

Citation: Bernardo L, Ibarra-Meneses AV, Douanne N, Corbeil A, Solana JC, Beaudry F, et al. (2024) Potential selection of antimony and methotrexate cross-resistance in *Leishmania infantum* circulating strains. PLoS Negl Trop Dis 18(2): e0012015. https://doi.org/10.1371/journal. pntd.0012015

Editor: Deborah Bittencourt Mothé Fraga, Fundacao Oswaldo Cruz, BRAZIL

Received: August 23, 2023

Accepted: February 20, 2024

Published: February 29, 2024

Copyright: © 2024 Bernardo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: The mass spectrometry proteomics data have been made accessible through the supplementary file S1 Data.

Funding: Work in the CFP-Lab was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2017-04480 to CFP) and by the Canada foundation for Innovation (grant no. 37324 and 38858 to CFP). The proteomic investigations were funded by the NSERC (RGPIN-2020-05228 to FB), RESEARCH ARTICLE

Potential selection of antimony and methotrexate cross-resistance in *Leishmania infantum* circulating strains

Lorena Bernardo^{1,2}, Ana Victoria Ibarra-Meneses^{3,4}, Noelie Douanne^{3,4}, Audrey Corbeil^{3,4}, Jose Carlos Solana^{1,2}, Francis Beaudry^{5,6}, Eugenia Carrillo^{1,2}, Javier Moreno^{1,2}, Christopher Fernandez-Prada^{3,4}*

 WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain, 2 Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain, 3 Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada,
The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada, 5 Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada, 6 Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Quebec, Canada

These authors contributed equally to this work.
* christopher.fernandez.prada@umontreal.ca

Abstract

Background

Visceral leishmaniasis (VL) resolution depends on a wide range of factors, including the instauration of an effective treatment coupled to a functional host immune system. Patients with a depressed immune system, like the ones receiving methotrexate (MTX), are at higher risk of developing VL and refusing antileishmanial drugs. Moreover, the alarmingly growing levels of antimicrobial resistance, especially in endemic areas, contribute to the increasing the burden of this complex zoonotic disease.

Principal findings

To understand the potential links between immunosuppressants and antileishmanial drugs, we have studied the interaction of antimony (Sb) and MTX in a *Leishmania infantum* reference strain (*L*/WT) and in two *L. infantum* clinical strains (*L*/FS-A and *L*/FS-B) naturally circulating in non-treated VL dogs in Spain. The *L*/FS-A strain was isolated before Sb treatment in a case that responded positively to the treatment, while the *L*/FS-B strain was recovered from a dog before Sb treatment, with the dog later relapsing after the treatment. Our results show that, exposure to Sb or MTX leads to an increase in the production of reactive oxygen species (ROS) in *L*/WT which correlates with a sensitive phenotype against both drugs in promastigotes and intracellular amastigotes. *L*/FS-A was sensitive against Sb but resistant against MTX, displaying high levels of protection against ROS when exposed to MTX. *L*/FS-B was resistant to both drugs. Evaluation of the melting proteomes of the two *L*/FS, in the presence and absence of Sb and MTX, showed a differential enrichment of direct and indirect targets for both drugs, including common and unique pathways.

and proteomics laboratory equipment was funded by the Canadian Foundation for Innovation (grant no. 36706 to FB). FB holds the Canada Research Chair in metrology of bioactive molecule and target discovery (CRC-2021-00160 to FB). This work was supported by the Instituto de Salud Carlos III through the ISCIII-AESI (project PI21CIII/00005 to JM). JCS was supported by CIBERINFEC (CB21/ 13/00018 to JM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Conclusion

Our results show the potential selection of Sb-MTX cross-resistant parasites in the field, pointing to the possibility to undermine antileishmanial treatment of those patients being treated with immunosuppressant drugs in *Leishmania* endemic areas.

Author summary

Visceral leishmaniasis (VL) is the most severe form of the disease caused by the parasite *Leishmania infantum*. Immunosuppressive conditions such as those generated using immunosuppressive treatments (i.e., methotrexate), to treat autoimmune diseases have increased the risk of developing severe complications linked to this parasitic disease, especially in endemic areas. Of note, treatment of VL in immunosuppressed patients is very challenging and frequently results in clinical relapse. For these reasons, it is capital to better understand any potential impact of the use of immunosuppressants on the antileishmanial effect of current drugs (i.e. antimonials) and their potential contribution to the emergence and spread of drug resistance. Here we report the first evidence of the potential co-selection of antimicrobial resistance between antimonials and methotrexate in *L. infantum* circulating strains. In addition to shedding some light on the causes of treatment failure and relapses in patients under methotrexate immunosuppression, this new knowledge could assist in the development of better immunosuppression strategies in endemic areas of leishmaniasis.

Introduction

Leishmaniasis is a worldwide infectious disease caused by parasites of the genus *Leishmania* [1]. These parasites have two forms: the extracellular or promastigotes found in the sandfly vector and the intracellular or amastigotes found in the host cells [2]. Among the different clinical manifestations, visceral leishmaniasis (VL) is the most severe form of the disease, for which *Leishmania infantum* is the main causal agent [1]. VL is associated with elevated ranges of morbidity and mortality and 300,000 new cases are reported each year, where 95% of them are fatal if untreated [3,4]. In the absence of an effective vaccine, control of the disease is based on a very limited pharmacopeia with organic antimonials being one of the key drugs for VL treatment [5].

To bestow their antileishmanial activity, pentavalent antimonials (Sb^V) must enter host infected cells and be reduced into the trivalent antimony (Sb^{III}) [5,6]. Sb^{III} causes oxidative stress by increasing the concentration of reactive oxygen species (ROS), inducing DNA damage that leads apoptosis in the parasite [6,7]. Of note, nowadays, VL treatment is hampered, since the use of Sb is compromised due to *Leishmania* ability to develop and spread antimicrobial resistance, especially in endemic areas of the disease where these drugs have been continuously used in treating both human and canine patients [8,9]. Although metal resistance in *Leishmania* spp. is multifactorial, the main mechanism of Sb detoxification involves the ATPbinding cassette protein MRPA which binds to thiol-conjugated metals and promotes the exocytosis of these complexes outside the parasite [9–12]. In addition to an efficient pharmacological treatment, effective control of VL requires a protective Th1-type immune response by the host [13]. Consequently, immunosuppression represents the major individual risk factor to develop severe VL. This has been traditionally reported as an emerging problem in HIV coinfected patients [14,15]. Alarmingly, there is a recent increase in the number of VL cases among patients receiving immunosuppressant treatments to treat autoimmune diseases such as psoriasis, lupus erythematous or rheumatoid arthritis (RA) [16]. In these cases, VL treatment becomes more difficult and the risk of relapse increases [14,17].

Methotrexate (MTX) is, for more than 30 years, one of the most successful immunosuppressants for the control of inflammatory conditions (i.e., 60% of RA are currently on or have been on MTX). MTX is an antagonist of folic acid that interferes purine and pyrimidine synthesis by binding to dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1) enzymes [18]. This results in a rapid depletion of intracellular levels of folates, which impairs DNA synthesis and leads to a decrease in cell proliferation [19]. *Leishmania* as well as other parasites are sensitive to MTX [20], although this drug is not used to treat leishmaniasis. However, as folates and pterins are essential for *Leishmania* development, these parasites can rapidly evolve resistance to MTX by increasing *dhfr*- and *ptr1*-gene dosage [21,22].

Whereas the mode of action and mechanism of drug resistance against Sb and MTX have widely explored in *Leishmania* in the past [6,23], there are no reports available on the potential effects on cross-tolerance or cross-resistance after exposure to any of these two different drugs. Here we report the first evidence of the potential co-selection of antimicrobial resistance between antimonial drugs and methotrexate in *L. infantum* circulating strains from untreated, naturally infected dogs. Moreover, the melting proteomes (meltome) of these strains, in the presence and absence of Sb and MTX, has identified differentially enriched direct and indirect targets for both drugs in different genetic backgrounds. This novel knowledge could bring some light into treatment failure and relapses occurring in patients under methotrexate immunosuppression, as well as to be the jumping-off point for tailoring better immunosuppression strategies in leishmaniasis endemic areas.

Methods

Parasites and cell lines

The study involved the use of different strains of *Leishmania* parasites: *Leishmania infantum* wild-type (*Li*WT) reference strain (MHOM/MA/67/ITMAP-263), as well as two *L. infantum* clinical isolates naturally circulating in non-treated VL dogs in Spain, namely *Li*FS-A (MCAN/ES/2004/LLM-1345) and *Li*FS-B (MCAN/ES/2005/LLM-1467). All strains were cultured in M199 medium (Wisent) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Wisent) and 5 μ g/mL of hemin (Millipore). The pH was maintained at 7.0, and the cultures were incubated at 25 °C. In addition, Bone Marrow-Derived Macrophages (BMDM) were cultured in DMEM medium supplemented with 10% FBS, 100 U/mL penicillin/streptomycin, and 20% L929 cell-conditioned medium.

Drug-response assays in free-living promastigotes and intracellular amastigotes

The antileishmanial activity was assessed by monitoring the growth of non-exposed promastigotes for 72 hours at 25 °C in the presence of increasing concentrations of Sb (Potassium antimony tartrate sodium, Sigma) (0, 25, 50, 100, 150, 200, 300, 400 μ M) or MTX (methotrexate, Sigma) (0, 10, 50, 100, 1000, 3000, 6000, 10000 nM). The optical density at 600 nm (A600) was measured using a Cytation 5 machine (Agilent, USA). Simultaneously, to investigate if exposure to one drug could induce cross-resistance or tolerance to the other, we subjected *Li*WT, *Li*FS-A, and *Li*FS-B promastigotes to the EC₅₀ and the EC₉₀ of either Sb or MTX (administered as single doses) over a period of five days. Following this, we performed a drug-response assay using the alternate drug (either Sb or MTX) on these 'pre-exposed' promastigotes utilizing the same spectrum of concentrations as previously described.

The intra-macrophage leishmanicidal activity of Sb (sodium stibogluconate, Calbiochem) and MTX was determined through *in vitro* infections, following our established protocols (9). Briefly, 2.5×10^5 BMDM cells were seeded onto Ibidi 12-well chamber slides and maintained in complete DMEM medium. Metacyclic phase promastigotes of *Li*WT, *Li*FS-A, and *Li*FS-B were used at a BMDM to parasite ratio of 1:10 for the infection process. The cells were infected and allowed to incubate for 6 hours at 37°C with 5% CO2 in drug-free DMEM medium. After a 24-hours drug-free period, the medium was supplemented with increasing concentrations of MTX (0, 20, 50, 100, 200, 500 nM) or Sb (0, 10, 25, 50, 100, 200 µg/mL) for 5 days. To facilitate parasite visualization, the slides were fixed in methanol and stained with Diff-Quick solution. The number of infecting amastigotes per 100 cells was determined by examining 300 macrophages per triplicate assay and normalized to the untreated control.

In all these experiments, either targeting the promastigote or the amastigote stages, EC_{50} values were calculated based on dose-response curves analyzed by non-linear regression with GraphPad Prism 10.0 software (GraphPad Software, La Jolla California, USA). An average of at least three independent biological replicates run in triplicate was performed for each determination.

