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1  |  INTRODUC TION

The progressive ageing of the world population is resulting in a 
higher prevalence of age-related disorders, including frailty and car-
diovascular disease (CVD).1,2 In recent decades, frailty has emerged 

as an underlying health condition that largely explains the most 
concerning health problems in older adults, which include hospital-
isation, disability, falls and a high mortality risk.3 Initially confined 
to the elderly, frailty now increasingly affects younger individuals, 
in whom it shows a strong association with multimorbidity and, as 
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Abstract
The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell 
functions and pathological processes in the vascular system that contribute to the age-
dependent risk of cardiovascular disease, including endothelial dysfunction, excessive 
permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, de-
creased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve 
and adaptive capacity with advanced age and is accompanied by a pro-inflammatory 
and pro-oxidative state that promotes vascular dysfunction and thrombosis. This re-
view summarises the role of the RhoA/Rho kinase signalling pathway in endothelial 
dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also 
discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic 
target for the prevention and treatment of age-related cardiovascular disease.
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in the elderly population, is an important risk factor for harmful 
events.4 These findings position frailty as an important focus of pub-
lic health efforts.

Frailty syndrome describes a clinically recognisable complex 
state in older adults who exhibit increased vulnerability and de-
pendency caused by gradual and progressive abnormal function-
ing of multiple organ systems.5 In recent years, there has been 
a growing interest in the two-way relationship between frailty 
syndrome and CVD.6,7 The disability precipitated by frailty con-
tributes to the appearance of CVD in the elderly; conversely, clin-
ical and subclinical vascular disease are risk factors for frailty.6,7 
This interaction between vascular alterations and frailty appears 
to operate from early stages, with the risk of frailty showing an 
association with elevated levels of the endothelial dysfunction 
marker ADMA (asymmetric dimethylarginine) in individuals with-
out atherosclerotic disease.8 ADMA is a metabolic byproduct of 
the continuous metabolism of proteins in the organism and acts 
as a competitive inhibitor of the enzyme eNOS. Therefore, it is 
commonly used as endogenous marker of endothelial dysfunc-
tion.9 This association suggest a relevant role of vascular system 
dysfunction as one of the main mechanisms leading to frailty. 
Progression from endothelial dysfunction to thrombus forma-
tion is dependent on platelet adhesion, since the alteration of 
endothelium-platelet interaction is a well-recognized contributor 
to prothrombotic states.10 However, there has been little research 
into the relationship between endothelial dysfunction in frail el-
derly people and the early actions of platelets before thrombotic 
cardiovascular events such as myocardial infarction and stroke. 
Identification of the mechanisms underlying endothelial and/or 
platelet alterations that lead to cardiovascular events in frailty 
could contribute to measures to detect, treat and prevent CVD 
risk in frail elderly people.

Rho GTPases regulate multiple cellular processes, such as cy-
toskeletal reorganisation, cell migration, microtubule dynamics, 
signal transduction and gene expression,11 and there is a large 

body of evidence that activation of the RhoA/Rho kinase path-
way plays a major role in various forms of CVD and acts as a con-
vergent node in the pathogenesis of endothelial dysfunction.12–14 
Endothelial injury in rats and RhoA/Rho kinase activation in 
stress-treated EC cultures are associated with increased levels of 
biomarkers found in frail human adults, such as ADMA, endothe-
lin 1 and 8-isoprostane, suggesting a possible implication of the 
RhoA/Rho kinase pathway in the endothelial dysfunction occur-
ring in frailty.15–17 However, studies to date have not specifically 
addressed the direct contribution of RhoA/Rho kinase pathway 
activation to frailty syndrome or its role in the increased thrombo-
sis risk in frail older adults.

This review summarises the role of RhoA/Rho kinase signalling in 
endothelial dysfunction, thrombosis and vascular aging and its pos-
sible role as a promising therapeutic target for the prevention and 
treatment of CVD in the elderly population.

