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Ventricular tachycardia (VT) episodes in patients with infarct-related 
scarring constitute the clinical paradigm of reentry. The reentry 
mechanism is based on channels of conducting healthy tissue within 
non-conducting scar tissue that allow a complex interplay between ac-
tivation wavefronts (e.g. after a premature focal beat) and may result in 
a self-sustaining arrhythmia.1 In the clinic, complete characterization of 
reentrant VT circuits using classical electrophysiological criteria and 
state-of-the-art high-density mapping during VT is complex1 and often 
cannot be completed because of haemodynamic instability during the 
mapping procedure. This common limitation has motivated the imple-
mentation of mapping strategies during sinus rhythm or ventricular pa-
cing aiming to identify scar regions associated with VT isthmuses or 
potential arrhythmogenicity.2,3 Complementary imaging-based strat-
egies including advanced analyses of scar tissue characteristics have 
been also proposed for procedure planning and identification of poten-
tial arrhythmogenic regions.4

Despite substantial advances in invasive mapping, ablation, and im-
aging, clinical outcomes on VT ablation continue to be suboptimal 
with recurrences on the range of 25–40% after 1 year of follow-up.5

This may be related to several limitations of current electrophysiologic-
al tools for VT characterization (Graphical abstract): (i) electrophysio-
logical mapping data are mainly two-dimensional on the epicardial or 
endocardial surface.6 Therefore, intramural patterns of wave propaga-
tion can only be estimated.1 (ii) Mapping and ablation of all clinical and 
inducible VT morphologies during an invasive procedure does not ex-
clude recurrences from other scar areas potentially sensitive to reentry 
in real-life conditions. (iii) Poorly tolerated unmappable VTs are com-
mon in VT ablation procedures and make it challenging to identify 
(all) critical isthmus sites.2,3 (iv) Identification and interpretation of 
the potential proarrhythmogenic substrate from 3D imaging is still chal-
lenging and is sensitive to the method used to identify scar or the cri-
teria to define arrhythmogenicity.7

Over the last decade, a more personalized assessment of the proar-
rhythmogenic substrate has been proposed by using virtual 
(computational-based) heart models that include the individual-specific 
anatomical substrate and electrophysiological properties adjusted to 
the underlying substrate.8,9 Most results have been reported with mod-
els incorporating a cardiac magnetic resonance (CMR) imaging–based 
substrate of patients with ischaemic cardiomyopathy.10 Multiple studies 
and groups have shown the potential clinical value of virtual heart mod-
els to aid physicians and interventional cardiologists in the prognosis, 
diagnosis, and treatment of complex ventricular arrhythmia.10 For ex-
ample, patient-specific computational heart modelling has shown 
promising results in patients undergoing VT ablation to localize effective 
ablation targets and prevent further VT recurrences.8 Fine-tuning ad-
justment of the individual-specific substrate and electrophysiological 
properties of computational models has also enabled investigators to 
reproduce the surface electrocardiogram (ECG) morphology of the 
clinical VT and further localize the protected isthmus site documented 
during the invasive mapping procedure.11 Moreover, in a retrospective 
series of patients with implantable cardioverter defibrillators (ICDs), 
ventricular arrhythmia prediction using virtual heart models has also 
shown to improve risk stratification compared with other clinical vari-
ables.12 However, these approaches are time-consuming as both the 
creation of the personalized computational models and their assess-
ment in a ‘virtual stress test’ is labour-intensive and computationally 
demanding.

In this issue of Europace, Bhagirath et al.13 report the clinical value of 
an efficient, real-time reentrant pathway finding algorithm that provides 
simulation metrics for non-invasive assessment of the VT substrate 
complexity and predicting post-ablation VT recurrence. The algorithm, 
termed ‘Virtual Induction and Treatment of Arrhythmias’ (VITA), was 
tested in a retrospective study and compared with the electrophysio-
logical data of 20 patients undergoing VT mapping and ablation. 
Invasive electrophysiological data for evaluation included the number 

of ablation lesions and the extension of the ablated area. Volumetric 
models for computational simulations were generated from 2D late 
gadolinium enhancement CMR images, which were segmented with 
the commercial software ADAS 3D (ADAS3D Medical, Barcelona, 
Spain). Four different signal intensity threshold configurations based 
on the full width at half maximum algorithm were used for each seg-
mented heart to evaluate the influence of scar thresholds on computed 
metrics. Rule-based fibres were also assigned to the virtual myocardial 
model. Virtual Induction and Treatment of Arrhythmias–based simula-
tions then provided the total number of inducible VTs and their corre-
sponding round-trip times. The latter served as a surrogate of the 
reentry cycle length. Duplicate reentry VT circuits induced from differ-
ent pacing locations were filtered out to provide the number of unique 
VTs and represent the main reentrant pathways.