Measurement of Reactive Oxygen Species (ROS) accumulation

Intracellular ROS accumulation was measured using the DCFDA dye (Invitrogen, USA) as previously described [12]. Briefly, 5×10^7 mid-log *Li*WT, *Li*FS-A, and *Li*FS-B promastigotes were exposed to the EC₉₀ of the drugs (i.e., Sb or MTX) for 48 hours in M199 medium at 25°C supplemented with 10% FBS and 5 µg/mL of hemin (pH 7.0). Parasites were washed twice in Hepes–NaCl (21 mM Hepes, 137 mM NaCl, 5 mM KCl, 0.7 mM Na₂HPO₄ 7H₂O, 6 mM glucose, pH 7.4) and resuspended in 500 µL of Hepes–NaCl containing 25 µg/mL of H₂DCFDA (Invitrogen, USA). Parasites were then incubated in the dark for 30 min and washed twice with Hepes–NaCl. After washing, 200 µL of the promastigote resuspension was analyzed with a Cytation 5 machine (Agilent, USA) at 485 nm excitation and 535 nm emission wavelengths. Fluorescence was normalized with the number of living parasites determined by propidium iodide (PI) staining and manual counting. Experiments were performed with at least three biological replicates from independent cultures, each of which included three technical replicates.

Quantitative real-time RT-PCR

Total RNA was isolated from the three non-drug-exposed strains (*Li*WT, *Li*FS-A, and *Li*FS-B) using the RNeasy Mini Kit (Qiagen), following the manufacturer's instructions, as has been described earlier [24]. Additionally, total RNA was extracted from MTX-exposed *Li*WT obtained during 'pre-exposure' experiments (S1 Fig). The cDNA was synthesized using the iScript Reverse Transcription Supermix (Bio-Rad) and amplified in the iTaq universal SYBR Green Supermix Kit (Bio-Rad) using a CFX Opus Real-Time PCR System (Bio-Rad). The expression levels of ATP-binding cassette protein MRPA (*LinJ.23.0290*; Fw: 5'-CGCAT-TATGCTGTGGTTCCG-3'; Rv: 5'-GTCGTACTCGCCATCAGAG-3'), dihydrofolate reductase thymidylate synthase DHFR-TS (*LinJ.06.0890*; Fw: 5'-CGCATCATGAAGACGGGGAT-3'; Rv: 5'-TGAATGTCCTTGGCCAG-3'); argininosuccinate synthase ASS (*LinJ.23.0300*; Fw: 5'-CTTCTGAGGCTGTGCAACAC-3'; Rv: 5'-GATGCCCTTCTGGAACTGGA-3') and pteridine reductase 1 PTR1 (*LinJ.23.0310*; Fw: 5'-TATACCATGGCCAAAGGGGC-3'; Rv: 5'-TGAACTTGGCCTTGGGA-3') were derived from three technical and three biological replicates and were normalized to constitutively expressed mRNA encoding glyceraldehyde-

3-phosphate dehydrogenase GAPDH (*LinJ.36.2480*; Fw: 5'-GTACACGGTGGAGGCTGTG-3'; Rv: 5'-CCCTTGATGTGGCCCTCGG-3').

Comparative meltome analysis using thermal proteomic profiling (TPP)

For TPP analysis, *Li*FS-A and *Li*FS-B were prepared following our previously described methods [25]. In brief, cultures of *Li*FS-A and *Li*FS-B isolates in the mid-log phase underwent multiple centrifugation steps. We conducted experiments with biological triplicates for each isolate. The resulting pellet was washed with PBS 1× (pH 7.4, Gibco, Life Technologies) and then resuspended in 5 mL of lysis buffer. The lysis buffer consisted of 50 mM mono-basic potassium phosphate, 50 mM di-basic potassium phosphate, 0.5 M EDTA, 1 M DTT, 10 mM tosyl-L-lysyl-chloromethane hydrochloride, 0.8% n-octyl- β -D-glucoside, and mini protease inhibitor cocktail (EDTA-free). To obtain sufficient protein, three freeze-thaw cycles were performed, followed by centrifugation at 20,000 g for 20 minutes at 4 °C. The protein yield required for the TPP experiment was 4 mg.

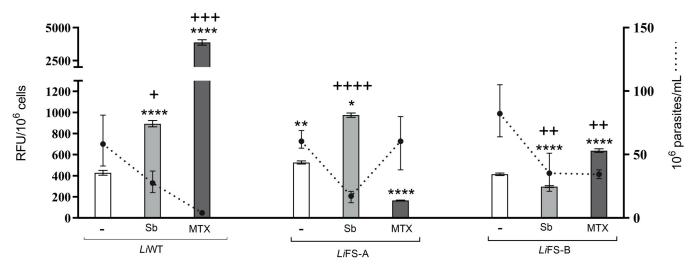
Once the lysate was obtained, drug-induced disruption and heat treatment were performed. Each lysate was divided into three subsamples: 100 µM Sb, 100 µM MTX, and a control (vehicle). For each condition, 250 µg of lysate (approximately 100 µL) was added to seven microcentrifuge tubes, with each tube representing a different temperature (37, 45, 50, 55, 60, 65, and 70 °C). The tubes were incubated for three minutes, followed by centrifugation at 20,000 g for 20 minutes at 4 °C to recover the soluble protein fraction. The soluble proteins were collected by precipitation using cold acetone and 50 mM tris-HCl, followed by alkylation with 40 mM 2-Iodoacetamide (IAA, Sigma) and digestion with a 1:20 trypsin solution for 24 hours. After incubation, the samples were labeled using a light (test samples) and heavy (internal standard; L. infantum WT maintained at 37 °C) dimethyl strategy and mixed for consecutive HPLC-MS/MS analysis using a duplex labeling approach. High-performance liquid chromatography (HPLC) was performed using a Thermo Scientific Vanquish FLEX UHPLC system (San Jose, USA) with gradient elution on a microbore column (particle size: 5 µm, Thermo Biobasic). The mobile phase, a mixture of acetonitrile and water containing 0.1% formic acid, was subjected to a linear gradient shift from 5:95 to 40:60 over a duration of 63 minutes. Detection in the positive ion mode was carried out using a Thermo Scientific Q Exactive Plus Orbitrap Mass Spectrometer, which was integrated with the UHPLC system. The TOP-10 Data Dependent Acquisition method was employed for this purpose. Rather than treating each replicate as an individual sample, we opted to pool the data from these replicates, thereby combining their results to form a single, comprehensive dataset for each condition. The data processing for the study was carried out using Thermo Proteome Discoverer (version 2.4), in combination with SEQUEST. The analysis involved a curated database with FASTA sequences from UniProt specific to L. infantum (TAXON ID 5671). Key settings included an MS¹ tolerance of 10 ppm, MS^2 mass tolerance of 0.02 Da for Orbitrap detection, and trypsin specificity with allowance for two missed cleavages. Fixed modifications included carbamidomethylation of cysteine and dimethylation of lysine and N-terminus, while oxidation of methionine was a variable modification. The minimum peptide length was set at six amino acids, excluding proteins identified by only one peptide. Protein quantification and comparative analysis were based on peak integration, using the average ion intensity of unique peptides to determine protein abundance. For normalization purposes, the protein abundance value at the lowest examined temperature (37°C) was set as the baseline, represented by a value of 1. The generated melting curves were inspected for a change in melting behavior following the formula described by Franken et al (2015) [26]. All melting curves were created using GraphPad Prism 10. The temperature resulting in a 50% of protein denaturalization was defined as the melting

temperature (T_m), which was used to calculate the cut-off value ($\Delta T_m = T_m \operatorname{drug} - T_m \operatorname{control}$). Heat maps were generated through the Heat mapper webserver (www.heatmapper.ca/ expression) using its protein expression plugin with average linkage as clustering method applied to rows and Euclidean as distance measurement method. The complete proteomics dataset is available in (S1 Data).

Results

L. infantum clinical isolates display different sensitivity profiles and enhanced ability to control oxidative stress in the presence of antimony and methotrexate

The drug-resistant profile of current L. infantum strains circulating in dogs presents a significant challenge in the treatment of both canine and human leishmaniasis, especially in pharmacologically immunosuppressed individuals. Several studies have reported an alarming increase in drug resistance, particularly to commonly used antileishmanial drugs such as Sb. In this context, we first evaluated the sensitivity profile of LiFS-A and LiFS-B, two clinical isolates recovered from non-treated, naturally infected dogs in Spain [27]. For comparison purposes, we included the L. infantum ITMAP-263 laboratory reference strain (LiWT), which is known to be sensitive to the different antileishmanials. As summarized in Table 1, clinical isolate LiFS-A showed similar levels of Sb sensitivity of those measured for the reference strain (75.35 vs. 68.24 µM Sb^{III} in promastigotes; and 68.71 vs. 99.35 µg/mL Sb^V in amastigotes). Of note, *Li*FS-B showed a clear resistant profile with EC_{50} values > 2.5-fold when compare with the *Li*WT reference strain (198.2 μ M Sb^{III} in promastigotes; and > 200 μ g/mL Sb^V in amastigotes). While there is no report in the literature of treating leishmaniasis with MTX, this drug is frequently used off label for the treatment of immune-mediated diseases, such as immune-mediated hemolytic anemia and immune-mediated polyarthritis in dogs. As expected, the LiWT strain showed a very sensitive phenotype against this drug in both promastigotes and amastigotes (1.03 and $0.34 \,\mu$ M, respectively). Conversely, both clinical isolates displayed high levels of resistance as both free and intracellular parasites (>500 and > 200 μ M, respectively).


Antimicrobial resistance mechanisms in *Leishmania* can involve alterations in drug targets, decreased drug uptake, increased drug efflux, and enhanced antioxidant defenses. To explore this last feature, we examined the impact of Sb and MTX on the ability of *Li*WT, *Li*FS-A and

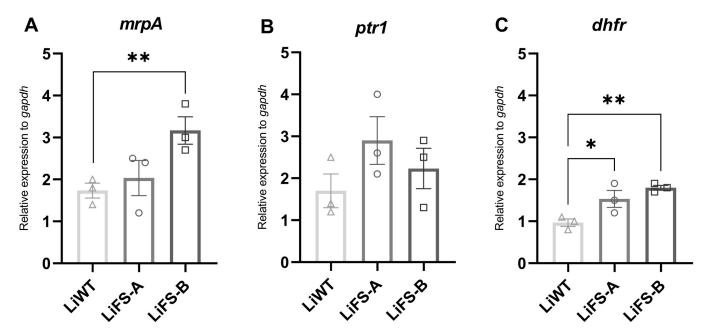
	EC	₅₀ (95% CI)
	Methotrexate	Antimony*
	LiWT	
Promastigote	te 1.03 μM (0.80–1.26) 75.35 μM (70.65–80.35)	
Amastigote	0.34 µM (0.29–0.42)	68.71 μg/mL (55.07-91.21)
	LiFS-A	
Promastigote	$> 500 \ \mu M$ (N.A.)	68.24 μM (60.02–77.57)
Amastigote	$> 200 \ \mu M$ (N.A.)	99.35 μg/mL (84.00-102.60)
	LiFS-B	
Promastigote	> 500 µM (N.A.)	198.2 μM (180.6–217.5 μM)
Amastigote	> 200 µM (N.A.)	> 200 µg/mL (N.A.)