2  |  POPUL ATION AGING

The world population is ageing rapidly due to increased life expec-
tancy and decreased fertility rates.18,19 World Health Organization 
figures show that the world population older than 60 years more 
than doubled from 382 million in 1980 to 962 million in 2017 
(11% of the total world population). This figure is projected to 
double again by 2050 to reach nearly 2.1 billion, representing an 
estimated 22% of the total population.1,20 This trend presents 
an immense challenge for health care systems because aging, 
particularly unhealthy aging, entails the loss of intrinsic biologi-
cal capacity and an increased risk of developing chronic diseases 
(including dementia, diabetes, hypertension, obesity and kidney 
disease) and the combination of frailty and dependency charac-
teristic of frailty syndrome21,22 (Figure  1). This compendium of 
ageing-related changes results in significant loss of life quality and 
social activity and a high risk of disability.22–25

F I G U R E  1 Frailty syndrome. Frailty is 
characterised by a significant decrease 
among elderly people in their biological 
capacity to confront the challenges 
of daily life. The multiple factors that 
can trigger the appearance of frailty 
include lifestyle, genetic background, 
environmental quality and the existence 
of co-morbidities. Frailty status is an 
important risk factor for chronic diseases 
associated with old age, which themselves 
promote the development of frailty.
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3  |  FR AILT Y SYNDROME IN OLDER 
ADULTS

Older adults are a highly heterogeneous group, with different 
genetic, biological and environmental backgrounds and life histo-
ries. Consequently, older adults of the same chronological age can 
have different biological ages.22,26 Personal biological age can be 
estimated from a person's frailty index, which is a sensitive pre-
dictor of survival.27–29 The frailty index is a continuous grading of 
age-related deficit accumulation that provides a threshold above 
which the loss of physiological reserve and adaptation capacity 
manifests as functional deterioration.30,31 Since several of the 
biological processes of ageing are modifiable, identifying and pre-
venting frailty syndrome in older people is essential for extending 
healthy lifespan.32,33 The term frailty thus describes a subset of 
older adults who appear weaker and more vulnerable than their 
age-matched counterparts, despite having similar comorbidities 
and demographic characteristics.34

The most widely used measure of frailty is that proposed by 
Linda Fried et al.35 for a population older than 65 years and defined 
as the frailty phenotype. Older adults with frailty syndrome have a 
markedly elevated risk of falls, hospitalisation and death, with frailty 
being one of the best predictors of worsening mobility or difficulty 
in performing activities of daily living (ADL disabilities).22 Recently, 
a frailty syndrome diagnosis and clinical follow-up scale has been 
developed, called “frailty trait scale”. This scale is based on Fried's 
frailty phenotype but expands its range of evaluation to include all 
domains of the syndrome, providing a helpful tool for research and 
clinical practice.36,37

In an observational study, frailty syndrome was present in 
25%–50% of men and women 65 years and older with chronic dis-
eases such as hypertension, obesity, dyslipidemia, dementia and 
diabetes.38 Frailty syndrome has been proposed as a prognostic 
and risk stratification factor for coronary heart disease and slow 
gait speed (an increased time that a person takes to walk a speci-
fied distance on a surface over a short distance), showing a higher 
association than other parameters (OR: 3.8).35,39–41 In a system-
atic review of 9 studies encompassing 54,250 patients older than 
60 years with severe coronary artery disease or heart failure, the 
prevalence of frailty was 50%–54%, and this was associated with 
an OR of 1.6 to 4.0 for all-cause mortality over a mean weighted 
follow-up of 6.2 years.42

A meta-analysis of frailty syndrome among persons older than 
60 years in Latin America and the Caribbean detected a mean 
prevalence of 19.6% (95%CI 15.4–24.3), with values ranging from 
7.7% to 42.6%.43 The highest prevalence in this range (42.6%) was 
detected in a cohort of 1301 older adults from Santiago, Chile, 
analysed in 2008.44 However, other studies in Chilean adults 
older than 60 years in the Maule and Santiago Metropolitan re-
gions reported prevalence values of 24.6% and 13.9%, respec-
tively,45,46 with the latter value similar to the Latin American 
average. Nevertheless, these values are much higher than those 
observed in European countries such as Spain (8.4%) and Germany 

(2.8%).2,47 The latter could be related to the socioeconomic and 
quality of life differences between Latin America and Europe, 
since frailty is related with cognitive functioning, educational level 
and nutritional status in older adults.

