AGING

The world population is ageing rapidly due to increased life expec-
tancy and decreased fertility rates.18,19	World	Health	Organization	
figures	show	that	the	world	population	older	than	60 years	more	
than	 doubled	 from	 382	 million	 in	 1980	 to	 962	 million	 in	 2017	
(11% of the total world population). This figure is projected to 
double again by 2050 to reach nearly 2.1 billion, representing an 
estimated 22% of the total population.1,20 This trend presents 
an immense challenge for health care systems because aging, 
particularly unhealthy aging, entails the loss of intrinsic biologi-
cal capacity and an increased risk of developing chronic diseases 
(including dementia, diabetes, hypertension, obesity and kidney 
disease) and the combination of frailty and dependency charac-
teristic of frailty syndrome21,22 (Figure 1). This compendium of 
ageing- related changes results in significant loss of life quality and 
social activity and a high risk of disability.22–25

F I G U R E  1 Frailty	syndrome.	Frailty	is	
characterised by a significant decrease 
among elderly people in their biological 
capacity to confront the challenges 
of daily life. The multiple factors that 
can trigger the appearance of frailty 
include lifestyle, genetic background, 
environmental quality and the existence 
of co- morbidities. Frailty status is an 
important risk factor for chronic diseases 
associated with old age, which themselves 
promote the development of frailty.
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3  |  FR AILT Y SYNDROME IN OLDER 
ADULTS

Older adults are a highly heterogeneous group, with different 
genetic, biological and environmental backgrounds and life histo-
ries. Consequently, older adults of the same chronological age can 
have different biological ages.22,26 Personal biological age can be 
estimated from a person's frailty index, which is a sensitive pre-
dictor of survival.27–29 The frailty index is a continuous grading of 
age- related deficit accumulation that provides a threshold above 
which the loss of physiological reserve and adaptation capacity 
manifests as functional deterioration.30,31 Since several of the 
biological processes of ageing are modifiable, identifying and pre-
venting frailty syndrome in older people is essential for extending 
healthy lifespan.32,33 The term frailty thus describes a subset of 
older adults who appear weaker and more vulnerable than their 
age- matched counterparts, despite having similar comorbidities 
and demographic characteristics.34

The most widely used measure of frailty is that proposed by 
Linda Fried et al.35	for	a	population	older	than	65 years	and	defined	
as the frailty phenotype. Older adults with frailty syndrome have a 
markedly elevated risk of falls, hospitalisation and death, with frailty 
being one of the best predictors of worsening mobility or difficulty 
in	performing	activities	of	daily	living	(ADL	disabilities).22 Recently, 
a frailty syndrome diagnosis and clinical follow- up scale has been 
developed, called “frailty trait scale”. This scale is based on Fried's 
frailty phenotype but expands its range of evaluation to include all 
domains of the syndrome, providing a helpful tool for research and 
clinical practice.36,37

In an observational study, frailty syndrome was present in 
25%–50%	of	men	and	women	65 years	and	older	with	chronic	dis-
eases such as hypertension, obesity, dyslipidemia, dementia and 
diabetes.38 Frailty syndrome has been proposed as a prognostic 
and risk stratification factor for coronary heart disease and slow 
gait speed (an increased time that a person takes to walk a speci-
fied distance on a surface over a short distance), showing a higher 
association than other parameters (OR: 3.8).35,39–41 In a system-
atic	review	of	9	studies	encompassing	54,250	patients	older	than	
60 years	with	severe	coronary	artery	disease	or	heart	failure,	the	
prevalence of frailty was 50%–54%, and this was associated with 
an	OR	of	1.6	to	4.0	for	all-	cause	mortality	over	a	mean	weighted	
follow-	up	of	6.2 years.42