Table 1. EC_{50} values for methot restate and antimony in *Leishmania* promastigotes and a mastigotes calculated from concentration-response curves.

* Promastigotes were subjected to experiments using trivalent Sb, while pentavalent Sb was employed for experiments involving amastigotes. N.A. = Not available

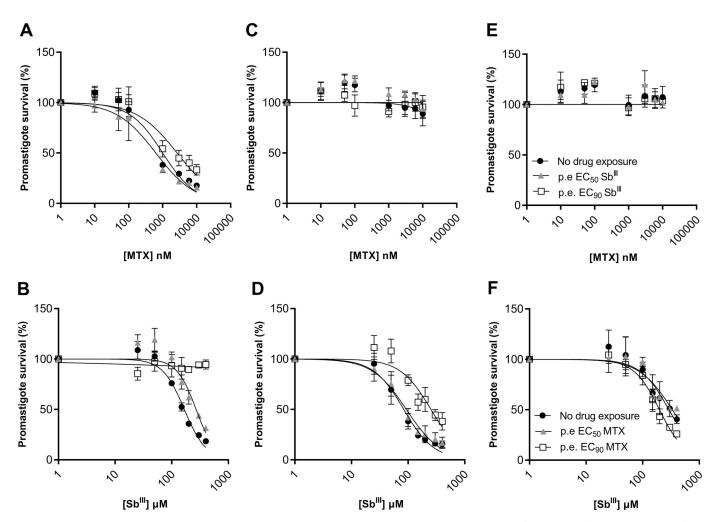
https://doi.org/10.1371/journal.pntd.0012015.t001

https://doi.org/10.1371/journal.pntd.0012015.g001


LiFS-B to control reactive oxygen species (ROS) accumulation (Fig 1). In this way, the three strains were exposed to the EC_{90} of Sb and MTX. DCFDA fluorescence emission and parasite survival rates were simultaneously measured. Sb and MTX induced major accumulation of ROS in LiWT (up to 892 and 3868 relative fluorescence units (RFU), respectively) after a 48-h exposure to the EC_{90} of Sb and MTX. This was coupled with a significant reduction in the presence of viable parasites, which was reduced by more than 53% and 94% when exposed to Sb and MTX, respectively. This is consistent with the antileishmanial effect previously described for these drugs [7,28]. Both LiFS-A and LiFS-B displayed similar basal levels of ROS (and similar to LiWT) in the absence of drug pressure. Exposure to Sb led to similar ROS and viability levels in LiFS-A when compared with the reference strain (\sim 980 RFU), which is in agreement with its Sb-sensitive profile-as per determined in the drug-response assays. In contrast, LiFS-B exhibited approximately 2-fold lower ROS accumulation compared to LiWT and demonstrated better survival rate when exposed to Sb, providing additional evidence for its Sb-resistant phenotype. Both LiFS-A and LiFS-B exhibited reduced ROS accumulation and enhanced survival compared to LiWT when exposed to MTX. LiFS-A demonstrated approximately 20-fold lower ROS accumulation than LiWT and displayed a similar survival rate to the untreated control (approximately 100%). Conversely, LiFS-B accumulated around 20-fold less ROS than the reference strain but exhibited lower viability than the untreated control (approximately 50%). These findings further support the MTX-resistant phenotype observed in both isolates and suggest enhanced ability to control oxidative stress.

Overexpression of key drug-resistance genes and 'pre-exposure' to Sb or MTX contribute to multidrug-resistance phenotypes

One of the most frequent mechanisms deployed by *Leishmania* parasites to overcome the action of Sb and MTX is upregulating the expression of drug targets and drug-resistance genes. Overexpression of the gene coding for an ABC-thiol transporter multidrug resistance protein A (*mrpA*) is frequently reported in Sb-resistant parasites, leading to the intracellular


sequestration and subsequent elimination of Sb-thiol conjugates [9]. Likewise, MTX-resistance is associated with the overexpression of dihydrofolate reductase (*dhfr*) and pteridine reductase 1 (*ptr1*) genes, respectively, encoding the primary and secondary targets of MTX [21]. For that reason, we evaluated the expression of *mrpA gene*, or *dhfr* and *ptr1* genes, associated to Sb or MTX resistance, respectively, in non-exposed promastigotes. Our results illustrated a notable increase in *mrpA* expression in *Li*FS-B compared to both *Li*WT and *Li*FS-A (Fig 2A), providing further evidence for its classification as Sb-resistant (Table 1). Regarding MTX genes of resistance, no significant differences in the expression levels of *ptr1* were found (Fig 2B). Nonetheless, in *Li*FS-A, we observed a non-significant trend in the expression of *mrpA* and *ptr1*. Both clinical isolates showed a higher expression of the *dhfr* gene when compared with the reference strain *Li*WT (Fig 2C), which could contribute to the survival of these parasites in higher concentrations of MTX as previously reported [12,21].

Next, to further understand the potential effect of a pharmacological immunosuppression (i.e., induced by MTX) on the outcome of *L. infantum* treatment (i.e., induced by Sb), we evaluated the impact of a single-dose exposure ('pre-exposure' to EC_{50} or EC_{90} for 5 days) to MTX or Sb prior to characterizing these parasites in drug-response assays. As depicted in Fig 3A, 'pre-exposure' to Sb EC_{90} led to a significant reduction in MTX sensitivity in *Li*WT parasites (2.65-fold). Markedly, this phenomenon was bidirectional, and 'pre-exposure' to either the EC_{50} or EC_{90} of MTX resulted in a great decrease in the sensitivity of the *Li*WT reference strain to Sb (Fig 3B). The effect was maximal when exposing *Li*WT to MTX EC_{90} (Fig 3A), probably due to the rapid emergence of a subset of the population carrying amplifications of the H locus which contains *ptr1* but also *mrpA* [29]. This aspect was further investigated by evaluating the expression levels of *ptr1* and *mrpA* in *Li*WT pre-exposed to EC_{90} of MTX, along with arginino-succinate synthase (*ass*), a third gene within the H locus. As anticipated, the population that was recovered exhibited a significant increase in the mRNA expression levels of these three

Fig 2. Normalized mRNA expression levels of *mrpA*, *ptr1* and *dhfr* in non-exposed parasites. mRNA expression levels of drug-resistance genes *mrpA* (A), *ptr1* (B) and *dhfr* (C) were determined by quantitative real-time RT-PCR in *Li*WT, *Li*FS-A and *Li*FS-B strains and normalized using *gapdh* as housekeeping gene. Results are derived from three biological replicates. Each data point represents the average \pm SEM. Differences were statistically evaluated using an unpaired two-tailed t-test *p<0.05; ** p<0.01.

https://doi.org/10.1371/journal.pntd.0012015.g002

Fig 3. Phenotypic characterization of *L. infantum* **WT reference strain and** *Li***FS-A and** *Li***FS-B clinical isolates after 'pre-exposure' to Sb and MTX.** Five days after 'pre-exposing' *Li***WT (A-B)**, *Li***FS-A (C-D)**, *Li***FS-B (E-F)** promastigotes to the EC_{50} and EC_{90} (previously calculated; Table 1) of Sb or MTX, parasites were submitted to increasing concentrations of MTX and Sb to evaluate potential changes in their phenotype against these drugs. EC_{50} values were calculated from concentration-response curves performed with biological triplicates after nonlinear fitting with GraphPad Prism 10 software.

https://doi.org/10.1371/journal.pntd.0012015.g003

genes (S1 Fig). 'Pre-exposure' to MTX in the Sb-sensitive *Li*FS-A strain led to a significant decrease in its levels of sensitivity (up to 3.01-fold) against antimonial drugs (Fig 3D). This effect was not observed in the *Li*FS-B strain which was already resistant to Sb (Fig 3F). As expected, no measurable effect was detected when exposing *Li*FS-A and *Li*FS-B clinical isolates to Sb, as both are highly resistant to MTX (Fig 3C and 3E). The findings indicate that cross-resistance between antimony and methotrexate can manifest equally, regardless of the drug administered first. Additionally, the results suggest different multidrug-resistance phenotypes which a swift and transient emergence of Sb-resistant parasites upon exposure to MTX.

Clinical isolates' melting proteomics reveals different protein interactions with the drugs pointing to different mechanisms of drug resistance

The mechanisms underlying antimony resistance have been extensively described in laboratory lines of *Leishmania*. However, there may be differences between these mechanisms and those operating in *Leishmania* circulating isolates [30]. To map Sb and MTX potential targets (both direct and indirect) in *Li*FS-A and *Li*FS-B clinical isolates, we used a powerful multiplexed, quantitative mass spectrometry-based proteomics approach named Thermal Proteomic Profiling (TPP), which enables monitoring the melting profile of thousands of expressed soluble proteins in drug-sensitive and drug resistant *L. infantum* parasites, in the presence (or absence) of any antileishmanial drug [25]. As previously described, in our TPP approach, we used a fixed concentration of drug (100 μ M SB or MTX) for the induction of drug-driven disruption and seven different temperatures for the temperature range (37–70 °C) [25].

We first measured the impact of Sb and MTX on the thermal stability of the soluble proteins of *Li*FS-A strain (Sb-sensitive and MTX-resistant; Table 1). We obtained and analyzed quantitative data to determine the thermal stability of 1147 soluble proteins (S1 Data). Out of these proteins, 118 exhibited variations in their thermal stability and their ΔT_m was positive ($\Delta T_m >$ 0) (Table 2). As depicted in Fig 4A and 4B, these proteins demonstrated enhanced stability at lower temperatures, specifically between 37 and 50 °C. Noteworthy proteins in this category included a mitochondrial elongation factor (E9AGQ3), a putative iron-sulfur reiske protein (A4IB55), a calmodulin-like protein (A4IBS7), as well as various ribosomal proteins (L6, L12, L13, L23, S20, L34, S6, S13, S4, L18, and S9). Conversely, in our investigation of the interaction between the *Li*FS-A strain and MTX, we identified 1158 soluble proteins. Among these proteins, we obtained melting curve profiles in the presence of MTX for 84 of them (Fig 4C and 4D). Table 2 provides a summary of the proteins identified in this analysis, including PTR1 (A4I067), two ribosomal proteins (A4HS42 and A0A6L0XG31), an amidohydrolase (A4I5G9), the cytochrome C1 mitochondrial protein (A4HT63), and an oligopeptidase b (A4HTZ8), among others.

