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Modeling the spatial risk of malaria through probability distribution of Anopheles 3 

maculipennis s.l. and imported cases  4 

 5 

 6 

Methods for entomological data collection and molecular identification of sibling species 7 

In Spain, 14 Anopheles species have been historically reported in the literature, but only three 8 

species within the Maculipennis complex are currently present: A. maculipennis, A. atroparvus, 9 

and A. melanoon (1,2). Members of the A. maculipennis complex are prevalent and well-10 

distributed in Europe and are considered the most important vectors of human malaria in Western 11 

Europe (3). The identification of sibling species within this complex is challenging as adults are 12 

virtually morphologically indistinguishable, and the existence of incomplete reproductive barriers 13 

among members of the complex has been observed (4). Although some clues to separate adults 14 

from the sibling species have been proposed based on the scales, shape, and size of wing 15 

morphology, further morphometric studies have suggested the ambiguity of these attributes given 16 

the existence of variation among different populations (5). Nowadays, recent and modern DNA 17 

techniques, mostly based on the Internal Transcribed Spacer 2 (ITS2) region, have been 18 

implemented in many countries to determine the presence of the different sibling species of the 19 

Maculipennis complex (6). 20 

Larvae and adult stages of A. maculipennis s.l. were collected using different methodologies and 21 

were grouped into five main categories: BG-Sentinel (19.4%) with lures (CO2 or odour attractant), 22 

ii) Centre for Disease Control and Prevention (CDC) miniature light traps with or without CO2 23 

(51.1%), iii) direct aspiration or sweeping (0.8%), iv) larvae dipping (14.1%) and v) others 24 

(14.6%). Anopheline data from inappropriate methods to collect this genus, such as ovitraps and 25 

aquatic nets, were not included in the analysis.  26 

To determine the relative prevalence of the different A. maculipennis sibling species, 121 27 

specimens were collected from a reasonable number of locations across the Spanish peninsular 28 

territory. These specimens were subjected to molecular analysis using a PCR-RFLP protocol (5,7). 29 
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We amplified the Internal Transcribed Spacer 2 (ITS2) region of ribosomal DNA using the primers 30 

5.8S (5’-ATC ACT CGG CTC GTG GAT CGAT-3’) and 28S (5’-ATG CTT AAA TTT AGG 31 

GGG TAG TC-3’) (Linton et al. 2002). PCR was carried out in 25 μl reaction volumes containing 32 

1X Buffer, 2,5 mM MgCl2, 0,2 mM dNTPs (Bioline, Cincinatti, Ohaio, USA), 0.5 μM of each 33 

primer, and 1 Unit of Taq Polymerase (BIOTAQTM DNA polymerase, Bioline, Cincinatti, Ohaio, 34 

USA). The thermal cycling conditions were: 94°C for 5 min, followed by 35 cycles of 94°C for 30 35 

sec, 53°C for 30 sec, and 72°C for 30 sec, and a final extension at 72°C for 7 min. The PCR product 36 

was further processed with a RFLP protocol that allows distinguishing between A. atroparvus, A. 37 

labranchiae, A. maculipennis and A. melanoon based on fragment sizes. We first carried out a 38 

restriction reaction with the enzyme, HHAI (Fisher Scientific, Waltham, Massachusetts, USA). 39 

We added 5 μl of each ITS2 PCR product to 1X restriction enzyme buffer and 1.25 Units of HHA1 40 

enzyme, for a total volume of 20 μl, and incubated the reaction for 3 h at 37°C. We checked the 41 

digested fragments on a 2% agarose gel. After this digestion, the RFLP expected sizes were A. 42 

atroparvus (389 bp fragment), A. melanoon (fragments with 108 bp and 135 bp), and A. 43 

labranchiae/A. maculipennis (300 bp). For those reactions showing fragments around 300 bp, we 44 

carried out a new enzymatic reaction using the enzyme HPAII (Fisher Scientific). After this 45 

enzymatic digestion, the expected RFLP sizes were A. labranchiae (279 bp fragment) and A. 46 

maculipennis (201 bp fragment). The information on the presence of the different sibling species 47 

was completed with previously published information from molecular studies using the same or a 48 

similar methodology to identify to species level the A. maculipennis complex species (80 extra 49 

specimens) (Figure S2).  50 

https://paperpile.com/c/5WK7S6/oqQD
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Figure S1. Distribution of sample points of A. maculipennis s.l. in Spain in 2 x 2 km grid cells. 64 