A	meta-	analysis	of	frailty	syndrome	among	persons	older	than	
60 years	 in	 Latin	 America	 and	 the	 Caribbean	 detected	 a	 mean	
prevalence	of	19.6%	(95%CI	15.4–24.3),	with	values	ranging	from	
7.7%	to	42.6%.43	The	highest	prevalence	in	this	range	(42.6%)	was	
detected in a cohort of 1301 older adults from Santiago, Chile, 
analysed in 2008.44 However, other studies in Chilean adults 
older	 than	 60 years	 in	 the	Maule	 and	 Santiago	Metropolitan	 re-
gions	 reported	 prevalence	 values	 of	 24.6%	 and	 13.9%,	 respec-
tively,45,46	 with	 the	 latter	 value	 similar	 to	 the	 Latin	 American	
average. Nevertheless, these values are much higher than those 
observed in European countries such as Spain (8.4%) and Germany 

(2.8%).2,47 The latter could be related to the socioeconomic and 
quality	 of	 life	 differences	 between	 Latin	 America	 and	 Europe,	
since frailty is related with cognitive functioning, educational level 
and nutritional status in older adults.

4  |  FR AILT Y SYNDROME AND VA SCUL AR 
INJURY

Ageing	 is	 associated	 with	 a	 series	 of	 structural	 and	 molecular	
changes in the vasculature, independently of other cardiovascular 
risk factors.48 These changes involve a disruption of the balance be-
tween vasoconstrictor and vasodilator molecules, which leads to a 
decrease in nitric oxide (NO) availability and an increase in the pro-
duction of reactive oxygen species (ROS) associated with mitochon-
drial dysfunction.49–53 There is also strong experimental and clinical 
evidence that aging is accompanied by low- grade inflammation, 
termed inflammaging.54 Inflammaging has been detected in numer-
ous mouse models and in older human adults and is characterized by 
increased circulating levels of pro- inflammatory interleukins such as 
interleukin	(IL)-	6	and	IL-	1β.55,56

Frailty syndrome has been widely characterised as a pro- 
inflammatory and oxidative phenomenon that promotes vascular 
dysfunction,8,51,57–62 triggering platelet activation and adhesion to 
activated endothelium through increased cytokine release and ex-
pression of adhesion molecules.63 However, knowledge is limited 
about molecular and cellular mechanisms through which frail adults 
develop endothelial dysfunction and its potential role in platelet 
activation. Next, we present the main findings found in frail older 
people.

4.1  |  Platelet activation and thrombosis risk

Thrombosis risk increases significantly with age, and thrombosis is a 
common risk factor of morbidity and mortality in frail older people 
aged	65 years	and	older,64–66 who have an elevated risk of throm-
botic	 events	 (OR:	 1.79,	 95%CI	 1.02–3.13).66 In the initial stage of 
atherosclerosis, platelets adhere to the damaged endothelium and 
secrete molecules that amplify endothelial dysfunction, such as in-
flammatory mediators, chemokines, TNF superfamily factors and 
adhesion proteins.67,68 In the final stage, after plaque rupture, plate-
lets adhere to the damaged endothelium and aggregate to form a 
thrombus, blocking tissue irrigation and oxygenation.69 The patho-
logical mechanisms underlying the elevated thrombosis risk in frail 
older adults are not fully understood.34,70

Evidence acquired in recent years links frailty syndrome to ab-
normalities in platelets that trigger their activation.71–73 Compared 
with healthy young people and non- frail older adults, frail patients 
have higher levels of platelet activation, demonstrated by increased 
P- selectin expression58,74 and a significantly higher increase in the 
binding	of	PAC-	1	(active	glycoprotein	[GP]	IIb/IIIa)	upon	stimulation	
with	1 μM	adenosine	diphosphate	(ADP).72
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The diagnosis of frailty is normally based on specific clinical cri-
teria, and there is a clear need to identify and validate robust bio-
markers for this condition.34 Recent work by our group showed that 
frail	adults	older	than	64 years	have	higher	levels	of	platelet	aggre-
gation and activation (indexed by P- selectin exposure and activated 
GPIIb/IIIa) than age- matched non- frail older adults, as well as higher 
plasma levels of thromboxane B2, 8- isoprostane and growth differ-
entiation factor (GDF)- 15 (a biomarker of mitochondrial dysfunc-
tion and cellular senescence).75	We	have	also	shown	that	frail	older	
adults have higher concentrations of platelet- derived microvesicles 
(P2RY12+/AV+).76 This increased platelet activity in frail adults is as-
sociated with a decreased response to the antiplatelet drug acetyl-
salicylic acid.77,78