Next, we conducted an evaluation of the proteomic profile in the antimony-resistant clinical isolate LiFS-B, both in the presence and absence of Sb. Among the 1193 soluble proteins identified (S1 Data), 42 exhibited a pattern that allowed us to calculate melting curves (Fig 5A and 5B). Compared to LiFS-A, the Sb-resistant strain showed a general decrease in proteinthermal stabilization, with 76 fewer proteins exhibiting temperature variations suitable for melting curve calculations (118 in LiFS-A versus 42 in LiFS-B), which further confirms a decreased interaction of Sb with its proteome. Within these 42 proteins, particularly those exhibiting the highest ΔTm , we identified several key proteins: an alanine-tRNA ligase (A4I013), two ribosomal proteins-the 60S acidic ribosomal protein P0 and the 40S ribosomal protein S24 (A4I2U1 and A4ID74, respectively)-, a putative 60S ribosomal protein (L10A), a putative ATP synthase F1 subunit protein (A4HZI3), a eukaryotic translation initiation factor (A4I5Y5), and an uncharacterized protein (A4HZ42) (Table 3). To elucidate the potential function of the uncharacterized protein and its involvement in Sb resistance, we employed databases such as PantherDB (http://www.pantherdb.org/, accessed on 20 June 2023), InterPro (https://www.ebi.ac.uk/interpro/, accessed on 20 June 2023), and Uniprot (https://www. uniprot.org/, accessed on 30 January 2024). This search revealed a possible orthologous relationship (92.33% identity) between our uncharacterized protein and a NTF2 (Nuclear transport factor 2) domain-containing protein found in the same chromosome of L. major (LMJF_21_0430, accession number Q4QCH42), potentially belonging to Ras-GTPase-activating protein-binding.

Finally, we evaluated the proteomic meltome profile in the *Li*FS-B strain in the absence and presence of MTX. Among the 1112 soluble proteins identified (S1 Data), melting curves were determined for 55 of them. Like the other drug analyzed, we observed protein stabilization at low temperatures, both with and without the presence of MTX (Fig 5C and 5D). Table 3 summarizes the proteins identified, including ATP synthase subunit beta (A4I1G1), an activator of Hsp90 ATPase (A4HXP7), a SNF1-related protein kinase (A4I088), a putative long-chain fatty

Accession	CoreID	Sb Description	Τ (°Ω)		4.T	
Accession	Gene ID Description		$\frac{T_m (^{\circ} C)}{+ Sb} - Sb$		$\begin{array}{c c} \Delta T_m \\ (^{\circ}C) \end{array}$	
				- Sb	(C)	
E9AGQ3	LINF 180012600	Elongation factor Tu-mitochondrial—putative	49.24	40.46	8.78	
A4IB55	LINF 350020400	Putative reiske iron-sulfur protein	50.99	42.3	8.69	
A4IBS7	LINF 350044300	Calmodulin-like protein	48.18	40.38	7.8	
A4HWJ8	LINF 150018200	60S ribosomal protein L6	59.53	52.2	7.33	
Q9N9V3	LINF 040012600	Putative ribosomal protein L10	54.86	47.69	7.17	
A4IB12	LINF 350016600	NADH-dependent fumarate reductase—putative	50.31	43.54	6.77	
A4HXG5	LINF 170015800	META domain containing protein	50.29	43.85	6.44	
A4I4Y2	LINF 290036400	40S ribosomal protein S19-like protein	50.32	44.58	5.74	
A4HSV3	LINF 060011800	Putative Phosphatase /Protein of uncharacterized function DUF89—putative	51.05	45.37	5.68	
A4I397	LINF 280007300	Glycerol-3-phosphate dehydrogenase	49.03	43.99	5.04	
A4I9C1	LINF 330037300	Hypothetical protein—conserved	49.12	44.14	4.98	
E9AHW0	LINF 240028300	60S ribosomal protein L12—putative	50.04	45.22	4.82	
A4I7G5	LINF 320005100	Nuclear segregation protein—putative	51.85	47.62	4.23	
A4HT63	LINF 070005600	Cytochrome c1—heme protein—mitochondrial—putative	47.88	43.92	3.96	
A4I8D8	LINF 340035600	Putative ribosomal protein L3	52.5	48.63	3.87	
A4HRY4	LINF 030014900	Eukaryotic initiation factor 2a—putative	46.81	43.05	3.76	
A4I0S4	LINF 240013700	Triosephosphate isomerase	50.55	46.82	3.73	
E9AG68	LINF 060011300	60S ribosomal protein L23a—putative	49.89	46.23	3.66	
A4IAZ4	LINF 350014400	Aldose 1-epimerase—putative	43.96	40.36	3.6	
A4I3X3	LINF 280031300	2-oxoglutarate dehydrogenase—E2 component—dihydrolipoamide succinyltransferase—putative	51.3	47.72	3.58	
A4I116	LINF 240026900	40S ribosomal protein S8	50.72	47.22	3.5	
A4HRV7	LINF 030011900	DEAD/DEAH box helicase /Type III restriction enzyme—res subunit—putative	43.84	40.35	3.49	
A4IAL2	LINF 340052200	1 -2-Dihydroxy-3-keto-5 -methylthiopentene dioxygenase—putative	48.2	44.92	3.28	
A4HVL5	LINF 130013600	Mitochondrial processing peptidase alpha subunit—putative	45.92	42.65	3.27	
Е9АНН9	LINF 280015700	Putative ribosomal protein S20	46.33	43.16	3.17	

Table 2. Summary of proteins identified in Sb-treated and MTX-treated *Li*FS-A, demonstrating a positive temperature shift. Proteins that are common between the strains *Li*FS-A and *Li*FS-B are highlighted in bold for easy identification.

Tuble 2. (Contr	ilucu)				
A4HRT1	LINF 030006800	Delta-1-pyrroline-5-carboxylate dehydrogenase—putative	46.58	43.45	3.13
E9AGD4	LINF 120009800	Hypothetical protein—conserved	49.22	46.12	3.1
A4HY10	LINF 180019400	60S ribosomal protein L34—putative	51.09	48.02	3.07
A4HZP2	LINF 220006400	Hypothetical protein—conserved	55.06	52.12	2.94
Q6RYT3	LINF 290017500	Ttryparedoxin 1—putative	55.22	52.28	2.94
A0A381MG06	LINF 190005300	Histone H2B	52.17	49.3	2.87
A4HUB4	LINF 100005600	Putative ribosomal protein 135a	49.37	46.6	2.77
A4HZF8	LINF 210024300	ATP-dependent RNA helicase SUB2—putative	48.35	45.73	2.62
A4I2F5	LINF 260028200	Nitrilase—putative	47.92	45.3	2.62
A4HZI4	LINF 350025100	40S ribosomal protein S6	48.65	46.1	2.55
A4HY61	LINF 330041600	40S ribosomal protein S13—putative	49.99	47.46	2.53
A0A6L0XIU2	LINF 290021400	Nodulin-like—putative	47.24	44.71	2.53
A4HVQ1	LINF 130017300	Putative 40S ribosomal protein S4	48.59	46.23	2.36
A4I0D8	LINF 230016800	Alcohol dehydrogenase—zinc-containing-like protein	48.05	45.69	2.36
Q9BHZ6	LINF 090016000	Elongation factor-1 gamma	46.46	44.15	2.31
A0A6L0WKL6	LINF 100016800	Histone H3—putative	50.44	48.2	2.24
Q9N9V8	LINF 300042300	Ribosomal protein L15	47.17	44.96	2.21
A4HUC9	LINF 100007300	Nucleolar protein 56—putative	46.63	44.44	2.19
A4I4W0	LINF 290032300	60S ribosomal protein L13—putative	49.06	46.91	2.15
A4HVI5	LINF 130010500	60S ribosomal protein L18—putative	49.55	47.48	2.07
A4HT92	LINF 070012400	40S ribosomal protein S9—putative	48.19	46.17	2.02
A4I784	LINF 310036600	ADP-ribosylation factor—putative	47.24	45.24	2
Q95U89	LINF 230005400	Peroxidoxin	47.38	45.39	1.99
A4HWV9	LINF 160010900	Core histone H2A/H2B/H3/H4/Histone-like transcription factor (CBF/NF-Y) and archaeal histone—putative	50.68	48.73	1.95
A4I5X6	LINF 300035000	Glyceraldehyde-3-phosphate dehydrogenase	48.33	46.38	1.95
A4I7K4	LINF 320009100	ATP-dependent RNA helicase eIF4A	48.34	46.41	1.93
Q4VT69	LINF 210007900	Hexokinase—putative	50.67	48.77	1.9

A4I115	LINF 240026800	Transketolase	51.79	49.91	1.88
A0A6L0XZX8	LINF 350009300	40S ribosomal protein S3a	47.89	46.04	1.85
A0A381M920	LINF 010012800	ATP-dependent RNA helicase eIF4A	47.36	45.54	1.82
A4ICM4	LINF 360016500	Putative ribosomal protein L24	48.31	46.52	1.79
A4HVS0	LINF 130021300	Ubiquitin-conjugating enzyme-like protein	45.3	43.55	1.75
E9AHZ7	LINF 360078300	Phosphoglycerate mutase (2,3-diphosphoglycerate-independent)	48.05	46.34	1.71
A4IA92	LINF 340039400	Alpha-keto-acid decarboxylase—putative	50.25	48.57	1.68
A4HSH2	LINF 050010000	ATP synthase F1—alpha subunit—putative	53.04	51.38	1.66
A4I8K8	LINF 320046200	60S ribosomal protein L2—putative	48.62	46.96	1.66
A4I9N5	LINF 340012100	26S proteasome regulatory subunit RPN11	44.87	43.23	1.64
A4IDK9	LINF 360030600	Glyceraldehyde-3-phosphate dehydrogenase	51.9	50.28	1.62
A4IA13	LINF 340028800	Asparagine—tRNA ligase	46.57	44.95	1.62
A4I4C9	LINF 290012700	Heat shock protein 90—putative	46.62	45.01	1.61
A4IA34	LINF 340031800	Alba—putative	48.1	46.51	1.59
A4HWB9	LINF 150007100	60S ribosomal protein L13a—putative	47.3	45.72	1.58
A4HY43	LINF 190006800	ADP/ATP translocase	46.72	45.25	1.47
A4I7P2	LINF 320013000	Putative RNA binding protein	47.01	45.58	1.43
A4ICN5	LINF 360015600	40S ribosomal protein S10—putative	48.51	47.08	1.43
A4I3C8	LINF 280010400	40S ribosomal protein S26	47.57	46.15	1.42
A4HUU6	LINF 110008400	14-3-3 protein 2—putative	45.68	44.3	1.38
A4I7Q4	LINF 320014400	60S ribosomal protein L18a	48.71	47.36	1.35
A4HX65	LINF 170005000	Hypothetical protein—conserved	46.02	44.72	1.3
A4HWR3	LINF 160006500	Eukaryotic translation initiation factor 1A—putative	47.27	46	1.27
A4HRG4	LINF 010009200	40S ribosomal protein S7	48.84	47.59	1.25
A2CIA0	LINF 100008300	Isocitrate dehydrogenase [NADP]	45.5	44.29	1.21
A4I291	LINF 260020700	Putative thimet oligopeptidase	44.7	43.57	1.13
A4HVK7	LINF 130012800	Hypothetical protein—conserved	45.01	43.91	1.1