 65 
        Table S 1.  Predictors used in the models and what factors of the vectors biology can be affected by them.  66 
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No Predictor Explanation 

1 Maximum temperature 
Often related to the abundance, distribution, survival, life cycle 

of the vectors and extrinsic incubation period of the 

pathogen*   

2 Irrigated land Provide breeding sites (larval development) 

3 Annual temperature 
Abundance, distribution, survival, life cycle, extrinsic 

incubation period* 

4 Temperature seasonality 
Abundance, distribution, survival, life cycle, extrinsic 

incubation period* 

5 Runoff Modification of mosquito breeding habitats 

6 Agriculture 
Mosquito population dynamics, abundance, breeding sites, 

host-interactions and land use changes  
7 Natural ecosystems Provide breeding sites, refugee and host-interactions  

8 Wind Active and passive dispersal and host-seeking activity 

9 Urban area Particular conditions unsuitable for Anopheles proliferation  

10 Urban green space Provide breeding sites and refuge 

11 Water bodies 
Provide breeding sites (larval development) 

 

12 Precipitation seasonality Provide breeding sites (larval development) 
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Figure S2. Variable importance derived from each of the eight different modelling techniques used to build 86 

the ensemble model. 87 

  88 
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 89 

Figure S3. Molecular analyses of A. maculipennis s.l. specimens across Spain. The size of the pie charts is 90 

proportional to the sample size for each region. The figure combines samples of the individuals examined in 91 

the present study (n=121) and other previously published studies (n=108) (8–16).  92 
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Figure S4. Violin plots show the model mean performance (AUC/Area under the ROC curve) for eight 118 

modeling techniques, using a test dataset generated from bootstrapping partitioning with 100 replications. 119 

The AUC value >80 is considered as very good performance, 0.7 <x<0.8 considered as good model 120 

performance, 0.5 <x<0.7 shows the acceptable level of performance, and <0.5 poor performance or as good 121 

as random choice. The red dots inside the violin plots indicate the mean performance, and the black line 122 

shows the median for each modeling technique.  The graphs are color-coded to present a gradient of 123 

performance, ranging from lower to higher AUC.  124 

 125 
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 145 

Figure S5. Violin plots showing the probability distribution of A. maculipennis s.l. in observed 146 

presence/absence (P/A) points and indicating how well the model performs in predicting the presence or 147 

absence of the species for each modeling technique. The black dots inside the violin plots indicate the mean 148 

probability of occurrence, and the black line shows the median. The dark gray violins show the probability 149 

of occurrence in absence while purple violin plots display the probability in presence cells.  150 

 151 
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Figure S6. Spatial distribution of malaria parasites across Spain based on imported malaria cases between (2005-153 

2020). a) Plasmodium falciparum, b) Plasmodium vivax, c) Plasmodium ovale, d) Plasmodium malariae and e) not 154 

reported. 155 
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Figure S7. Monthly incidence of imported malaria cases from 2005 to 2020 with the reference date being the 164 
date of onset of symptoms. This includes a) Plasmodium falciparum, b) Plasmodium vivax, c) Plasmodium ovale, 165 
d) Plasmodium malariae and e) Not reported. The time series graphs illustrate the timeline of symptom initiation for 166 
these imported malaria cases. The monthly peak of each Plasmodium species and not reported cases is marked by 167 
colored dots on the corresponding graph. 168 
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Figure S8. The probability distribution of A. maculipennis s.l. and distribution of imported malaria cases 175 

overlapped with the most recent instances of local malaria transmission in Spain.  176 
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 185 

Figure S9. The time series plot depicts imported malaria cases' initiation of symptoms date (grey area) 186 

alongside the corresponding minimum (blue) and maximum (red) temperatures between 2005 and 2020 (y-187 

axis). Peaks of arrival are represented by black dots on the cases graph, while blue and red dots on the 188 

temperature graphs indicate the minimum and maximum temperatures respectively at the time of symptoms 189 

initiation during these arrivals.  190 
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