The results reported by Bhagirath and colleagues show that the total 
number of inducible VTs was the main predictor of VT recurrence after 
the ablation procedure. Slightly lower values of area under the curve 
(AUC) on receiver operator characteristic analyses were obtained 
with the number of inducible unique VTs (AUC: 0.820 vs. 0.770). 
The results were relatively independent of the applied scar thresholds. 
Other non-simulation imaging-based metrics also showed similar pre-
dictive values for post-ablation recurrences. More advanced stages of 
the underlying cardiomyopathy, reflected by lower left ventricular ejec-
tion fraction values and higher left ventricular end-systolic and 
end-diastolic volumes, were present in patients with post-ablation VT 
recurrences compared with those patients without recurrences. The 
number of ablation lesions and the extension of the ablated area during 
the invasive procedure also showed a statistically significant positive 
correlation with the number of unique VTs on the VITA-based simula-
tions. Moreover, more extensive ablated areas and a larger number of 
ablation lesions were also associated with VT recurrences, which sug-
gest a more complex underlying substrate.

Overall, these simulations support the increasing complementary va-
lue of computational modelling in modern cardiac electrophysiology. 
Moreover, VITA-based algorithms claim to provide rapid computation 
on conventional hardware. However, the approach still requires careful 
creation of personalized computational models from individual CMR 
data. Additionally, computational modelling still needs to be interpreted 
as an experimental approach that requires proper validation in pro-
spective and randomized studies. Such studies have yet to be reported. 
The independent predictive value of computational metrics for ven-
tricular arrhythmic events or post-ablation VT recurrences needs to 
be addressed in large clinical series with relevant clinical variables. 
Notwithstanding, virtual heart technologies have shown the potential 
to overcome some of the limitations of state-of-the-art clinical and 
invasive cardiac electrophysiology to identify and target the substrate 
associated with complex VT. They can provide 3D (transmural) infor-
mation of wave propagation patterns during VT, explore multiple pa-
cing sites and substrate configurations for VT inducibility, simulate 
the ablation outcome of specific lesions delivered at the target sites, 
and uncover previously dormant channels that may dominate after ab-
lation of the first critical channel. Importantly, this information could be 
obtained before the procedure and may aid clinicians and cardiac elec-
trophysiologist in procedure planning and potentially decrease the 
intervention time.

It should be noted that computational outcomes from virtual heart 
models are not exempt of potential bias and limitations (Graphical ab-
stract). The minimum imaging quality and resolution to obtain reliable 
results need to be addressed. Most of computational models have 
used 2D CMR images, which overestimate the scar volume compared 
with 3D sequences.14 Moreover, the extension of scar borderline 
zones has shown to significantly affect computational outcomes.10

The latter is highly relevant since there is a lack of agreement on the 
preferable signal intensity cut-off values for assessment of tissue het-
erogeneity and scar areas.7 Cellular electrophysiological properties 
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and myocardial fibre orientation assigned to current virtual heart mod-
els represent a simplification of the actual underlying electrophysiology 
and the specific disease condition. New imaging advances in diffusion 
tensor imaging sequences and non-invasive information from body sur-
face mapping may help to individualize these parameters in the near fu-
ture.15 At the same time, prospective studies should also evaluate the 
required complexity of virtual heart models, as any further personaliza-
tion will complicate the clinical implementation as well and may not ne-
cessarily improve procedure success.

As exemplified by the current study of Bhagirath et al. and many 
previous studies, future success of computational modelling in rou-
tine cardiac electrophysiology requires a close interaction between 
computational scientists and expert clinicians in the field. For cardiac 
electrophysiologists, proper identification of a critical VT isthmus 
site is demonstrated with VT termination upon radiofrequency de-
livery. Therefore, from an electrophysiologist’s perspective, a mean-
ingful validation of virtually predicted VT targets requires multiple 
steps. First, the potential target site needs to be identified on the 
computational model before the procedure; second, the VT needs 
to be induced and fully mapped to identify the critical isthmus site, 
both pre-procedurally in the virtual heart model and invasively during 
clinical procedure; and third, the ablation at the electrophysiologi-
cally defined target site needs to terminate the VT and render it 
not inducible both in silico and in vivo. This type of prospective valid-
ation is challenging since complete characterization of critical VT 
isthmus sites in vivo can only be done in well-tolerated VT episodes3

and thus limits generalizing these findings to non-tolerated VTs. 
However, a well-conducted small prospective series combining 
rigorous electrophysiological demonstration with the correspond-
ing computational outcomes will represent a major milestone in 
the field. Furthermore, reproducing clinical VT morphologies and 
their average cycle lengths will increase confidence of the clinical 
electrophysiology community on virtual heart simulations. Only 
after building this trust, it is worthwhile to implement efficient, clin-
ically ready computational workflows that reliably incorporate 
patient-specific imaging data and pre-procedurally predict effective 
ablation targets.
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