Moreover, there is increasing evidence that platelets play a key 
role in the pathogenesis of vascular injury. Circulating activated 
platelets secrete a wide variety of molecules that favour the onset 
and progression of endothelial damage, such as cytokines, chemo-
kines, TNF superfamily ligands, metalloproteinases, and other 
mediators.10,79

4.2  |  Endothelial dysfunction

Endothelial dysfunction is an important contributor to athero-
sclerosis80 and its thrombotic complications.67,81,82 Endothelial 
cells (ECs) are a principal target through which ageing promotes 
vascular deterioration.83 Frailty has been linked to endothe-
lial dysfunction,8 evidenced by increases in key markers: adhe-
sion	 intercellular	 molecule	 1	 (ICAM-	1),78,84 endothelin- 1,85 Von 
Willebrand	 factor	 (VWF),86 thrombomodulin,87	 ADMA,8	 IL-	688 
and c- reactive protein.89	ICAM-	1	and	VWF	favour	platelet	adhe-
sion, whereas endothelin- 1 induces platelet activation in patients 
with coronary heart disease or myocardial infarction.90	As	previ-
ously	mentioned,	ADMA	 is	 an	 endogenous	 inhibitor	 of	NO	 syn-
thase (NOS) and an independent cardiovascular risk factor,91,92 
and	 frailty	 has	 been	 associated	with	 increasing	 levels	 of	 ADMA	
in subjects without atherosclerotic disease.8	Likewise,	IL-	6	and	C-	
reactive protein contribute to the prothrombotic state,93	and	IL-	6	
has been positively associated with frailty in men.94 Besides, C- 
reactive protein increases with age, and increased plasma levels 
have been proposed as a biological component of frailty.95

The term endothelial dysfunction encompasses several forms 
of abnormal endothelial activity, including impaired production 
of messenger molecules and increased expression of proinflam-
matory molecules.96	A	hallmark	of	endothelial	dysfunction	 is	de-
creased NO availability, due either to enhanced inactivation or to 
reduced synthesis.97 One of the most important contributors to 
endothelial dysfunction is oxidative stress, which is characterised 
by an imbalance between the generation of endogenous ROS and 
antioxidant defence mechanisms.98 In fact, frailty and pre- frailty 
seem to be associated with higher oxidative stress,59,99 thus sup-
porting a possible mechanistic basis for associating frailty with 
endothelial dysfunction.

5  |  THE RhoA /RHO KINA SE PATHWAY

The	RhoA	 is	 one	 of	 the	 best-	known	members	 of	 a	 large	 family	
of small GTPases that includes Rho, Rac and Cdc42 members. 
RhoA	and	its	downstream	targets	and	effector	proteins,	the	Rho	
kinases, play important roles in many cellular functions, particu-
larly cellular cytoskeletal reorganization100 (Figure 2). The two 
known	 Rho	 kinase	 isoforms	 are	 ROCK1	 (ROCK	 β)	 and	 ROCK	 2	
(ROCK	α),	which	 share	65%	sequence	homology.	Both	 isoforms	
are	expressed	in	ECs,	with	ROCK1	localized	in	plasma	membrane	
and	 ROCK2	 in	 the	 cytoplasm.101	 In	 ECs,	 the	 RhoA/Rho	 kinase	
pathway inhibits NO production,102 and excessive pathway activ-
ity induces oxidative stress and promotes CVD development.102 
ROCK1	and	ROCK	2	are	both	upregulated	by	angiotensin	II	and	
interleukin 1β,	 but	whereas	ROCK1	 is	 cleaved	by	caspase	3	 (an	
important	step	in	erythroblast	development),	ROCK2	is	cleaved	
by granzyme B released by cytotoxic lymphocytes, basophils, 
mast cells and vascular smooth muscle cells (VSMCs), implicat-
ing thus the inflammatory action of granzyme B in the activation 
of	ROCK2.	Also,	ROCK2	is	the	main	Rho	kinase	 isoform	in	cells	
of the cardiovascular system.102 Previous work from our group 
has	 shown	 that	 abnormal	RhoA/Rho	 kinase	 pathway	 activation	
contributes to multiple pathological processes associated with 
thrombotic complications, such as metabolic syndrome,13 in-
flammatory bowel disease103 and cocaine- related cardiovascular 
pathology.104

6  |  THE RhoA /RHO KINA SE PATHWAY IN 
AGE-  REL ATED FE ATURES OF VA SCUL AR 
DYSFUNC TION

6.1  |  RhoA/Rho kinase in endothelial dysfunction 
and prothrombotic conditions

The	RhoA/Rho	kinase	pathway	is	important	for	normal	endothelial	
homeostasis,	although	studies	with	endothelial-	specific	RhoA	knock-
outs mice demonstrate that its lack of function can be compensated 
during the embryonic development.11 Nevertheless, abnormal activ-
ity can lead to EC dysfunction.105	RhoA/Rho	kinase	signalling	plays	
a pivotal mechanosensory role in actin dynamics in ECs, promoting 
cell contraction and endothelial sensitivity.106 Moreover, it has been 
proposed	that	the	basal	activity	of	RhoA/Rho	kinase	signalling	me-
diates normal intrinsic barrier- protective activity at EC margins, but 
abnormal activation by vasoactive agents (as thrombin) can disrupt 
this barrier, facilitating the breakdown of intercellular junctions and 
increasing endothelial permeability.107

The	RhoA/Rho	kinase	pathway	is	an	important	suppressor	of	en-
dothelial NO synthase (eNOS) and increases oxidative stress.108,109 
RhoA/Rho	kinase	activation	also	upregulates	the	proapoptotic	pro-
tein Bax through the tumour suppressor protein p53 to induce a 
mitochondrial death pathway.110	There	 is	evidence	that	RhoA/Rho	
kinase	pathway	activation	by	PKC	underlies	the	increase	in	arginase	
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I expression and activity induced by oxidative stress in bovine aortic 
ECs, related to a decrease in NO production due to the competition 
with eNOS for the substrate arginine.111

The	 RhoA/Rho	 kinase	 pathway	 is	 involved	 in	 endothelial	
microvasculature damage caused by lipopolysaccharide (LPS). 
The anti- inflammatory effect of catalpol, the major active com-
pound in Rehmannia glutinosa, protects against LPS- induced 
blood–brain	barrier	disruption	by	decreasing	RhoA	and	ROCK2	
mRNA	and	protein	expression,	 reversing	LPS-	induced	cytoskel-
etal actin disaggregation in brain microvascular mouse ECs.112 
In rat pulmonary microvascular ECs, the pro- apoptotic effect of 
LPS	 appears	 to	 be	mediated	 by	 Rho/Rho	 kinase	 with	 JNK	 and	
p38	MAPKs	as	downstream	effectors,	since	the	ROCK	inhibitor	
fasudil	 blocked	 JNK	 and	 p38	 activation	 and	 the	 appearance	 of	
apoptosis markers.113

The	RhoA/Rho	kinase	pathway	 is	also	 involved	 in	 impaired	an-
giogenesis and focal adhesion dysregulation.105,114	 Angiogenesis	
is essential for physiological vascular function and recovery from 

ischemic conditions. In fact, there is a relationship between endo-
thelial dysfunction and impaired NO production with angiogenic 
impairment, which contributes to age- related decline in microvas-
cular density, decreased myocardial blood supply, impaired capacity 
to adapt at hypoxia, and exacerbated ischemic tissue injury.83 Thus, 
impaired angiogenesis is closely related to endothelial dysfunction 
and CVD. Endothelial homeostasis is crucially regulated by the Gα- 
coupled	heptahelical	thromboxane	A2	receptor,	and	the	thrombox-
ane	A2	receptor/Gα13/RhoA/C/Rho	kinase/LIMK2	pathway	inhibits	
VEGF- mediated human umbilical vein EC sprouting and promotes EC 
tension and focal adhesion dysregulation.114

The	RhoA	activity	exerts	an	inhibitory	effect	on	the	angiogenic	
capacity.	 The	 expression	 of	 constitutively	 active	 RhoA	 (G14V/
Q63L)	in	HUVEC	inhibits	endothelial	proliferation,	migration,	tube	
formation and in vitro angiogenic sprouting, which I abrogated 
with	 a	 non-	active	 dominant-	negative	 version	 of	 RhoA	 (T19N).	
However, this induction of endothelial dysfunction and antian-
giogenic	 effects	by	 active	RhoA	 seems	 to	be	 independent	of	 its	

F I G U R E  2 Classical	RhoA/Rho	kinase	pathway.	Different	stimuli	can	induce	RhoA	activation,	through	guanosine	exchange	factors	
(GEF)	or	inhibition	through	GTPase-	activating	protein	(GAP).	Activated	RhoA	interacts	with	the	Rho-	binding	domain	(RBD)	domain	of	Rho	
kinase,	releasing	and	activating	the	kinase	domain.	Activated	Rho	kinase	phosphorylates	multiple	cell	targets,	including	LIM	kinase	(LMK)	
and	myosin	phosphatase	target	subunit	1	(MYTP1).	Phosphorylated	LIMK	phosphorylates,	and	thus	inactivates,	cofilin,	inducing	actin	
polymerization	and	stabilization.	Phosphorylated	MYTP1	is	inactivated,	resulting	in	the	stabilization	of	the	phosphorylated	and	active	form	
of myosin light chain (MLC), thus promoting actomyosin contraction and cell migration.
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downstream	 effectors,	 ROCK	 and	 LIMK.105 On the other hand, 
RhoA/ROCK	pathway	may	be	 involved	 in	pathological	angiogen-
esis. Xueke et al.115 showed that the compound erianin inhibits 
pathological angiogenesis in vitro and neovascularization in vivo in 
a hypoxia- induced retinopathy in adults and embryonic zebrafish, 
by inhibiting collagen binding to α2 and β1 integrins and suppress-
ing	the	intracellular	RhoA/ROCK1	signalling	pathway.	In	the	same	
line,	 Yoshifumi	 et	 al.116	 reported	 that	 ripasudil	 (ROCK	 inhibitor)	
prevented retinal edema, reduced the size of the nonperfusion 
area and improved retinal blood flow in a murine model of retinal 
vein	occlusion	by	suppressing	retinal	phosphorylation	of	MYPT-	1	
and inhibited disorganisation of tight junctions 1 in human retinal 
microvascular endothelial cells. The increase in vascular resistance 
and rigidity is associated with vascular stiffness, and when it is 
deregulated in vascular smooth muscle cells, it is a major cause of 
cardiovascular disorders.117

This	 range	 of	 actions	 establishes	 RhoA/Rho	 kinase	 pathway	
activation and dysregulation as a major cause of ageing- associated 
vascular dysfunction and suggests that it may be an attractive ther-
apeutic target.12	 Studies	with	 specific	RhoA/Rho	kinase	 inhibitors	
have shown multiple benefits, for example in the control of blood 
pressure, decreased cardiac damage in ischemia/reperfusion mod-
els, an enhanced vascular antioxidant response and normalization of 
vascular parameters and NO production in a mouse model of age- 
induced endothelial dysfunction.118–123 In an ex vivo study, Pereira 
et al. demonstrated an increased circulating endothelial cells and an 
increased	activity	of	RhoA	kinase	activity	by	MYPT1-	P/T	phosphor-
ylated in circulating leukocytes from cocaine- dependent individuals 
and	 in	aortic	 cells	 from	cocaine-	treated	 rats.	Atorvastatin	and	 the	
Rho	 kinase	 inhibitor	Y-	27632	protect	 endothelial	 function	 in	 vitro	
by inhibiting pro- adhesive and prothrombotic changes induced by 
cocaine or plasma from chronic cocaine consumers.104,124 These 
data	 suggest	 that	 activation	of	RhoA/Rho	 kinase	pathway	plays	 a	
key role in endothelial dysfunction induced by injuries like cocaine 
consumption and that inhibition of this pathway may provide ther-
apeutic benefits.

6.2  |  RhoA/Rho kinase in increased 
vasoconstriction and hypertension

The	RhoA/Rho	kinase	activation	has	been	observed	in	patients	with	
heart failure, a population with high prevalence of frailty (~79%),	
and the Rho kinase inhibitor fasudil reduces vascular resistance and 
improves vasodilation.125,126	RhoA/Rho	kinase	activation	in	arteries	
has also been shown in mouse models of aging127 and has been sug-
gested to contribute to age- related blood pressure elevation, pos-
sibly via greater peripheral vasoconstrictor tone in older adults.128 
There	are	also	several	studies	linking	RhoA/Rho	kinase	to	both	natu-
ral and induced senescence in various cell types, including annulus 
fibrosus cells,129 kidney cells,130 internal anal sphincter smooth mus-
cle cells,131 corpus callosum cells132 and mesenteric arterial smooth 
muscle.133

There	 is	 also	 abundant	 evidence	 implicating	 the	 RhoA/Rho	
kinase pathway in VSMC hypercontraction, VSMC proliferation 
and migration in the media, inflammatory cell accumulation in 
the adventitia, inhibition of NO production and increased ox-
idative stress.134–137 In another study, the vascular proteome of 
wild-	type	male	C57BL/6	mice	was	analysed	by	hierarchical	clus-
tering to detect proteins showing significant age- related changes. 
In	 this	 analysis,	 several	 proteins	 associated	 with	 the	 RhoA/Rho	
kinase pathway showed changes consistent with hypertension 
and	cerebral	perfusion	dysregulation,	suggesting	that	the	RhoA/
Rho kinase pathway is an important target for age- dependent 
hypertension.138

The	 RhoA/Rho	 kinase	 pathway	 has	 been	 linked	 to	 age-	
dependent VSMC dysfunction, including the age- associated de-
crease in contractile function. In soleus muscle feed arteries from 
aged	(24-	month-	old)	rats,	elevated	levels	of	pROCK1	and	pROCK2	
were associated with depressed contractile ability, α- actin stress 
fibres, recruitment of proteins to cell- matrix adhesions and an in-
crease in integrin adhesion to the matrix related with increased 
cell stiffness.139	 In	 mouse	 VSMCs,	 a	 non-	canonical	 Wnt5a/RhoA	
activation pathway shows a putative association with age- related 

F I G U R E  3 RhoA/Rho	kinase	pathway	
activation in age- related vascular disease. 
Abnormal	activation	of	the	RhoA/Rho	
kinase pathway has been linked to aging 
and cellular senescence. Frailty syndrome, 
directly related with unhealthy ageing, 
may	increase	the	risk	of	abnormal	RhoA/
Rho kinase activation, in turn triggering 
pathological cell mechanisms that lead to 
age- related vascular disease and promote 
a prothrombotic status in elderly people. 
MLC, myosin light chain; OE, oxidative 
stress; VSMCs, vascular smooth muscle 
cells.
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salt- sensitive hypertension by increasing calcium sensitivity trig-
gered	by	the	decline	in	the	protein	Klotho	with	age.140	The	RhoA/
Rho kinase pathway has also been linked to vascular reactivity and 
dysregulation associated with phenylephrine- induced vasoconstric-
tion.	In	aging	spontaneously	hypertensive	rats,	ROCK-	2	expression	
and activity are excessively increased, accompanied by decreased 
myosin light chain phosphatase (MLCP) activity and an increase in 
phosphorylated MLC, leading in turn to increased α1- adrenergic- 
induced vasoconstriction.133

7  |  CONCLUSIONS

The	RhoA/Rho	kinase	pathway	is	a	crucial	signalling	component	in	
the vascular system and particularly in ECs and has been extensively 
studied in diverse pathophysiological settings, including endothelial 
dysfunction, impaired angiogenesis, inflammation and apoptosis. In 
recent years, attention has focused on the emerging association be-
tween	RhoA/Rho	kinase	signalling	components	and	cell	senescence	
and ageing in diverse cell types. However, further research is needed 
to	define	the	role	of	the	RhoA/Rho	kinase	pathway	in	vascular	aging.	
The	findings	reviewed	here	suggest	that	RhoA/Rho	kinase	pathway	
activity in endothelial dysfunction is highly relevant to frailty syn-
drome and could provide a promising route to the development of 
therapeutic interventions to prevent vascular aging (Figure 3).
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