4  |  FR AILT Y SYNDROME AND VA SCUL AR 
INJURY

Ageing is associated with a series of structural and molecular 
changes in the vasculature, independently of other cardiovascular 
risk factors.48 These changes involve a disruption of the balance be-
tween vasoconstrictor and vasodilator molecules, which leads to a 
decrease in nitric oxide (NO) availability and an increase in the pro-
duction of reactive oxygen species (ROS) associated with mitochon-
drial dysfunction.49–53 There is also strong experimental and clinical 
evidence that aging is accompanied by low-grade inflammation, 
termed inflammaging.54 Inflammaging has been detected in numer-
ous mouse models and in older human adults and is characterized by 
increased circulating levels of pro-inflammatory interleukins such as 
interleukin (IL)-6 and IL-1β.55,56

Frailty syndrome has been widely characterised as a pro-
inflammatory and oxidative phenomenon that promotes vascular 
dysfunction,8,51,57–62 triggering platelet activation and adhesion to 
activated endothelium through increased cytokine release and ex-
pression of adhesion molecules.63 However, knowledge is limited 
about molecular and cellular mechanisms through which frail adults 
develop endothelial dysfunction and its potential role in platelet 
activation. Next, we present the main findings found in frail older 
people.

4.1  |  Platelet activation and thrombosis risk

Thrombosis risk increases significantly with age, and thrombosis is a 
common risk factor of morbidity and mortality in frail older people 
aged 65 years and older,64–66 who have an elevated risk of throm-
botic events (OR: 1.79, 95%CI 1.02–3.13).66 In the initial stage of 
atherosclerosis, platelets adhere to the damaged endothelium and 
secrete molecules that amplify endothelial dysfunction, such as in-
flammatory mediators, chemokines, TNF superfamily factors and 
adhesion proteins.67,68 In the final stage, after plaque rupture, plate-
lets adhere to the damaged endothelium and aggregate to form a 
thrombus, blocking tissue irrigation and oxygenation.69 The patho-
logical mechanisms underlying the elevated thrombosis risk in frail 
older adults are not fully understood.34,70

Evidence acquired in recent years links frailty syndrome to ab-
normalities in platelets that trigger their activation.71–73 Compared 
with healthy young people and non-frail older adults, frail patients 
have higher levels of platelet activation, demonstrated by increased 
P-selectin expression58,74 and a significantly higher increase in the 
binding of PAC-1 (active glycoprotein [GP] IIb/IIIa) upon stimulation 
with 1 μM adenosine diphosphate (ADP).72
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The diagnosis of frailty is normally based on specific clinical cri-
teria, and there is a clear need to identify and validate robust bio-
markers for this condition.34 Recent work by our group showed that 
frail adults older than 64 years have higher levels of platelet aggre-
gation and activation (indexed by P-selectin exposure and activated 
GPIIb/IIIa) than age-matched non-frail older adults, as well as higher 
plasma levels of thromboxane B2, 8-isoprostane and growth differ-
entiation factor (GDF)-15 (a biomarker of mitochondrial dysfunc-
tion and cellular senescence).75 We have also shown that frail older 
adults have higher concentrations of platelet-derived microvesicles 
(P2RY12+/AV+).76 This increased platelet activity in frail adults is as-
sociated with a decreased response to the antiplatelet drug acetyl-
salicylic acid.77,78

Moreover, there is increasing evidence that platelets play a key 
role in the pathogenesis of vascular injury. Circulating activated 
platelets secrete a wide variety of molecules that favour the onset 
and progression of endothelial damage, such as cytokines, chemo-
kines, TNF superfamily ligands, metalloproteinases, and other 
mediators.10,79

4.2  |  Endothelial dysfunction

Endothelial dysfunction is an important contributor to athero-
sclerosis80 and its thrombotic complications.67,81,82 Endothelial 
cells (ECs) are a principal target through which ageing promotes 
vascular deterioration.83 Frailty has been linked to endothe-
lial dysfunction,8 evidenced by increases in key markers: adhe-
sion intercellular molecule 1 (ICAM-1),78,84 endothelin-1,85 Von 
Willebrand factor (VWF),86 thrombomodulin,87 ADMA,8 IL-688 
and c-reactive protein.89 ICAM-1 and VWF favour platelet adhe-
sion, whereas endothelin-1 induces platelet activation in patients 
with coronary heart disease or myocardial infarction.90 As previ-
ously mentioned, ADMA is an endogenous inhibitor of NO syn-
thase (NOS) and an independent cardiovascular risk factor,91,92 
and frailty has been associated with increasing levels of ADMA 
in subjects without atherosclerotic disease.8 Likewise, IL-6 and C-
reactive protein contribute to the prothrombotic state,93 and IL-6 
has been positively associated with frailty in men.94 Besides, C-
reactive protein increases with age, and increased plasma levels 
have been proposed as a biological component of frailty.95

The term endothelial dysfunction encompasses several forms 
of abnormal endothelial activity, including impaired production 
of messenger molecules and increased expression of proinflam-
matory molecules.96 A hallmark of endothelial dysfunction is de-
creased NO availability, due either to enhanced inactivation or to 
reduced synthesis.97 One of the most important contributors to 
endothelial dysfunction is oxidative stress, which is characterised 
by an imbalance between the generation of endogenous ROS and 
antioxidant defence mechanisms.98 In fact, frailty and pre-frailty 
seem to be associated with higher oxidative stress,59,99 thus sup-
porting a possible mechanistic basis for associating frailty with 
endothelial dysfunction.

5  |  THE RhoA /RHO KINA SE PATHWAY

The RhoA is one of the best-known members of a large family 
of small GTPases that includes Rho, Rac and Cdc42 members. 
RhoA and its downstream targets and effector proteins, the Rho 
kinases, play important roles in many cellular functions, particu-
larly cellular cytoskeletal reorganization100 (Figure  2). The two 
known Rho kinase isoforms are ROCK1 (ROCK β) and ROCK 2 
(ROCK α), which share 65% sequence homology. Both isoforms 
are expressed in ECs, with ROCK1 localized in plasma membrane 
and ROCK2 in the cytoplasm.101 In ECs, the RhoA/Rho kinase 
pathway inhibits NO production,102 and excessive pathway activ-
ity induces oxidative stress and promotes CVD development.102 
ROCK1 and ROCK 2 are both upregulated by angiotensin II and 
interleukin 1β, but whereas ROCK1 is cleaved by caspase 3 (an 
important step in erythroblast development), ROCK2 is cleaved 
by granzyme B released by cytotoxic lymphocytes, basophils, 
mast cells and vascular smooth muscle cells (VSMCs), implicat-
ing thus the inflammatory action of granzyme B in the activation 
of ROCK2. Also, ROCK2 is the main Rho kinase isoform in cells 
of the cardiovascular system.102 Previous work from our group 
has shown that abnormal RhoA/Rho kinase pathway activation 
contributes to multiple pathological processes associated with 
thrombotic complications, such as metabolic syndrome,13 in-
flammatory bowel disease103 and cocaine-related cardiovascular 
pathology.104

6  |  THE RhoA /RHO KINA SE PATHWAY IN 
AGE- REL ATED FE ATURES OF VA SCUL AR 
DYSFUNC TION

6.1  |  RhoA/Rho kinase in endothelial dysfunction 
and prothrombotic conditions

The RhoA/Rho kinase pathway is important for normal endothelial 
homeostasis, although studies with endothelial-specific RhoA knock-
outs mice demonstrate that its lack of function can be compensated 
during the embryonic development.11 Nevertheless, abnormal activ-
ity can lead to EC dysfunction.105 RhoA/Rho kinase signalling plays 
a pivotal mechanosensory role in actin dynamics in ECs, promoting 
cell contraction and endothelial sensitivity.106 Moreover, it has been 
proposed that the basal activity of RhoA/Rho kinase signalling me-
diates normal intrinsic barrier-protective activity at EC margins, but 
abnormal activation by vasoactive agents (as thrombin) can disrupt 
this barrier, facilitating the breakdown of intercellular junctions and 
increasing endothelial permeability.107

The RhoA/Rho kinase pathway is an important suppressor of en-
dothelial NO synthase (eNOS) and increases oxidative stress.108,109 
RhoA/Rho kinase activation also upregulates the proapoptotic pro-
tein Bax through the tumour suppressor protein p53 to induce a 
mitochondrial death pathway.110 There is evidence that RhoA/Rho 
kinase pathway activation by PKC underlies the increase in arginase 
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I expression and activity induced by oxidative stress in bovine aortic 
ECs, related to a decrease in NO production due to the competition 
with eNOS for the substrate arginine.111

The RhoA/Rho kinase pathway is involved in endothelial 
microvasculature damage caused by lipopolysaccharide (LPS). 
The anti-inflammatory effect of catalpol, the major active com-
pound in Rehmannia glutinosa, protects against LPS-induced 
blood–brain barrier disruption by decreasing RhoA and ROCK2 
mRNA and protein expression, reversing LPS-induced cytoskel-
etal actin disaggregation in brain microvascular mouse ECs.112 
In rat pulmonary microvascular ECs, the pro-apoptotic effect of 
LPS appears to be mediated by Rho/Rho kinase with JNK and 
p38 MAPKs as downstream effectors, since the ROCK inhibitor 
fasudil blocked JNK and p38 activation and the appearance of 
apoptosis markers.113

The RhoA/Rho kinase pathway is also involved in impaired an-
giogenesis and focal adhesion dysregulation.105,114 Angiogenesis 
is essential for physiological vascular function and recovery from 

ischemic conditions. In fact, there is a relationship between endo-
thelial dysfunction and impaired NO production with angiogenic 
impairment, which contributes to age-related decline in microvas-
cular density, decreased myocardial blood supply, impaired capacity 
to adapt at hypoxia, and exacerbated ischemic tissue injury.83 Thus, 
impaired angiogenesis is closely related to endothelial dysfunction 
and CVD. Endothelial homeostasis is crucially regulated by the Gα-
coupled heptahelical thromboxane A2 receptor, and the thrombox-
ane A2 receptor/Gα13/RhoA/C/Rho kinase/LIMK2 pathway inhibits 
VEGF-mediated human umbilical vein EC sprouting and promotes EC 
tension and focal adhesion dysregulation.114

The RhoA activity exerts an inhibitory effect on the angiogenic 
capacity. The expression of constitutively active RhoA (G14V/
Q63L) in HUVEC inhibits endothelial proliferation, migration, tube 
formation and in  vitro angiogenic sprouting, which I abrogated 
with a non-active dominant-negative version of RhoA (T19N). 
However, this induction of endothelial dysfunction and antian-
giogenic effects by active RhoA seems to be independent of its 

F I G U R E  2 Classical RhoA/Rho kinase pathway. Different stimuli can induce RhoA activation, through guanosine exchange factors 
(GEF) or inhibition through GTPase-activating protein (GAP). Activated RhoA interacts with the Rho-binding domain (RBD) domain of Rho 
kinase, releasing and activating the kinase domain. Activated Rho kinase phosphorylates multiple cell targets, including LIM kinase (LMK) 
and myosin phosphatase target subunit 1 (MYTP1). Phosphorylated LIMK phosphorylates, and thus inactivates, cofilin, inducing actin 
polymerization and stabilization. Phosphorylated MYTP1 is inactivated, resulting in the stabilization of the phosphorylated and active form 
of myosin light chain (MLC), thus promoting actomyosin contraction and cell migration.
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downstream effectors, ROCK and LIMK.105 On the other hand, 
RhoA/ROCK pathway may be involved in pathological angiogen-
esis. Xueke et  al.115 showed that the compound erianin inhibits 
pathological angiogenesis in vitro and neovascularization in vivo in 
a hypoxia-induced retinopathy in adults and embryonic zebrafish, 
by inhibiting collagen binding to α2 and β1 integrins and suppress-
ing the intracellular RhoA/ROCK1 signalling pathway. In the same 
line, Yoshifumi et  al.116 reported that ripasudil (ROCK inhibitor) 
prevented retinal edema, reduced the size of the nonperfusion 
area and improved retinal blood flow in a murine model of retinal 
vein occlusion by suppressing retinal phosphorylation of MYPT-1 
and inhibited disorganisation of tight junctions 1 in human retinal 
microvascular endothelial cells. The increase in vascular resistance 
and rigidity is associated with vascular stiffness, and when it is 
deregulated in vascular smooth muscle cells, it is a major cause of 
cardiovascular disorders.117

This range of actions establishes RhoA/Rho kinase pathway 
activation and dysregulation as a major cause of ageing-associated 
vascular dysfunction and suggests that it may be an attractive ther-
apeutic target.12 Studies with specific RhoA/Rho kinase inhibitors 
have shown multiple benefits, for example in the control of blood 
pressure, decreased cardiac damage in ischemia/reperfusion mod-
els, an enhanced vascular antioxidant response and normalization of 
vascular parameters and NO production in a mouse model of age-
induced endothelial dysfunction.118–123 In an ex vivo study, Pereira 
et al. demonstrated an increased circulating endothelial cells and an 
increased activity of RhoA kinase activity by MYPT1-P/T phosphor-
ylated in circulating leukocytes from cocaine-dependent individuals 
and in aortic cells from cocaine-treated rats. Atorvastatin and the 
Rho kinase inhibitor Y-27632 protect endothelial function in  vitro 
by inhibiting pro-adhesive and prothrombotic changes induced by 
cocaine or plasma from chronic cocaine consumers.104,124 These 
data suggest that activation of RhoA/Rho kinase pathway plays a 
key role in endothelial dysfunction induced by injuries like cocaine 
consumption and that inhibition of this pathway may provide ther-
apeutic benefits.

6.2  |  RhoA/Rho kinase in increased 
vasoconstriction and hypertension

The RhoA/Rho kinase activation has been observed in patients with 
heart failure, a population with high prevalence of frailty (~79%), 
and the Rho kinase inhibitor fasudil reduces vascular resistance and 
improves vasodilation.125,126 RhoA/Rho kinase activation in arteries 
has also been shown in mouse models of aging127 and has been sug-
gested to contribute to age-related blood pressure elevation, pos-
sibly via greater peripheral vasoconstrictor tone in older adults.128 
There are also several studies linking RhoA/Rho kinase to both natu-
ral and induced senescence in various cell types, including annulus 
fibrosus cells,129 kidney cells,130 internal anal sphincter smooth mus-
cle cells,131 corpus callosum cells132 and mesenteric arterial smooth 
muscle.133

There is also abundant evidence implicating the RhoA/Rho 
kinase pathway in VSMC hypercontraction, VSMC proliferation 
and migration in the media, inflammatory cell accumulation in 
the adventitia, inhibition of NO production and increased ox-
idative stress.134–137 In another study, the vascular proteome of 
wild-type male C57BL/6 mice was analysed by hierarchical clus-
tering to detect proteins showing significant age-related changes. 
In this analysis, several proteins associated with the RhoA/Rho 
kinase pathway showed changes consistent with hypertension 
and cerebral perfusion dysregulation, suggesting that the RhoA/
Rho kinase pathway is an important target for age-dependent 
hypertension.138

The RhoA/Rho kinase pathway has been linked to age-
dependent VSMC dysfunction, including the age-associated de-
crease in contractile function. In soleus muscle feed arteries from 
aged (24-month-old) rats, elevated levels of pROCK1 and pROCK2 
were associated with depressed contractile ability, α-actin stress 
fibres, recruitment of proteins to cell-matrix adhesions and an in-
crease in integrin adhesion to the matrix related with increased 
cell stiffness.139 In mouse VSMCs, a non-canonical Wnt5a/RhoA 
activation pathway shows a putative association with age-related 

F I G U R E  3 RhoA/Rho kinase pathway 
activation in age-related vascular disease. 
Abnormal activation of the RhoA/Rho 
kinase pathway has been linked to aging 
and cellular senescence. Frailty syndrome, 
directly related with unhealthy ageing, 
may increase the risk of abnormal RhoA/
Rho kinase activation, in turn triggering 
pathological cell mechanisms that lead to 
age-related vascular disease and promote 
a prothrombotic status in elderly people. 
MLC, myosin light chain; OE, oxidative 
stress; VSMCs, vascular smooth muscle 
cells.
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salt-sensitive hypertension by increasing calcium sensitivity trig-
gered by the decline in the protein Klotho with age.140 The RhoA/
Rho kinase pathway has also been linked to vascular reactivity and 
dysregulation associated with phenylephrine-induced vasoconstric-
tion. In aging spontaneously hypertensive rats, ROCK-2 expression 
and activity are excessively increased, accompanied by decreased 
myosin light chain phosphatase (MLCP) activity and an increase in 
phosphorylated MLC, leading in turn to increased α1-adrenergic-
induced vasoconstriction.133

7  |  CONCLUSIONS

The RhoA/Rho kinase pathway is a crucial signalling component in 
the vascular system and particularly in ECs and has been extensively 
studied in diverse pathophysiological settings, including endothelial 
dysfunction, impaired angiogenesis, inflammation and apoptosis. In 
recent years, attention has focused on the emerging association be-
tween RhoA/Rho kinase signalling components and cell senescence 
and ageing in diverse cell types. However, further research is needed 
to define the role of the RhoA/Rho kinase pathway in vascular aging. 
The findings reviewed here suggest that RhoA/Rho kinase pathway 
activity in endothelial dysfunction is highly relevant to frailty syn-
drome and could provide a promising route to the development of 
therapeutic interventions to prevent vascular aging (Figure 3).
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