Table 2. (Contr	nucu)				
A4I048	LINF 230006100	GDP-mannose pyrophosphorylase	46.69	45.59	1.11
A4HZ42	LINF 210009700	Hypothetical protein—conserved	45.55	44.49	1.06
E9AHD5	LINF 270012500	Hypothetical protein—conserved	46.61	45.62	0.99
A4I977	LINF 330026600	Hypothetical protein—conserved	45.05	44.08	0.97
A4ICP1	LINJ 36 0990	Putative 40S ribosomal protein S18	46.28	45.33	0.95
A4IB31	LINF 350018700	Mitochondrial processing peptidase—beta subunit—putative	44.73	43.8	0.93
A4I218	LINF 260013700	40S ribosomal protein S16—putative	47.59	46.7	0.89
A4HXK6	LINF 170020200	Putative translation initiation factor	48.53	47.67	0.86
A4I5F6	LINF 300018100	Pyridoxal kinase	47.5	46.64	0.86
A4HX73	LINF 170005900	Elongation factor 1-alpha	47.64	46.8	0.84
A4HUX3	LINF 110012000	Aminopeptidase—putative	50.57	49.74	0.83
A4IE56	LINF 360050900	Oxidoreductase—putative	45.04	44.22	0.82
A4I154	LINF 250006300	Electron transfer flavoprotein subunit beta	51.28	50.46	0.82
A0A381MM20	LINF 250017900	ATP synthase subunit beta	52.11	51.3	0.81
A0A6L0Y0Y0	LINF 350005400	Pyruvate kinase	52.63	51.83	0.80
A4HRT6	LINF 030007300	Putative ribosomal protein L38	49.14	48.35	0.79
A4HYW1	LINF 200016800	Cysteine peptidase—Clan CA—family C2—putative	45.84	45.11	0.73
A0A381MCG8	LINF 110015600	40S ribosomal protein S5	46.38	45.69	0.69
A4HV26	LINF 110017900	40S ribosomal protein S15A—putative	45.56	44.91	0.65
A4HX92	LINF 170008800	Cystathionine beta-synthase	49.33	48.68	0.65
A4I2G1	LINF 260028800	60S ribosomal protein L35—putative	47.8	47.18	0.62
E9AHK3	LINF 300041000	S-adenosylmethionine synthase	47.24	46.67	0.57
A4HT78	LINJ 07 0550	60S ribosomal protein L7a	46.98	46.41	0.57
A4HUJ7	LINF 100015200	Nuclear transport factor 2—putative	51.02	50.46	0.56
A4I067	LINF 230008000	Pteridine reductase 1	48.78	48.23	0.55
A4I5W4	LINF 300033900	Hypothetical protein—conserved	46.7	46.16	0.54
A4I114	LINF 240026700	60S ribosomal protein L26—putative	48.33	47.82	0.51
A4I3H3	LINF 280015200	40S ribosomal protein S14	45.27	44.79	0.48

A4I7N0	LINF 320010500	Profilin	46.96	46.57	0.39
A4I4E4	LINF 290014400	ADP-ribosylation factor-like protein 3A—putative	45.2	44.87	0.33
A4HS39	LINF 040009500	Cysteine peptidase—Clan CA—family C2—putative	49.47	49.24	0.23
Е9АНМ9	LINF 330009000	Heat shock protein 83–1	45.27	45.07	0.20
A4I2Y7	LINF 270024900	Phosphoenolpyruvate carboxykinase (ATP)	45.03	44.86	0.17
A4I9P1	LINF 340014000	Elongation factor 1-beta	43.79	43.67	0.12
A4HZI9	LINF 210028100	Proteasome subunit alpha type	56.36	56.26	0.10
A4I7R1	LINF 320015100	Staphylococcal nuclease homologue /Tudor domain containing protein—putative	59.7	59.61	0.09
A0A381MM90	LINF 280034800	Guanine nucleotide-binding protein subunit beta-like protein	44.38	44.35	0.03
A4I120	LINF 240027300	3-hydroxy-3-methylglutaryl-CoA synthase—putative	48	47.98	0.02
A4I6N1	LINF 310016800	Biotin/lipoate protein ligase-like protein	43.08	43.06	0.02
· · · · · ·		МТХ		·	
Accession	Gene ID	Description	T _m (T _m (°C)	
			+ MTX	- MTX	(°C)
A4IB55	LINF 350020400	Putative reiske iron-sulfur protein	60.38	46.98	13.4
A4HS42	LINF 040009700	60S ribosomal protein L11 (L5. L16)	51.3	45.39	5.91
A4I5G9	LINF 300019400	Amidohydrolase- putative	54.1	49.7	4.4
A0A6L0XG31	LINF 260006600	60S ribosomal protein L7—putative	49.5	45.74	3.76
A4I1F4	LINF 250017300	Aldehyde dehydrogenase	59.59	56.21	3.38
A4I067	LINF 230008000	Pteridine reductase 1	51.57	48.23	3.34
A4HT63	LINF 070005600	Cytochrome c1—heme protein—mitochondrial—putative	46.54	43.42	3.12
A4HTZ8	LINF 090013900	Oligopeptidase b	54.75	51.73	3.02
A0A6L0Y0Y0	LINF 350005400	Pyruvate kinase	54.57	51.81	2.76
A4I291	LINF 260020700	Putative thimet oligopeptidase	46.69	43.99	2.7
A4HW98	LINF 020005100	Histone H4	49.82	47.28	2.54
A4HVN8	LINF 130016000	Leucyl-tRNA synthetase	47.87	45.39	2.48
A4I5D2	LINF 300015700	Ubiquitin conjugation factor E4 B—putative	48.48	46.13	2.35
A4HZB2	LINF 210007900	Hexokinase—putative	51.94	49.74	2.2

Table 2. (Colle	inucu)				
Q95NF5	LINF 150019000	Tryparedoxin peroxidase	49.76	47.58	2.18
A4I931	LINF 330024300	3-ketoacyl-CoA reductase—putative	44.72	42.56	2.16
Е9АНН9	LINF 280015700	Putative ribosomal protein S20	45.77	43.64	2.13
A4HWB9	LINF 340014400	60S ribosomal protein L13a—putative	47.67	45.68	1.99
A4HVY8	LINF 140009900	N-terminal conserved domain of Nudc./CS domain containing protein—putative	46.45	44.62	1.83
Q9N9V3	LINF 040012600	Putative ribosomal protein L10	48.82	47.05	1.77
A0A6L0XZX8	LINF 350009300	40S ribosomal protein S3a	47.51	45.83	1.68
A4I114	LINF 240026700	60S ribosomal protein L26—putative	48.17	46.49	1.68
A4ICM4	LINF 360016500	Putative ribosomal protein L24	48.69	47.25	1.44
A4HVI5	LINF 130010500	60S ribosomal protein L18—putative	48.47	47.04	1.43
A4HZF8	LINF 210024300	Putative RNA helicase	47.21	45.83	1.38
A4HXG5	LINF 170015800	META domain containing protein	45.13	43.79	1.34
A4HUB4	LINF 100005600	Putative ribosomal protein 135a	47.82	46.49	1.33
A4IB38	LINF 350019600	Hypothetical protein—conserved	45.75	44.43	1.32
A4HRG4	LINF 010009200	40S ribosomal protein S7	48.99	47.68	1.31
A4I5W4	LINF 300033900	Hypothetical protein—conserved	47.07	45.85	1.22
A4IB31	LINF 350018700	Mitochondrial processing peptidase -beta subunit—putative	44.93	43.74	1.19
A4IDS4	LINF 360060700	40S ribosomal protein SA	45.96	44.81	1.15
A4I3C8	LINF 280010400	40S ribosomal protein S26	47.26	46.15	1.11
A0A381MG06	LINF 190005200	Histone H2B	49.97	48.92	1.05
A4HY61	LINF 190008800	40S ribosomal protein S13—putative	48.37	47.33	1.04
A4ICV5	LINF 360008400	Proteasome subunit beta	55.49	54.45	1.04
A4I7P2	LINF 320013000	Putative RNA binding protein	46.99	45.96	1.03
A4I7K4	LINF 320009100	ATP-dependent RNA helicase	47.48	46.48	1
A4HV26	LINF 110017900	40S ribosomal protein S15A—putative	45.91	44.91	1
A4IDK9	LINF 360030600	Glyceraldehyde-3-phosphate dehydrogenase	51.08	50.09	0.99
A0A6L0X791	LINF 170007100	Elongation factor 1-alpha	47.74	46.77	0.97

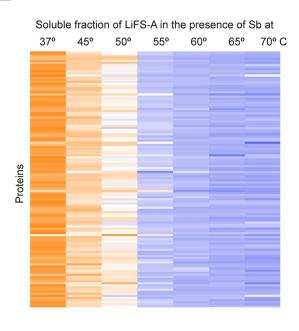
Table 2. (Conti	inued)				
E9AGK4	LINF 130022300	Pyrroline-5-carboxylate reductase	51.21	50.24	0.97
A4IA13	LINJ 34 2110	Asparagine-tRNA ligase	45.92	44.99	0.93
A0A6L0WKL6	LINF 100016800	Histone H3—putative	49.12	48.2	0.92
A0A381MCG8	LINF 110015600	40S ribosomal protein S5	46.44	45.64	0.80
E9AG68	LINF 060011400	60S ribosomal protein L23a—putative	47.42	46.67	0.75
A4HYX4	LINF 200018300	Putative small myristoylated protein-1	45.6	44.88	0.72
A0A6L0XQ48	LINF 330024700	Peptidyl-prolyl cis-trans isomerase	44.52	43.81	0.71
A4I6N1	LINF 310016800	Biotin/lipoate protein ligase-like protein	43.92	43.22	0.70
A4ID08	LINF 360047700	Eukaryotic translation initiation factor 3 subunit I	48.09	47.44	0.65
A4HZ42	LINF 210009700	Hypothetical protein—conserved	45.27	44.64	0.63
A4HZ33	LINF 210008800	Mitochondrial processing peptidase alpha subunit -putative	44.31	43.68	0.63
A4I212	LINF 260013100	Glutathione peroxidase	45.16	44.54	0.62
A0A6L0XIU2	LINF 290021400	Nodulin-like—putative	45.32	44.71	0.61
A2CIA0	LINF 100008300	Isocitrate dehydrogenase [NADP]	44.85	44.25	0.60
A4HVQ1	LINJ 13 1130	Putative 40S ribosomal protein S4	46.96	46.36	0.60
A4I8K8	LINF 320046200	60S ribosomal protein L2—putative	47.64	47.05	0.59
E9AGQ8	LINF 190005400	40S ribosomal protein S2	47.27	46.69	0.58
A4I5Y5	LINF 300036000	Eukaryotic translation initiation factor 3 subunit 7-like protein	44.71	44.13	0.58
Q9BHZ6	LINF 090016000	Elongation factor-1 gamma	45.55	44.99	0.56
Е9АНКЗ	LINF 300041000	S-adenosylmethionine synthase	47.22	46.72	0.5
A4I4F2	LINF 290015200	5-histidylcysteine sulfoxide synthase	43.55	43.09	0.46
A4IDL3	LINF 360031300	Methyltransferase	46.44	46.02	0.42
A4HRP2	LINF 020009800	Voltage-dependent anion-selective channel-putative	48.47	48.12	0.35
A4ID05	LINF 360048000	Adenosylhomocysteinase	51.22	50.91	0.31
A4I1R2	LINF 250028300	Succinate-CoA ligase [ADP-forming] subunit alpha	45.44	45.16	0.28
A4I120	LINF 240027300	3-hydroxy-3-methylglutaryl-CoA synthase- putative	48.54	48.27	0.27
A4HUX3	LINF 110012000	Aminopeptidase—putative	49.4	49.15	0.25
Е9АНМ9	LINF 330009000	Heat shock protein 83–17	45.72	45.5	0.22

A4HT92	LINF 070012400	40S ribosomal protein S9—putative	46.5	46.42	0.08
A4I3X3	LINF 280031300	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex	47.76	47.65	0.11
A4I6Z4	LINF 310029700	Prostaglandin f2-alpha synthase/D-arabinose dehydrogenase	43.59	43.48	0.11
A4IBE2	LINF 350032700	Galactokinase-like protein	46.14	46.02	0.12
A4I4E4	LINF 290014400	ADP-ribosylation factor-like protein 3A-putative	44.58	44.46	0.12
Q9N9V8	LINF 300042300	Ribosomal protein L15	46.75	46.61	0.14
A4I0C0	LINF 230014600	3-ketoacyl-CoA thiolase-putative	49.13	48.99	0.14
A4IA34	LINF 340031800	Alba—putative	47.15	47	0.15
A4I5F6	LINF 300018100	Pyridoxal kinase	46.94	46.78	0.16
A4HZS1	LINF 220009800	40S ribosomal protein S15—putative	47.19	47.03	0.16
A4IBL4	LINF 350037700	Cystathione gamma lyase—putative	44.64	44.48	0.16
A4HRT1	LINF 030006800	Multifunctional fusion protein	44.09	43.93	0.16
A0A381MM90	LINF 280034800	Guanine nucleotide-binding protein subunit beta-like protein	44.55	44.35	0.20

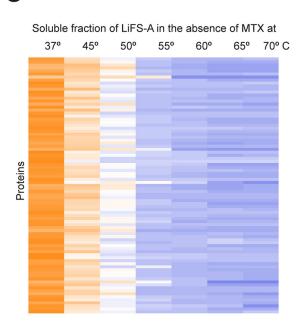
https://doi.org/10.1371/journal.pntd.0012015.t002

acid (A4HRH2), a GDP-mannose pyrophosphorylase (A4I048), two conserved hypothetical proteins (A4HXB7 and A4I5W4), and two ribosomal proteins (L10 and S10).

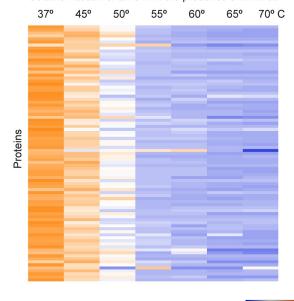
Discussion


The primary challenge in immunosuppressed patients with VL remains the inadequate effectiveness of antileishmanial treatments and the heightened risk of relapses [31,32]. This predicament is further exacerbated by the escalating emergence of drug-resistant strains in *Leishmania* parasites [33]. A deficient immune response can largely permit the outgrowth of persisters or other *Leishmania* variants that exhibit intermediate resistance levels. Of note, due to its genomic plasticity-coupled to the shared use of antileishmanials in animals and humans-, for many *Leishmania* infections, drug resistant parasites are likely present by the time chemotherapy starts [34]. Current research on drug resistance in *Leishmania* during treatment has mainly focused on the interaction between the parasite and antileishmanials, frequently ignoring the direct impact of other drugs such as immunosuppressants on *Leishmania* evolution. This study uncovers, for the first time, cross-resistance between MTX and Sb in clinical *L. infantum* isolates. This finding is significant as it may compromise treatment efficacy in immunosuppressed patients and contribute to the spread of drug-resistant parasites.

First, we assessed the responsiveness of both isolates to Sb and MTX, focusing on their capability to regulate ROS levels. *Li*FS-A exhibited a susceptibility to Sb and demonstrated an


Purpose the service of Sb at 37° 45° 50° 55° 60° 65° 70° C

B


D

С

Soluble fraction of LiFS-A in the presence of MTX at

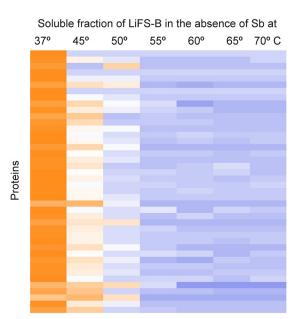
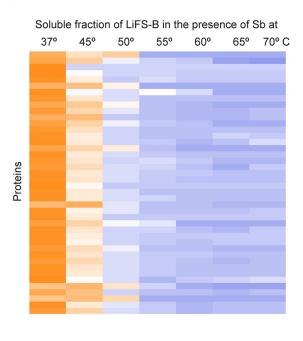
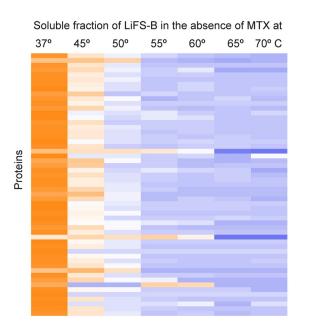

Normalized protein abundance

Fig 4. Heat map representation (row Z-score) of the general thermal stability of *Li*FS-A soluble protein cell extracts. Normalized protein abundance of *Li*FS-A proteins for which full melting curves were acquired in the absence (**A**) or in the presence (**B**) of 100 μ M Sb (118 proteins) and in the absence (**C**) or in the presence (**D**) of 100 μ M MTX (84 proteins). Color range depicts the relative protein abundance of the soluble fractions at different temperatures. Heat maps were generated through the Heat mapper webserver (www.heatmapper.ca/expression) using its protein expression plugin with average linkage as clustering method applied to rows and Euclidean as distance measurement method.

https://doi.org/10.1371/journal.pntd.0012015.g004


Α


B

D

Proteins

С

37° 45° 50° 55° 60° 65° 70° C

Soluble fraction of LiFS-B in the presence of MTX at

Normalized protein abundance

0 2

-2

Fig 5. Heat map representation (row Z-score) of the general thermal stability of *Li*FS-B soluble protein cell extracts. Normalized protein abundance of *Li*FS-B proteins for which full melting curves were acquired in the absence (**A**) or in the presence (**B**) of 100 μ M Sb (42 proteins) and in the absence (**C**) or in the presence (**D**) of 100 μ M MTX (55 proteins). Color range depicts the relative protein abundance of the soluble fractions at different temperatures. Heat maps were generated through the Heat mapper webserver (www.heatmapper.ca/expression) using its protein expression plugin with average linkage as clustering method applied to rows and Euclidean as distance measurement method. Of note, within the two field strains, 20 proteins were identified as shared following exposure to Sb. These shared proteins encompass ribosomal proteins, elongation

factors, and heat shock proteins. Additionally, 14 proteins were recognized as common to both strains subsequent to their interaction with MTX, highlighting a prevalence of ribosomal proteins and those associated with the parasite's cellular respiration.

https://doi.org/10.1371/journal.pntd.0012015.g005

increased accumulation of ROS when exposed to this drug. This could be explained by the fact that the trypanothione/trypanothione reductase (TR) system, essential for the parasite's oxidoreductive balance, is disrupted by trivalent Sb. This disruption causes a rapid efflux of T [SH]2 and glutathione and leads to apoptosis by increasing ROS and intracellular Ca²⁺ levels [35,36]. On the other hand, isolate *Li*FS-B was able to control ROS levels following MTX and Sb exposure, which correlated with a drug-resistant phenotype against both drugs. Of note, it has been observed that *Leishmania* strains recovered from immunosuppressed patients exhibit decreased sensitivity to Sb-based treatments [37]. Notably, most cases of secondary treatment failure with Sb occur in immunosuppressed patients due to their diminished immune response, which promotes parasite multiplication and hampers the efficacy of antimonial drugs, facilitating resistance development and subsequent relapses in leishmaniasis after treatment [37,38].

Next, we evaluated the expression of key genes involved in resistance against Sb and MTX. One of the most significant findings of this study is the clear evidence that pre-exposure to Sb results in a notable increase in the EC₅₀ against MTX, and conversely, pre-exposure to MTX leads to a similar increase in the EC₅₀ against Sb. Previous in vitro studies have demonstrated that exposure of parasites to Sb can lead to the co-amplification of the mrpA and ptr1 coding genes. These genes are in proximity (chromosome 23), and their amplification can occur through rearrangements within the same intergenic regions [34]. Our analyses of field isolates did not reveal overexpression of either of these two genes. However, we were able to identify a clear upregulation of *dhfr* in both MTX-resistant isolates. This finding is consistent with the previous study conducted by Rastrojo and colleagues, where they demonstrated the overexpression of the *dhfr* transcript gene in a Sb-resistant strain of *L. donovani* [39]. While some studies have reported the upregulation of *dhfr* in Sb-resistant strains, indicating its potential involvement in resistance, other studies have not observed significant changes in *dhfr* expression levels. It is important to note that drug resistance in Leishmania (as illustrated in this work) is multifactorial and can involve a combination of mechanisms, including alterations in drug transporters, drug metabolism, DNA repair mechanisms, and drug target modifications. Further research and investigation are required to fully elucidate the potential role of DHFR in Sb resistance and to better understand its significance in the overall resistance mechanism.

Finally, to better understand the interactions of Sb and MTX with *Leishmania* proteins in these two clinical isolates–as well as the potential mechanisms of cross-resistance–, we used a TPP-TR recently implemented for *Leishmania* parasites [25]. TPP analysis conducted in the presence of Sb indicated that proteins in the Sb-sensitive strain *Li*FS-A were associated with the activation of the mitochondrial respiratory chain. Within this group of proteins, we identified an NADH oxidase protein that it is known to increase its expression following exposure to Sb, resulting in an excessive production of superoxide [40]. Additionally, a mitochondrial cytochrome C1 protein was discovered, which, upon binding to Sb, could disrupt ATP synthesis, ultimately leading to the elimination of the parasites. Furthermore, we observed a highly thermally stable iron-sulfur protein that is potentially associated with the inhibition of thiol metabolism. On the other hand, the analysis of the meltome of the Sb-resistant isolate (*Li*FS-B) revealed significant stabilization of an alanine-tRNA ligase in the presence of Sb, along with three ribosomal proteins. These four proteins play a crucial role in ribosomal biogenesis and protein synthesis. During the late stage of promastigote differentiation, there is typically a

Accession Gene ID	Description	Tm	Tm (°C)		
			+ Sb	- Sb	<i>∆Tm</i> (°C)
A4I013	LINF 220021600	Alanine tRNA ligase	49.65	40.39	9.26
4I2U1	LINF 270020500	60S acidic ribosomal protein P0	48.56	43.75	4.81
4ID74	LINF 360036600	40S ribosomal protein S24	40.36	37.07	3.29
4HXT8	LINF 360046500	Putative 60S ribosomal protein L10A	43.41	40.37	3.04
4HZ42	LINF 210009700	Uncharacterized protein	44.87	42.1	2.77
4HZI3	LINF 210027500	Putative ATP synthase F1 subunit gamma protein	49.76	47.08	2.68
415Y5	LINF 300036000	Eukaryotic translation initiation factor 3 subunit 7-like protein	42.62	40.39	2.23
A4ICN5	LINF 360015600	Putative 40s ribosomal protein S10	44.47	42.5	1.97
4I0C2	LINF 230014800	Acetyl coenzyme A synthetase	48.69	46.87	1.82
4HZF8	LINF 210024300	ATP-dependent RNA helicase SUB2—putative	45.77	44.11	1.66
4I1R2	LINF 250028300	Succinate CoA ligase [ADP-forming] subunit alpha	47.27	45.67	1.6
4I1Z8	LINF 260011600	protein disulfide isomerase—putative	46.5	44.91	1.59
9AG68	LINF 060011300	Putative 60S ribosomal protein L23a	44.57	43.04	1.53
4I5C0	LINF 300014400	Putative Adenosine kinase	43.7	42.38	1.32
419P1	LINF 340014000	Elongation factor 1-beta	44.56	43.32	1.24
4HRR9	LINF 270033860	Dipeptylcarboxypeptidase	47.18	45.96	1.22
4I7P2	LINF 320013000	Putative RNA binding protein	43.99	42.9	1.09
.4I9G9	LINF 340005000	Short chain dehydrogenase putative	44.47	43.38	1.09
41931	LINF 330024300	3-ketoacyl-CoA reductase putative	45.8	44.75	1.05
4HVS0	LINF 130021300	Ubiquitin conjugating enzyme-like protein	44.69	43.64	1.05
4HW62	LINF 140018000	Enolase	44.38	43.37	1.01
4I218	LINF 260013700	Putative 40s ribosomal protein s16	43.72	42.82	0.90
412Y7	LINF 270024900	Glycosomal phosphoenolpyruvate carboxykinase. putative	43.97	43.11	0.86
4HWZ0	LINF 160015100	Sucrose phosphate synthase like protein	43.78	42.93	0.85
4I120	LINF 240027300	3-hydrox-3-methylglutaryl-CoA synthase—putative	49.77	49.01	0.76

Table 3. Summary of proteins identified in Sb-treated and MTX-treated *Li*FS-B, demonstrating a positive temperature shift. Proteins that are common between the strains *Li*FS-B and *Li*FS-A are highlighted in bold for easy identification.

A4I5W4	LINF 300033900	Hypothetical protein—conserved	49.85	47.7	2.15
Q9N9V3	LINF 040012600	Putative ribosomal protein L10	45.08	42.75	2.33
A4HXB7	LINF 170010700	Hypothetical protein—conserved	44.58	42.07	2.51
A4I048	LINF 230006100	GDP-mannose pyrophosphorylase	46.45	42.94	3.51
A4HRH2	LINF 010010000	Putative long-chain-fatty-acid-CoA ligase	44.83	40.46	4.37
A4I088	LINF 230010200	SNF1	49.17	40.46	8.71
A4HXP7	LINF 180007100	Activator of Hsp90 ATPase	59.62	47.24	12.38
A4I1G1	LINF 250018000	ATP synthase subunit beta	50.14	MTX 33.41	16.73
Accession	Gene ID	Description	Tm + MTX	-	ΔTm (°C)
		MTX		(1.0)	
A4I341	LINF 270032200	Putative heat shock protein DnaJ	45.94	45.9	0.04
A4I7K4	LINF 320009100	Putative ATP-dependent RNA helicase	44.09	44.05	0.04
A4HW34	LINF 140015200	Glutathione synthetase	50.28	50.23	0.05
A4ICK8	LINF 360018400	Fructose bisphosphate aldolase	46.7	46.65	0.05
A4HZB2	LINF 210007900	Hexokinase—putative	51.84	51.77	0.07
A4HX65	LINF 170005000	Uncharacterized protein	43.19	43.04	0.15
A4HY43	LINF 190006800	ADP—ATP carrier protein 1	43.94	43.78	0.16
A4I5X6	LINF 300035000	Glyceraldehyde-3-phosphate dehydrogenase	44.25	43.99	0.26
A4IBL4	LINF 350037700	Putative cystathione gamma lyase	45.82	45.53	0.29
A4I4C9	160010900 LINF 290012700	histone—putative Heat shock protein 90 putative	44.26	43.96	0.30
A4HWV9	LINF	Core histone H2A/H2B/H3/H4/Histone-like transcription factor (CBF/NF-Y) and archaeal	45.56	45.18	0.38
A4HSP6	LINF 060005200	WD domain G-beta repeat putative	43.72	43.32	0.40
A4I4W0	LINF 290032300	Putative 60S ribosomal protein L13	43.96	43.47	0.49
A4HTP4	320010500 LINF 080016000	Stressinduced protein stil	44.69	44.15	0.54
A4I7N0	280034700 LINF	Profilin	46.94	46.39	0.55
40A0S2UQ61		Activated protein kinase C receptor	44.21	43.51	0.70
A4HUB4	LINF	Putative Ribosomal protein L35A	43.59	42.83	0.76

1 able 5. (Col	initiaeu)				
A4ICN5	LINF 360015700	Putative 40s ribosomal protein S10	44.61	42.5	2.11
E9AHB0	LINF 260006700	Putative 60s ribosomal protein 17	45.56	43.67	1.89
4I5C0	LINF 300014400	Putative Adenosine kinase	43.99	42.42	1.57
4I2S6	LINF 270019000	Putative T-complex protein 1. beta subunit	45.04	43.53	1.51
4I218	LINF 260013800	Putative 40s ribosomal protein s16	44.97	43.51	1.46
4HUU6	LINF 110008400	Putative 14-3-3 protein	46.19	44.81	1.38
4HVS0	LINF 130021300	Ubiquitin-conjugating enzyme-like protein	44.76	43.39	1.37
4HWB9	LINF 340014400	Putative 60S ribosomal protein L13a	45.22	43.92	1.3
E9AHK7	LINF 310006400	Putative ubiquitin hydrolase	44.65	43.44	1.21
415X6	LINF 300035000	Glyceraldehyde-3-phosphate dehydrogenase	44.85	43.74	1.11
A4HTP4	LINF 080016000	Stress-induced protein stil	45.41	44.31	1.10
4IDK9	LINF 360030600	Glyceraldehyde-3-phosphate dehydrogenase	46.84	45.76	1.08
4ICM4	LINF 360016500	Putative ribosomal protein 124	44.87	43.79	1.08
E9AG68	LINF 060011400	Putative 60S ribosomal protein L23a	43.95	43.04	0.91
4I4W0	LINF 290032300	Putative 60S ribosomal protein L13	44.36	43.48	0.88
4I3V7	LINF 280029400	Putative glycosomal membrane protein	44.67	43.83	0.84
4HUX3	LINF 110012000	Putative aminopeptidase	46.85	46.11	0.74
4I9V2	LINF 340021000	N-terminal region of Chorein	45.32	44.6	0.72
4I7K4	LINF 320009100	ATP-dependent RNA helicase	44.75	44.08	0.67
2CIA0	LINF 100008300	Isocitrate dehydrogenase [NADP]	44.06	43.39	0.67
4I1R2	LINF 250028300	Succinate-CoA ligase	46.24	45.61	0.63
4HVE5	LINF 130005800	Putative carboxypeptidase	59.82	59.19	0.63
4HYW1	LINF 200016800	Putative calpain-like cysteine peptidase	47.16	46.55	0.61
)2PDB9	LINF 180021400	Inosine-uridine preferring nucleoside hydrolase	61.09	60.51	0.58
4IC14	LINF 350053300	Cyclophilin 40	43.98	43.42	0.56
4HW83	LINF 140020100	Putative tyrosyl-tRNA synthetase	44.08	43.57	0.51
4I341	LINF 270032200	Putative heat shock protein DnaJ	46.2	45.72	0.48

A4IA31	LINF 340031400	Uncharacterized protein	45.92	45.46	0.46
A4HU72	LINF 090022600	Cytochrome b5-like protein	45.92	45.46	0.46
A4HX73	LINF 170007200	Elongation factor 1-alpha	44.91	44.49	0.42
A4HX65	LINF 170005000	Uncharacterized protein	42.89	42.49	0.39
A4I7I7	LINF 320007400	Putative dynein light chain. flagellar outer arm	44.95	44.57	0.38
A4I9B4	LINF 330036700	Putative translation initiation factor IF-2	38.42	38.11	0.31
A0A0S2UQ61	LINF 280034700	Activated protein kinase C receptor	44.07	43.78	0.29
A4HVL6	LINF 130013700	Uncharacterized protein	47.44	47.17	0.27
A4I8S7	LINF 330013000	Paraflagellar rod component—putative	48.51	48.25	0.26
A4HY43	LINF 190006800	ADP-ATP carrier protein 1	44.33	44.08	0.25
Е9АНМ9	LINF 330009000	Heat shock protein 83–17	45.29	45.06	0.23
A4HZI4	LINF 350025100	40S ribosomal protein S6	44.98	44.75	0.23
A4I0M7	LINF 240005200	Ribosomal protein L22p/L17e—putative	46.02	45.82	0.20
A4ID12	LINF 360047300	Putative glycyl tRNA synthetase	43.92	43.78	0.14
A4I4E4	LINF 290014400	ADP-ribosylation factor-like protein 3A	45.14	45.04	0.10
A2CIN2	LINF 290027200	Fumarate hydratase	44.54	44.45	0.09
A4HWZ0	LINF 160015100	Sucrose phosphate synthase-like protein	43	42.93	0.07
A4HW34	LINF 140015200	Glutathione synthetase	50.27	50.23	0.04
A4I4C9	LINF 290012700	Heat shock protein 90—putative	43.57	43.55	0.02
A4IBL4	LINF 350037700	Putative cystathione gamma lyase	45.12	45.1	0.02

https://doi.org/10.1371/journal.pntd.0012015.t003

metabolic stabilization accompanied by a decrease in the abundance of ribosomal proteins and tRNA synthetases [41]. However, variations in protein abundance could indicate a heightened metabolic activity and functional adaptation to external factors [42], such as drug pressure. Additionally, ribosomal proteins, along with translational proteins and others, contribute to the proliferation of promastigotes, allowing them to evade the host immune response and increasing their virulence [43], which is supported by findings showing that Sb-resistant field strains display increased virulence [44]. It is important to note that using the TPP-TR approach we cannot identify any direct interaction of MRPA with Sb, as this must be conjugated with thiols to bid the ABC transporter [9]. However, we were able to prove that *mrpA* expression levels are higher in the *Li*FS-B isolate.

In TPP experiments with MTX, we observed a significant increase in various proteins involved in mitochondrial processes in both field isolates. This heightened activity could help in detoxifying the effects of MTX, maintaining cellular homeostasis, and potentially activating compensatory pathways that mitigate MTX's impact. In this way, LiFS-A's meltome in the presence of MTX displayed an enrichment in both cytochrome c reductase activity and translation. By increasing cytochrome c reductase activity, Leishmania might improve the efficiency of its mitochondrial electron transport chain, maintaining ATP production and protecting the mitochondria from damage caused by ROS [45]. Enhanced translation in Leishmania in response to MTX exposure might be a compensatory mechanism to increase the production of proteins necessary for DNA repair, detoxification, and stress response. On the other hand, MTX induced enrichment in carboxylic acid metabolism proteins in LiFS-B's meltome. This observation aligns with various prior studies which have identified that modifications in carboxylic acid metabolism, through either gene amplification or changes in enzyme functionality, can contribute to the development of MTX resistance in Leishmania [46,47]. Our analyses also pinpointed the interaction between PTR1 and MTX in *Li*FS-A. MTX competitively inhibits DHFR, which is responsible for converting dihydrofolate (DHF) to tetrahydrofolate (THF), an essential cofactor in the synthesis of nucleotides. However, PTR1 can convert DHF back to THF, thus bypassing the inhibitory action of MTX on DHFR [22,48]. In addition, we observed higher thermal stabilization of other important proteins, including an ATP synthase subunit beta and an activator of HSP90 ATPase. These findings lead us to hypothesize that there is an increase in the proton gradient during the entry of MTX into the parasites via FBT transport, which may explain the increased stabilization of ATP synthase in at least one of the resistant isolates. Markedly, the observed increase in these chaperones may be linked to an adaptation to stress by promoting protein folding and stability of certain target proteins involved in MTX metabolism, transport, or detoxification pathways.

In summary, our study highlights the potential risk of Sb-MTX cross-resistance selection when *L. infantum* parasites are exposed to either of these drugs. This finding may help explain the relapses of visceral leishmaniasis observed in immunosuppressed patients treated with MTX. Importantly, this new knowledge has the potential to inform the development of more tailored immunosuppression regimens, thereby reducing the risk of selecting and spreading drug-resistant parasites, particularly in endemic areas. Additionally, we have provided a comprehensive list of potential Sb- and MTX-interacting proteins and pathways that could be further explored as targets for therapeutic interventions and as biomarkers of drug resistance in future studies.

Supporting information

S1 Fig. Normalized mRNA expression levels of *mrpA*, *ptr1*, and *ass* in *Li*TW non-exposed (-) and pre-exposed (+) to MTX EC₉₀. mRNA expression levels of H-locus genes *mrpA* (A), *ptr1* (B), and *ass* (C) were determined by quantitative real-time RT-PCR and normalized using *gapdh* as housekeeping gene. Results are derived from three biological replicates. Each data point represents the average \pm SEM. Differences were statistically evaluated using an unpaired two-tailed t-test. ** p<0.01; *** p<0.001. (TIF)

S1 Data. Proteomic data generated in this study. (XLSX)

Acknowledgments

Authors want to thank Dr Aida Mínguez-Menéndez for her help with the conception of the figures.

Author Contributions

Conceptualization: Javier Moreno, Christopher Fernandez-Prada.

Data curation: Christopher Fernandez-Prada.

- Formal analysis: Lorena Bernardo, Ana Victoria Ibarra-Meneses, Jose Carlos Solana, Francis Beaudry, Eugenia Carrillo, Javier Moreno, Christopher Fernandez-Prada.
- **Funding acquisition:** Francis Beaudry, Eugenia Carrillo, Javier Moreno, Christopher Fernandez-Prada.
- Investigation: Lorena Bernardo, Ana Victoria Ibarra-Meneses, Noelie Douanne, Audrey Corbeil.

Methodology: Francis Beaudry, Eugenia Carrillo, Christopher Fernandez-Prada.

Project administration: Christopher Fernandez-Prada.

Resources: Eugenia Carrillo, Javier Moreno, Christopher Fernandez-Prada.

Supervision: Eugenia Carrillo, Javier Moreno, Christopher Fernandez-Prada.

Validation: Lorena Bernardo, Ana Victoria Ibarra-Meneses, Francis Beaudry, Javier Moreno.

Visualization: Ana Victoria Ibarra-Meneses, Francis Beaudry, Christopher Fernandez-Prada.

- Writing original draft: Lorena Bernardo, Ana Victoria Ibarra-Meneses, Eugenia Carrillo, Javier Moreno, Christopher Fernandez-Prada.
- Writing review & editing: Christopher Fernandez-Prada.

References

- 1. Gradoni L, Lopez-Velez R, Mokni M. Manual on case management and surveillance of the leishmaniases in the WHO European Region. Geneva, Switzerland: World Health Organisation; 2017.
- Nieto A, Dominguez-Bernal G, Orden JA, De La Fuente R, Madrid-Elena N, Carrion J. Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus Syrian hamster model. Veterinary research. 2011; 42:39. https://doi.org/10.1186/1297-9716-42-39 PMID: 21345200
- Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PloS one. 2012; 7:e35671. https://doi.org/10.1371/journal.pone.0035671 PMID: 22693548
- 4. WHO. First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases.: WHO Library Cataloguing-in-Publication Data 2010.
- Ouellette M, Drummelsmith J, Papadopoulou B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat. 2004; 7:257–266. https://doi.org/10.1016/j.drup.2004.07.002 PMID: 15533763
- Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004; 279:39925–39932. <u>https://doi.org/10. 1074/jbc.M405635200 PMID: 15252045</u>
- Moreira VR, de Jesus LCL, Soares RP, Silva LDM, Pinto BAS, Melo MN, et al. Meglumine Antimoniate (Glucantime) Causes Oxidative Stress-Derived DNA Damage in BALB/c Mice Infected by Leishmania (Leishmania) infantum. Antimicrob Agents Chemother. 2017; 61. <u>https://doi.org/10.1128/AAC.02360-16 PMID: 28320726</u>
- 8. Fernandez-Prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, et al. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance

mechanisms. Int J Parasitol Drugs Drug Resist. 2018; 8:165–173. https://doi.org/10.1016/j.ijpddr.2018. 03.004 PMID: 29602064

- Douanne N, Wagner V, Roy G, Leprohon P, Ouellette M, Fernandez-Prada C. MRPA-independent mechanisms of antimony resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2020; 13:28–37. https://doi.org/10.1016/j.ijpddr.2020.03.003 PMID: 32413766
- Legare D, Cayer S, Singh AK, Richard D, Papadopoulou B, Ouellette M. ABC proteins of Leishmania. J Bioenerg Biomembr. 2001; 33:469–474. https://doi.org/10.1023/a:1012870904097 PMID: 11804188
- El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, et al. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother. 2005; 49:1988–1993. <u>https://doi.org/10.1128/AAC.49.5.1988-1993.</u> 2005 PMID: 15855523
- Douanne N, Dong G, Amin A, Bernardo L, Blanchette M, Langlais D, et al. Leishmania parasites exchange drug-resistance genes through extracellular vesicles. Cell Rep. 2022; 40:111121. https://doi. org/10.1016/j.celrep.2022.111121 PMID: 35858561
- Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasites & vectors. 2016; 9:118. https://doi.org/10.1186/s13071-016-1412-x PMID: 26932389
- van Griensven J, Carrillo E, López-Vélez R, Lynen L, Moreno J. Leishmaniasis in immunosuppressed individuals. Clinical Microbiology and Infection. 2014; 20:286–299. <u>https://doi.org/10.1111/1469-0691.</u> 12556 PMID: 24450618
- Botana L, Ibarra-Meneses AV, Sanchez C, Castro A, San Martin JV, Molina L, et al. Asymptomatic immune responders to Leishmania among HIV positive patients. PLoS neglected tropical diseases. 2019; 13:e0007461. https://doi.org/10.1371/journal.pntd.0007461 PMID: 31158223
- Kurizky PS, Marianelli FF, Cesetti MV, Damiani G, Sampaio RNR, Goncalves LMT, et al. A comprehensive systematic review of leishmaniasis in patients undergoing drug-induced immunosuppression for the treatment of dermatological, rheumatological and gastroenterological diseases. Rev Inst Med Trop Sao Paulo. 2020; 62:e28. https://doi.org/10.1590/s1678-9946202062028 PMID: 32401957
- Botana L, Ibarra-Meneses AV, Sanchez C, Matia B, San Martin JV, Moreno J, et al. Leishmaniasis: A new method for confirming cure and detecting asymptomatic infection in patients receiving immunosuppressive treatment for autoimmune disease. PLoS neglected tropical diseases. 2021; 15:e0009662. https://doi.org/10.1371/journal.pntd.0009662 PMID: 34339445
- Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bulletin of the NYU hospital for joint diseases. 2007; 65:168–173. PMID: 17922664
- Thomas S, Fisher KH, Snowden JA, Danson SJ, Brown S, Zeidler MP. Methotrexate Is a JAK/STAT Pathway Inhibitor. PloS one. 2015; 10:e0130078. https://doi.org/10.1371/journal.pone.0130078 PMID: 26131691
- Nduati E, Diriye A, Ommeh S, Mwai L, Kiara S, Masseno V, et al. Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer. Parasitol Res. 2008; 102:1227–1234. <u>https://</u> doi.org/10.1007/s00436-008-0897-4 PMID: 18259776
- Gazanion E, Fernandez-Prada C, Papadopoulou B, Leprohon P, Ouellette M. Cos-Seq for highthroughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A. 2016; 113:E3012–3021. <u>https://doi.org/10.1073/pnas.1520693113</u> PMID: 27162331
- Ubeda JM, Legare D, Raymond F, Ouameur AA, Boisvert S, Rigault P, et al. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol. 2008; 9:R115. https://doi.org/10.1186/gb-2008-9-7-r115 PMID: 18638379
- Bernardo L, Solana JC, Romero-Kauss A, Sanchez C, Carrillo E, Moreno J. Effect of immunosuppressants on the parasite load developed in, and immune response to, visceral leishmaniasis: A comparative study in a mouse model. PLoS neglected tropical diseases. 2021; 15:e0009126. https://doi.org/10. 1371/journal.pntd.0009126 PMID: 33524030
- Rosa-Teijeiro C, Wagner V, Corbeil A, d'Annessa I, Leprohon P, do Monte-Neto RL, et al. Three different mutations in the DNA topoisomerase 1B in Leishmania infantum contribute to resistance to antitumor drug topotecan. Parasit Vectors. 2021; 14:438. <u>https://doi.org/10.1186/s13071-021-04947-4</u> PMID: 34454601
- Ibarra-Meneses AV, Corbeil A, Wagner V, Beaudry F, do Monte-Neto RL, Fernandez-Prada C. Exploring direct and indirect targets of current antileishmanial drugs using a novel thermal proteomics profiling approach. Front Cell Infect Microbiol. 2022; 12:954144. <u>https://doi.org/10.3389/fcimb.2022.954144</u> PMID: 35992178

- Franken H, Mathieson T, Childs D, Sweetman GM, Werner T, Togel I, et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc. 2015; 10:1567–1593. https://doi.org/10.1038/nprot.2015.101 PMID: 26379230
- Miro G, Oliva G, Cruz I, Canavate C, Mortarino M, Vischer C, et al. Multicentric, controlled clinical study to evaluate effectiveness and safety of miltefosine and allopurinol for canine leishmaniosis. Vet Dermatol. 2009; 20:397–404. https://doi.org/10.1111/j.1365-3164.2009.00824.x PMID: 20178476
- Mahmoudvand H, Kheirandish F, Mirbadie SR, Kayedi MH, Rezaei Riabi T, Ghasemi AA, et al. The Potential Use of Methotrexate in the Treatment of Cutaneous Leishmaniasis: In Vitro Assays against Sensitive and Meglumine Antimoniate-resistant Strains of Leishmania tropica. Iranian journal of parasitology. 2017; 12:339–347. PMID: 28979343
- Mukherjee A, Padmanabhan PK, Singh S, Roy G, Girard I, Chatterjee M, et al. Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother. 2007; 59:204–211. <u>https://doi.org/10.1093/jac/dkl494</u> PMID: 17213267
- Frezard F, