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Abstract

Filariasis, a neglected tropical disease caused by roundworms, is a significant public health

concern in many tropical countries. Microscopic examination of blood samples can detect

and differentiate parasite species, but it is time consuming and requires expert microsco-

pists, a resource that is not always available. In this context, artificial intelligence (AI) can

assist in the diagnosis of this disease by automatically detecting and differentiating microfi-

lariae. In line with the target product profile for lymphatic filariasis as defined by the World

Health Organization, we developed an edge AI system running on a smartphone whose

camera is aligned with the ocular of an optical microscope that detects and differentiates

filarias species in real time without the internet connection. Our object detection algorithm

that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed

with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30

cases with 484 fields of view and 873 labels for model validation before clinical validation, is

able to detect microfilariae at 10x magnification and distinguishes four species of them at

40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi.

We validated our augmented microscopy system in the clinical environment by replicating

the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of

the AI models analyzing 18 samples with the AI running on a middle range smartphone. It

achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the

screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algo-

rithm respectively. This innovative solution has the potential to support filariasis diagnosis

and monitoring, particularly in resource-limited settings where access to expert technicians

and laboratory equipment is scarce.
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Author summary

Filariasis is a common tropical infectious disease. Depending on the parasite, it causes

lymphoedema, elephantiasis, itching, blindness, etc. It is estimated that more than 1 bil-

lion people require preventive chemotherapy to stop the spread of this infection. The diag-

nosis of this disease is made through microscopical examination of a blood smear by a

human expert, which is not always available. In this study we propose an edge Artificial

Intelligence (AI) system that detects and quantifies four species of microfilariae (Loa loa,

Mansonella perstans, Wuchereria bancrofti and Brugia malayi) using the camera of a

smartphone attached to an optical microscope with a 3D printed adapter. The system

works in real time and does not need internet connectivity as the AI models are run locally

in a medium range smartphone. We have replicated the diagnostic workflow that is typi-

cally performed by an expert microscopist augmented by the support of the AI system.

1. Introduction

Filariasis is a tropical infectious disease caused by roundworms (Phylum Nematoda). There

are at least eight filarial worms that are hosted in humans. These are the causative agents of

four types of diseases: lymphatic filariasis, which is caused by Wuchereria bancrofti, Brugia
malayi, and Brugia timori; Onchocerciasis, caused by Onchocerca volvulus; loiasis, caused by

Loa loa; and mansonellosis, caused by Mansonella perstans, Mansonella ozzardi, and Manso-
nella streptocerca. Among these, lymphatic filariasis and onchocerciasis have significant clini-

cal and public health implications and are included in the World Health Organization (WHO)

list of Neglected Tropical Diseases, while loiasis and mansonellosis have historically received

much less attention [1–3].

In 2000, the WHO launched the Global Programme for the Elimination of Lymphatic Fila-

riasis (GPELF), which set the goal of eliminating lymphatic filariasis as a public health problem

in 58 countries by 2030 [4]. The program achieved a considerable reduction, but there are still

863 million people in 50 countries who require preventive chemotherapy (PC) [5]. Similarly,

onchocerciasis affects over 20.9 million people, with at least 220 million in need of PC [6].

However, L. loa infection is hindering the elimination of lymphatic filariasis and onchocercia-

sis, as these diseases use ivermectin in massive drug administration (MDA), but ivermectin

causes severe adverse effects when the individual has elevated levels of L. loa in the blood [7,8].

Studies have reported that M. perstans is the most prevalent filariasis in Africa, with more

than 100 million people estimated to be infected and 600 million living in 33 high-risk coun-

tries [9], yet it is one of the most neglected filariasis [2,3,10], and there are no control programs

for it.

The correct diagnosis and appropriate treatment are paramount for the effective control

and elimination of parasites and their approach depends on the filarias type. In addition to the

ongoing elimination programme for lymphatic filariasis and onchocerciasis, there have been

increasing calls for the treatment and control programme for mansonellosis and loasis in

recent years [11–13]. WHO recommends utilizing the Alere Filariasis Test Strip (FTS) for all

areas endemic for W. bancrofti and Brugia Rapid Test for all areas endemic for Brugia spp.

However, these tests are species-specific and do not account for co-infections [14]. Molecular

diagnosis methods have also been applied in surveillance studies with good results but without

possibilities to perform on site [15]. Microscopy remains the most widely used technique for

all filarial species, enabling the detection of microfilariae through blood smears or skin snips.
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The routine examination is the screening at low magnification (10x magnification) and then

uses higher magnification to identify the species (e.g., 40x). The sample should be scanned

completely at 10x magnification to report the sample as negative [16]. Nonetheless, the diagno-

sis by microscopy is time-consuming and requires experienced microscopists, whose availabil-

ity is not always assured [17,18]. In that sense, different studies revealed the importance of

mobile health (mHealth) to bring diagnostics to the point of care and scale access in low and

middle-income countries (LMICs) [19–21]. Notably, several investigations reported the use of

mobile microscopy for parasite detection, such as LoaScope, which is a point-of-care micro-

scope that detects L. loa microfilaria in blood smears automatically in video [22,23] or Schisto-

Scope, a mobile phone microscope for the screening of Schistosoma haematobium [24].

A possible tool to address the lack of trained specialists is the detection of parasites in

microscopic images using Artificial Intelligence (AI). AI is revolutionizing the medical field

and can be applied in different medical subfields [25,26]. The development of AI algorithms

for microscopy depends on the digitization samples, which can be done using digital micro-

scopes that have embedded cameras, converting a conventional optical microscope to a digital

microscope using mobile phones or other image acquisition modules.

In a recent review by Fan et al. focusing on AI applications for peripheral blood films, 95

studies addressed malaria, 81 leukaemia, 72 leukocytes, 25 mixed cell types, 15 erythrocytes,

and 1 Myelodysplastic syndrome. Beyond the scope of peripheral blood films, limited attention

was given to babesiosis, leishmania, trypanosomiasis, etc. However, no work specifically

addressing filariasis was identified in this review [27]. Beside that, our research found numer-

ous studies reporting the detection of parasites in microscopical images, revealing the potential

of AI in this task. Quinn et al. created one of the first deep learning algorithms that consists of

a four layer convolutional neural network (CNN) for malaria image classification from scratch.

For that, they used a 3D printed adapter that aligns the mobile phone camera to the micro-

scope eyepiece [28]. Davidson et al. presented a 3 phases analysis to detect and count malaria

parasites and its life cycle stage. The first phase detects red blood cells using the Faster RCNN

object detection algorithm, then crops the detected cell and feeds it to a ResNet50 to classify if

the detected cell is infected, and finally classify the life cycle stage of the infected cell using

ResNet-34. They achieved 98.5% average precision in detecting RBCs and 99.8% in classifying

the detected cells into infected or uninfected, and mean square error of 0.23 in the stage classi-

fication. Images in this study were acquired by manually aligning the mobile phone camera to

the microscope eyepiece [29]. Similarly, Holmström et al. presented a deep learning algorithm

for the detection of soil-transmitted helminths (STH) and Schistosoma haematobium with a

custom microscope scanner and the commercially available image analysis software platform

WebMicroscope [30]. Dacal et al. presented an object detection algorithm using Single-Shot

multibox Detection (SSD) for STH that runs on a smartphone [31]. Oyibo et al. presented an

automated microscope with an image segmentation algorithm using a u-net architecture for

Schistosoma haematobium [32]. Dedhiya et al. introduced the first study that uses machine

learning over thermal imaging to predict the viability of onchocerca worms. In this work, they

used five separated random forest classifiers and the final classification was obtained using a

voting mechanism [33]. D’Ambrosio et al. presented an algorithm which detects L. loa micro-

filaria in video by subtracting subsequent frames of the video, then generating a single differ-

ence image and using a local peak-finding routine to find microfilariae. They correlated the

automated counts with manual counts and achieved 94% specificity and 100% sensitivity [22].

Elvana et al. presented a lymphatic filariasis detection system using CNN, achieving an accu-

racy of 70% [34]. As far as we know, there have been very few attempts to deploy edge-AI sys-

tems using deep learning which are able to support in real-time and without connectivity the
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analysis of optical microscopy images for filaria detection with species differentiation and

more broadly NTDs diagnostics.

The objective of this study is to propose, develop, and pilot a system for real-time, auto-

matic detection and quantification of filariasis using an edge AI model. The proposed sys-

tem aims to assist the screening and species differentiation of four worm species (L. loa, M.

perstans, W. bancrofti and B. malayi) in blood smears for filariasis. For that, we proposed a

pipeline with the following modules: the digitization of smear samples with smartphones

coupled to a microscope through a 3D-printed device; sample analysis and data labeling in a

telemedicine platform for training of an AI algorithm; integration of the trained algorithm

on the smartphone to assist the diagnosis and validation of the model in a clinical

environment.

2. Materials and methods

2.1 Ethics statement

Ethical approval was obtained from the Research Ethics Committee (REC) Instituto de Salud

Carlos III, Spain (CEI PI 74_2020).

2.2 Overview of the methodology

The study was conducted in two distinct phases. The initial phase involved digitizing blood

smear samples to construct the database for the development of AI algorithms with 115 sam-

ples. In the subsequent phase, the AI model was integrated on the smartphone and a pilot

study was conducted to evaluate the AI’s performance on real world settings with a new dataset

of 18 samples. The study design schema is presented in Fig 1.

All preparations included in the study were appropriately stained, positive and with well-

preserved parasite morphology. Samples with varying levels of parasitemia and species were

chosen based on results obtained from polymerase chain reaction (PCR) and/or conventional

microscopy, ensuring the collection of both positive and negative fields of view. Additionally,

the staining type and sample preparation details were systematically compiled.

Fig 1. Schematic representation of the study design.

https://doi.org/10.1371/journal.pntd.0012117.g001
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2.3 Creating a Filariasis differentiation AI model

2.3.1 Digitalize samples. In the initial phase, a total of 115 sample smears from 115 differ-

ent subjects were collected from the sample collection of the Malaria and Emerging Protozoa

Unit of the Instituto de Salud Carlos III (Spain). In addition, all preparations have been previ-

ously anonymized without the possibility of reverse coding. 112 of them were stained with

Giemsa and 3 of them with Panopticon. Case distributions were presented in Table 1.

Images were digitized simulating the real diagnostic workflow, with a system previously

described in Dacal et al. [31]. Briefly, this system uses a 3D printed device that allows coupling

a mobile phone with a conventional optical microscope by aligning the smartphone camera

with the objective of the microscope to acquire images, and that converts any conventional

microscope into a digital microscope. Following the conventional workflow, the analyst

scanned the samples at 10x magnification and captured photos of fields containing structures

compatible with filarial parasites. Subsequently, the objective was switched to 40x magnifica-

tion, and photos of each detected parasite were taken. Slides were digitized using four different

smartphone models (Huawei Ascend G7; (n = 95 cases), Redmi Note7 (n = 13 cases), Samsung

Galaxy A32; (n = 5 cases), LG X Power K220; (n = 1 case), Huawei Nova 5T (n = 1 case)). In

total, 873 FoV (images) of 10x and 1514 FoV (images) of 40x were captured.

To evaluate the AI model’s capacity to generalize and address the issue of overfitting while

ensuring accurate performance report, a case-level split was employed. This approach ensures

that all images from the same case belong to the same dataset, whether used for training the AI

model or validating its performance. The split is carried out after labelling the images to guar-

antee that all species are presented in both the training and validation sets. The cases are dis-

tributed randomly, striving to achieve an 80%-20% split between the two sets.

2.3.2 Labeling data. All acquired images were transferred from the smartphone to a tele-

medicine platform via mobile network, so that the images are stored and presented in an easy-

to-use dashboard that allows their visualization, management, and labeling (Fig 2). In this web

platform, standard clinical and analysis protocols were translated into digital tasks that were

adapted to the clinical case and disease under study.

The annotation protocol was based on the placement of bounding boxes around the identi-

fied parasites. All visible parasites in the image were labeled by two analysts and reviewed by

an expert. At 10x magnification, as the species can’t be identified, all detected parasites belong

to the microfilariae class. A total of 2293 parasites were located from 873 images. At 40x mag-

nification, the parasite species were annotated with their corresponding class. A total of 1651

parasites were tagged from 1514 images. In addition, some artifacts that have a similar appear-

ance to the parasite were labeled, which serves as a hard negative for the algorithm training.

The labeled data was divided into a training set for model development and a validation set

for selecting the best model, as shown in Table 2. The training set for 10x images consists of

Table 1. Cases included in the first phase and the training-validation split.

Parasite Number of cases Training set Validation set

L. loa 19 11 8

M. perstans 43 37 6

W. bancrofti 9 5 4

B. malayi 6 4 2

L. loa + M. perstans 20 18 2

Negative 18 10 8

Total 115 85 30

https://doi.org/10.1371/journal.pntd.0012117.t001
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1965 microfilariae from 700 images, while the validation set for 10x images contains 328

microfilariae from 173 images (FoVs). In the training set for 40x images, there are 906 L. loa,

378 M. perstans, 35 W. bancrofti, and 58 B. malayi parasites from 1203 images, while the vali-

dation set includes 138 L. loa, 102 M. perstans, 29 W. bancrofti, and 5 B. malayi parasites from

311 images belonging to 30 cases.

2.3.3 Creating the AI model. A requirement for our AI model is that it can work offline

or in limited bandwidth settings. To fulfill this requirement, we selected a lightweight model

that can be run on a smartphone in real-time without internet connection. Given the multifac-

eted nature of the task, encompassing object localization, classification and counting, an object

detection algorithm would be an appropriate solution. Specifically, we employed the Single-

Shot Detection (SSD) MobileNet V2 detection model with a feature pyramid network as fea-

ture extractor, shared box prediction and focal loss [35–37].

The SSD is a real-time object detection and localization algorithm comprising two funda-

mental components: feature map extraction and the application of convolutional filters to

Fig 2. The telemedicine platform facilitates image visualization, management, and labeling. When an AI algorithm is deployed, analysts have the

option to review the predictions rather than starting the labeling process from scratch.

https://doi.org/10.1371/journal.pntd.0012117.g002

Table 2. Label distribution of microfilaria species in the training and validation sets.

Labels total training validation

Microfilaria (10x) 2293 1965 328

L. loa (40x) 1044 906 138

M. perstans (40x) 480 378 102

W. bancrofti (40x) 64 35 29

B. malayi (40x) 63 58 5

https://doi.org/10.1371/journal.pntd.0012117.t002
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detect objects. A simplified representation of SSD is illustrated in Fig 3. The feature extraction

process leverages MobileNet V2, which encompasses a total of 52 convolutional layers. Mobile-

Net V2 is structured around 16 bottleneck residual blocks, with each block having two 2D con-

volutional layers and one depthwise convolution layer. The output of MobileNet V2 then

undergoes refinement through five additional feature blocks. These supplementary layers are

designed to combine features from earlier layers, characterized by a low level of semantic

information but a high spatial resolution, with later layers that possess high semantic informa-

tion but a reduced spatial resolution. This fusion of features is facilitated through lateral con-

nections, ultimately enhancing object detection accuracy. Finally, the processed data is

directed through the convolutional box predictor to generate both bounding box predictions

and class predictions.

In the context of object detection, CNN often generates thousands of candidate regions.

However, only a few regions actually contain objects of interest, while the majority represent

background elements. This class imbalance presents a significant challenge, as it can lead to

training inefficiency. Notably, easy negatives, which correspond to background regions, con-

stitute a substantial proportion of the total candidate regions, potentially overwhelming the

loss function used during training. To mitigate this class imbalance issue, focal loss emerges as

an enhanced alternative to the conventional cross-entropy loss. Focal loss addresses class

imbalance by assigning higher weights to hard-to-classify examples and down-weighting easier

examples. This strategic adjustment helps focus the learning process on challenging cases,

thereby improving the efficiency and effectiveness of object detection models.

Tensorflow object detection application programming interface (API) was used for model

training because tensorflow has natively optimized the model to be executed in mobile phones

and edge devices, whose code is publicly available on github [38,39]. Given the relatively small

size of our dataset, we used a pre-trained model that was trained with the COCO image

Fig 3. Simplified SSD MobileNet v2 detection architecture. MobileNet V2 initiates with one convolutional layer, succeeded by a depthwise convolutional

layer and another convolutional layer. It is subsequently followed by 16 bottleneck residual blocks (green), each comprising two 2D convolutional layers and

one depthwise convolutional layer, concluding with an additional convolutional layer. The SSD feature extractor is further enhanced by integrating five

additional feature extractor blocks (purple). The resultant features are passed through a convolutional box predictor block (gray), which is responsible for

predicting both the location and class of each detection.

https://doi.org/10.1371/journal.pntd.0012117.g003
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database [40] and fine-tuned for this use case. The models were trained on Amazon Sage-

maker, using the NVIDIA T4 GPU with 16 GB memory.

Two distinct algorithms were developed. The first algorithm, designed for screening at 10x

magnification, focuses solely on detecting the presence of microfilariae. The second algorithm,

developed for microfilaria species differentiation at 40x magnification, aims to classify the

detected microfilariae into four species: L. loa, M. perstans, W. bancrofti, and B. malayi.
Given the alignment of the smartphone with the microscope eyepiece, the area visualized

by the mobile phone is limited to a circular area, as depicted in Fig 2. In order to exclude non-

informative regions (e.g., black areas), and to present other relevant information on the mobile

phone screen (e.g., label count, AI activation, etc), we decided to use square images instead of

rectangular images.

For the species differentiation algorithm that works with 40x magnification, we initially

identify the circular region within the image and extract a square image encompassing the

entire field of view, as illustrated on Fig 4A. Subsequently, the cropped region was resized to

640x640 pixels. The reviewed data was splitted into two sets at case level as described above.

As Table 2 reflects, this dataset contains 1044 L. loa, 480 M. perstans, but only 64 W. ban-
crofti and 63 B. malayi in total, to address the imbalance nature of the dataset, oversampling of

the minority classes (W. bancrofti and B. malay, and some L. Loa) was employed by generating

mosaic images, which consists of cropping a 320x320 pixel patches that contains at least one

parasite, and blending 4 images to create a new image of 640x640 pixels (see Fig 5). After aug-

mentation, the training set contains 1116 L. loa, 378 M. perstans, 480 W. bancrofti and 533 B.

malayi. Additional image augmentation, including random horizontal and vertical flip, 90

degree rotation with 50% of probability, random crop ensuring that the cropped image has a

minimum area of the 80% of the original image, random brightness adjustment with a

Fig 4. (a): example input of the species differentiation algorithm. (b): green rectangle represents the sliding windows size.

https://doi.org/10.1371/journal.pntd.0012117.g004

PLOS NEGLECTED TROPICAL DISEASES Edge Artificial Intelligence for filariasis quantification

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012117 April 17, 2024 8 / 19

https://doi.org/10.1371/journal.pntd.0012117.g004
https://doi.org/10.1371/journal.pntd.0012117


maximum range of 30%, random hue adjustment with a maximum range of 10%, and random

saturation adjustment with a saturation factor between 0.8 and 1.25, was applied during train-

ing to enhance the model’s robustness. The model was trained with a batch size of 2. Training

employed the momentum optimizer, initialized with a learning rate of 0.01. To enhance train-

ing dynamics, a cosine decay strategy was employed, spanning a total of 50,000 training steps.

This training required approximately 5 hours to complete.

In the screening algorithm that works with 10x magnification, a distinct strategy was imple-

mented for image cropping in comparison to the species differentiation algorithm. Given the

relatively small size of the parasite in 10x magnification, its visualization and detection pose

challenges for both human analysts and AI systems, necessitating the use of zoom. To optimize

the visibility of the parasite and maximize the size of the image, we decided to crop the original

image to the square inscribed within the circle as depicted in Fig 4B. As it can be appreciated,

a single crop of the inner square leaves some valuable information out. To overcome this limi-

tation, we employed the sliding window technique, where 4 patches were generated for each

image, ensuring that all the information within the field of view is represented. Then, patches

were resized to 640x640 to fit the requirements set by the network used. The same data aug-

mentation was applied as in the species differentiation algorithm. After data augmentation, the

number of microfilariae in the training set increased from 328 to 10847, whereas the validation

set was unmodified. The model was trained with a batch size of 2. Training employed the

momentum optimizer, initialized with a learning rate of 0.01. To enhance training dynamics, a

cosine decay strategy was employed, spanning a total of 20,000 training steps. This training

required approximately 2 hours to complete.

2.4. Validation of the AI model in a lab setting

To assess the usability and performance of the proposed system within the clinical workflow, a

lab validation was conducted. For that, we first deployed the model on the smartphone, and

then piloted the AI assisted diagnosis workflow.

Fig 5. Mosaic augmentation. The original image is 640x640 pixels, for each image, we randomly select an area of 320x320 pixels that contains at least one

parasite (green rectangle), using 4 cropped areas we compose a new mosaic image.

https://doi.org/10.1371/journal.pntd.0012117.g005
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2.4.1 Deployment and integration of technology. The AI mobile model was optimized

using post-training quantization, which is a conversion technique that reduces model size

while also improving CPU and hardware accelerator latency, with little degradation on model

accuracy. The model is exported as a tflite format, with a size of approximately 13 megabytes,

which can be run on a middle range smartphone in real time. The execution time on BQ

Aquaris X2 on CPU is 1400 milliseconds for a single image, while the Samsung S9, utilizing

the GPU, accomplished the task in 610 milliseconds.

To facilitate the process of digitization and AI-assisted analysis, a customized Android

application was developed. The application is not specifically for this research, but a propri-

etary platform that can be downloaded in Google play store. This application records both

clinical data and images. While the user visualizes the image on the mobile phone screen,

the selected AI algorithm, screening or species differentiation is running in real time

depending on the magnification used (10x or 40x), generating predictions for the corre-

sponding frame, and outlining the detected parasites within bounding boxes. When the

user takes a photo, both the images and the prediction are saved, and the parasite detection

counter is incremented no matter if the prediction is correct or not. In the case that the user

finds parasites not detected by the AI algorithm, they can tap on the button of the corre-

sponding label to increase the count of this parasite. Once the analysis is finished, this infor-

mation is uploaded to the telemedicine platform, allowing users to review and correct the

prediction and share information. Fig 6 explains how the smartphone is attached to the

conventional microscope and the screening and species differentiation algorithm running

on the smartphone. With AI running in real time, the analyst moves the sample and ana-

lyzes it with AI assistance [41,42].

Fig 6. (a) smartphone attached to the conventional microscope with a 3D printed adapter. (b) screening algorithm working on the smartphone. (c) species

differentiation working on the smartphone.

https://doi.org/10.1371/journal.pntd.0012117.g006
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2.4.2 Experiment- Pilot replicating diagnostic workflow. To assess the performance of

the AI models, a real-time pilot study was conducted to evaluate the effectiveness of the edge

AI system in assisting parasite detection through the mobile application.

To pilot the proposed system, the algorithm developed in the first phase was integrated on

the mobile phone and the telemedicine platform to be validated. For all selected samples

(N = 18), Fig 7 represents the ideal workflow: with the AI algorithm operating in real time, the

analyst examines the complete sample using a 10x magnification objective. Depending on

whether the algorithm detects a parasite, different actions are taken. When a parasite is identi-

fied by the AI algorithm, the analyst captures a photo and the detected parasites are automati-

cally counted by the app, and switches to a 40x magnification objective. At this point, the

species differentiation algorithm is activated to discern the specific species of the detected par-

asites, a photo is taken to count the parasite. In cases where parasites are present on the screen

but not detected by the screening AI, the analyst manually adds the count by tapping on the

corresponding label. Since the mobile application did not allow modification of the incorrect

prediction, both images and the mobile prediction were uploaded to the telemedicine platform

for further correction and validation. The results were independently reviewed by two analysts:

analyst A, a junior researcher in parasitology, who analyzed images on real time using the

mobile application; and analyst B, an expert in microscopy of infectious diseases and who only

reviewed the digitized image on the telemedicine platform.

The evaluation of the algorithm’s performance was based on precision (P), which measures

the proportion of correctly identified objects among all the objects predicted by the model;

recall (R), which measures the proportion of the correctly identified objects among all the

ground truth objects; and F1 score, a combined metric that takes into account both precision

and recall to provide a single value that represents the overall performance. Object detection

algorithms have capabilities that go beyond classification algorithms, being able to detect mul-

tiple objects as well as their location and size within the image, in the form of bounding boxes.

Therefore, to compute those metrics, additional considerations must be put in place. For each

proposed bounding box with confidence score greater than 50%, it is considered as a true posi-

tive (TP) if the intersection over union with the ground truth is greater than 0.5 and the class is

correct. Conversely, if the predicted area corresponds to artifacts or other parasites class then

it is considered as false positive (FP). Furthermore, ground truth boxes that were not proposed

by the algorithm were categorized as false negatives (FN). True negative (TN) were not com-

puted as all areas without predictions are considered TN.

Precision ¼
TP

TP þ FP
ð1Þ

Fig 7. Schema represents the validation workflow of AI assisted filariae detection. At least 3 images of negative fields were acquired for each sample.

https://doi.org/10.1371/journal.pntd.0012117.g007
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Recall ¼
TP

TPþ FN
ð2Þ

F1score ¼ 2
P∗R
P þ R

ð3Þ

3. Results

3.1 Evaluation of the AI model performance

The performance assessment of the model was conducted on the validation set with 30 cases as

described in Table 1. The screening algorithm, designed to work with 10x magnification,

achieved a precision of 88.17%, recall of 91.62%, and an F1 score of 89.85%. On the other

hand, the species differentiation algorithm achieved a weighted precision of 84.08%, recall of

95.33%, and an F1 score of 94.70%. Breaking down the results per class, the precision rates

were 94.85% for L. loa, 97.03% for M. perstans, 94.00% for W. bancrofti, and 66.67% for B.

malayi. The corresponding recall rates were 93.48%, 96.08%, 97.92%, and 92.31% respectively.

The resulting confusion matrix of the species differentiation algorithm that works with 40x

magnification is presented in Table 3. It should be noted that the AI algorithm was not specifi-

cally trained with artifact labels. To avoid the confusion with artifacts, areas on the image that

may look like a parasite (e.g., mycelium, fibers) were included in the training dataset as nega-

tive examples without specifying the class. However, in order to increase performance, it could

be possible to create additional classes for the different structures that might lead to false posi-

tives, like hair or mycelium.

3.2 Validation of the AI-assisted mobile app

For the pilot study, a total of independent 18 samples from different subjects with respect to

the ones used for training and validation were analyzed with AI assistance on the mobile

phone by analyst A. 452 field of views of 10x magnification and 624 field of views of 40x mag-

nification were analyzed on the mobile phone, uploaded to the telemedicine platform, and

reviewed by another analyst, generating the ground truth to evaluate the model performance

in real time.

To assess the potential benefits of reviewing AI analysis and its impact on inter-observer

variability and time, we shuffled and split the uploaded images into four groups, 10x magnifi-

cation with AI and without AI assistance (232 images with AI and 220 images without AI),

and 40x magnification with and without AI assistance (320 images with AI and 304 images

Table 3. Confusion matrix of the species differentiation algorithm (40x) on the validation set, each row represents the ground truth, and each column represents

the prediction. The model may predict the artifacts as a parasite (false positive), but the analysts did not label all artifacts.

AI Predictions

Artifact L. loa M. perstans W. bancrofti B. malayi
Ground truth Artifact - 7 3 2 3

L. loa 6 129 0 1 1

M. perstans 4 0 98 0 0

W. bancrofti 0 0 0 47 1

B. malayi 1 0 0 0 12

https://doi.org/10.1371/journal.pntd.0012117.t003
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without AI). Both analysts analyze the two groups without AI assistance -10x without AI and

40x without AI—from scratch and analyze the two groups with AI assistance -10x with AI and

40x with AI—by reviewing the prediction generated by the AI on the smartphone. This

allowed us to investigate the potential time-saving benefits and the potential reduction in

inter-observer variability provided by AI assistance.

3.2.1 Real-time AI-Performance. The analysis conducted by analyst B, who has greater

expertise compared to analyst A, was considered as the ground truth for our evaluation.

According to analyst B, at 10x magnification, out of the 452 digitized images examined, 280

were identified as positive, indicating the presence of at least one parasite, while 172 were

determined to be negative. The parasite count reported by analyst B and the AI for each image

is significantly correlated, with a pearson correlation coefficient of 0.984. At parasite level, the

screening algorithm achieved an overall performance of 94.14% precision, 91.90% recall, and

93.01% F1-score. In the context of differentiating between parasite species, according to ana-

lyst B, out of the 624 images assessed, 511 were classified as positive and 113 as negative. The

parasite count reported by analyst B and the AI for each image is also significantly correlated

for species differentiation algorithm, with a pearson correlation coefficient of 0.953. The AI

algorithm demonstrated an overall precision of 95.46%, recall of 97.81%, and F1-score of

96.62% in this regard. The per-class precision values were determined as 98.80% for L. loa,

60.00% for M. perstans, 100.00% for W. bancrofti, and 58.97% for B. malayi. The correspond-

ing recall rates were calculated as 98.50%, 100.00%, 76.00%, and 100.00%, respectively. Table 4

presents the confusion matrix of the AI model in relation to analyst B’s analysis.

3.2.2 Inter-observer variability. To assess inter-observer variability, we compared the

total number of parasites detected in each sample by analyst B and analyst A, both with and

without AI assistance, and the results are presented in Table 5. Two-tailed t-test is used to ana-

lyze statistical significance. Additionally, we compared the parasite count of each image gener-

ated by the AI system with the count provided by analyst B (considered as the ground truth).

This comparison allowed us to analyze the performance and agreement between the analysts

and the AI system in identifying and quantifying parasites.

The results reported by both analysts are strongly correlated. The Pearson correlation coef-

ficient between analyst A and analyst B when analyzing without AI is 0.990 for the screening

algorithm and 0.992 for species differentiation algorithm. Similarly, when analyzing with AI

assistance, the correlation coefficients are 0.994 and 0.997 respectively. Notably, the correlation

coefficients are slightly higher when analysts utilize AI assistance during their assessments.

Furthermore, it is noteworthy that there is a high correlation between the parasite counts

reported by the AI model and analyst B. The minimum Pearson correlation coefficient

observed in this comparison was 0.928, further indicating a strong correlation between their

reported counts.

Table 4. Performance of the AI algorithm on pilot study using mobile phone. Each row represents the ground truth and each column represents the AI prediction.

AI predictions

Artifact (10x) Microfilaria (10x) Artifact (40x) L. loa (40x) M. perstans (40x) W. bancrofti (40x) B. malayi (40x)

Ground truth Artifact (10x) - 53

Microfilaria 75 851

Artifact (40x) - 8 10 0 13

L. loa 10 658 0 0 0

M. perstans 0 0 15 0 0

W. bancrofti 3 0 0 19 3

B. malayi 0 0 0 0 23

https://doi.org/10.1371/journal.pntd.0012117.t004
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3.2.3 Analysis time. In addition to evaluating the performance of the edge AI system, we

also analyzed the potential time-saving effect of AI assistance on the telemedicine platform.

We compared the time required for analysts to review AI predictions versus the time needed

for labeling from scratch. Both analysts were asked to review 524 images without AI assistance,

and then 524 different images with AI assistance. As shown in Table 6, for Analyst A, the anal-

ysis time significantly decreased from an average of 23.5 seconds per image to just 3.5 seconds

per image when utilizing AI assistance. However, it should be noted that the analysis time for

Analyst B remained unchanged.

4. Discussion and conclusion

This study introduces the first real-time edge AI deployment on smartphones to assist in the

screening and species differentiation for filarial samples in mobile microscopy and validated it

in a clinical setting. To create and validate the AI powered mobile application, we proposed a

methodology that encompasses an image digitization system, a telemedicine platform to visu-

alize and annotate images, a training and deployment pipeline, and an Android application to

deploy AI models.

Diagnosis is an essential part of the monitorization of the effect of MDA, which is a recom-

mended strategy to control or eliminate several neglected tropical diseases, including filariasis.

Microscopy is a widely used technique for filariasis diagnosis, as it can distinguish parasite spe-

cies, but it requires expert microscopists, and is time-consuming. Numerous studies have

incorporated AI to aid in the diagnosis of microscopic images, targeting mostly malaria image

analysis [43,44]—a recent review has identified 95 publications for malaria [27] -, and more

recently also appeared works that deals with STH and schistosomiasis [24,32,45–48], leishman-

iasis [49], Chagas diseases [50,51], etc. The number of studies in this topic is very limited, but

have yielded promising outcomes, aiming to facilitate the diagnosis of these diseases in LMICs.

For example, Yu et al. evaluated a malaria screener employing a custom CNN to detect Plas-

modium falciparum using a smartphone on both thin and thick blood smears. Developed with

150 patients and 50 healthy subjects, the model achieved an accuracy of 74.1% compared to

expert microscopy on a test set of 190 patients, meeting the WHO level 3 requirement for para-

site detection [43,52,53]. Armstrong et al. proposed an object detection algorithm using

ResNet101 to detect Schistosoma eggs on Google Pixel 4. Developed with 205 patients, the

model achieved a sensitivity of 91%, a specificity of 85%, and an inference time of 6s [24]. Li

et al. presented a study with 1122 patients with a total of 22,444 images. The model trained

with 15,700 images from 785 patients, detects visible components on human feces using an

object detection algorithm with ResNet 152 as backbone, achieving a mean average precision

Table 5. Inter-observer agreement of detected parasites when analyzing with and without AI assistance of 2

experts and of the AI. Two-tailed t-test indicates that the analysis of analist A and B are significantly correlated.* p-

value<0.05.

With AI Without AI

10x 0.994* 0.990*
40x 0.997* 0.992*

https://doi.org/10.1371/journal.pntd.0012117.t005

Table 6. Average analysis time in seconds for both analysts with and without AI assistance for each image.

without AI assistance with AI assistance

Analyst A 23.5 3.5

Analyst B 12 12

https://doi.org/10.1371/journal.pntd.0012117.t006
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of 92.16% and mean average recall of 93.56% on a test set with 6740 images from 337 patients

[46]. Gonçalves et al. proposed the use of a u-net to segment human visceral leishmaniasis par-

asites on bone marrow samples. Developed with 150 images with 559 parasites (70% for train-

ing, 10% for validation and 20% for testing), the model achieved a Dice coefficient of 80.4%

[49]. Morais et al. proposed the detection of chagas parasites using graph based segmentation

algorithm and random forest. Developed with 33 mice samples with 1314 parasites (80% for

training and 20% for testing), achieving a precision of 87.6% and a recall of 90.5% [50]. Very

few studies attempted to automate filarias parasite detection detecting microfilariae, without

distinguishing species [22,34]. The only preliminary proof of concept study that uses AI to

detect microfilariae is proposed by Elvana et. al, who used a small database with 210 images

and a custom CNN with 8 convolutional layers, achieving 70% accuracy [34].

With respect to these prior works, our proposal allows us to replicate the full diagnostic

workflow including 10x and 40x examinations, successfully distinguishing between different

microfilariae species, making it particularly valuable in co-endemic areas where multiple spe-

cies are prevalent. Our system also operates in real-time (610 milliseconds on Samsung S9)

without the internet connection, enabling its deployment at the point of care and not relying

on expensive or hard to find hardware as it can be utilized with any conventional microscope

and low- to middle-end mobile phones, making it accessible and affordable. The system is eas-

ily scalable, as it is deployed on smartphones.

The AI system that we propose follows the conventional workflow, screening the sample at

10x magnification and differentiating species at 40x magnification. Hence, two algorithms

were deployed for each use case using 85 samples, which were first validated on 30 samples to

assess the model performance and then deployed to the clinical environment to evaluate the

whole system usability. The validation in the clinical environment was conducted by analyzing

18 samples with the AI model running on mobile phone in real time, achieving an overall pre-

cision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and

95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively.

In the inter-observer variability and analysis time comparison, we found that with AI assis-

tance the correlation between two analysts increased slightly, and the analysis time reduced for

the junior researcher in parasitology while it remained unchanged for the expert in infectious

diseases microscopy.

It is important to highlight that our AI algorithm didn’t incorporate all filarias species detect-

able in blood, B. timori and M. ozzardi were not available. The former is important to be moni-

tored in order to decide when to stop the existing mass drug administration program for

lymphatic filariasis [54]. Regarding the latter, it shares a geographical distribution overlap with

M. perstans [55]. Since our model didn’t include M. ozzardi, it can not differentiate between M.

ozzardi from M. perstans, but the screening algorithm should detect the microfilaria even if it is

M ozzardi. With the increasing calls for the mansonellosis treatment and control program

[11,12], the inclusion of those species will further improve the utility of our AI model. It should

be also noted that our study has a limited sample size in general, especially for W. bancrofti, and

B. malayi (35, 58 labels for training respectively). Despite that, our algorithm achieved high pre-

cision and recall, even though the performance fluctuates a lot for minority classes. Additionally,

the fact that all samples come from one research center may introduce bias and reduce generaliz-

ability of our algorithm, performing worse in samples from other centers, due to the sample

preparation, etc. To address these limitations, future research will approach a multi-centric

study, including training and validating samples from different research centers, involving more

analysts, and including B. timori and M. ozzardi species. Such an extensive validation process

would help to assess the robustness and generalizability of the AI system across various real-

world settings and conditions to guarantee readiness for deployment to the local health centres.

PLOS NEGLECTED TROPICAL DISEASES Edge Artificial Intelligence for filariasis quantification

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012117 April 17, 2024 15 / 19

https://doi.org/10.1371/journal.pntd.0012117


In conclusion, the presented system can assist the diagnosis of filariasis in resource-con-

strained settings, particularly when healthcare workers are scarce, by transforming any optical

microscope into an intelligent point-of-care device. The system is easily scalable, as it is

deployed on smartphones. This approach could reduce the dependency of highly specialized

personnel as we can empower community health workers to contribute to filariasis control.

Additionally, the system’s telemedicine platform provides the opportunity for seeking second

opinions and quality control in cases of diagnostic uncertainty, enhancing overall accuracy.

The platform also can be used as an epidemiological surveillance platform, contributing to the

tracking and the monitoring of the prevalence and distribution of filariasis. Furthermore, our

system can be expanded to other neglected tropical diseases by collecting samples of other dis-

eases, with the vision of creating a universal AI model for parasite detection. We also believe

that future AI supporting systems will be multi-modal, incorporating a wide range of clinical

inputs from diverse data sources beyond imaging, such as medical text or speech, enhancing

the accuracy and generating comprehensible diagnostic interfaces reports [56,57]. The current

AI revolution in medicine should also be viewed as an opportunity for NTDs.
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Ledesma-Carbayo, José M. Rubio, Miguel Luengo-Oroz.

Data curation: Lin Lin, Elena Dacal, Nuria Dı́ez, Claudia Carmona, Alexandra Martin

Ramirez, Lourdes Barón Argos, David Bermejo-Peláez.

Formal analysis: Lin Lin, Elena Dacal.

Funding acquisition: Elena Dacal, Maria Postigo, Andrés Santos, Marı́a Jesús Ledesma-Car-
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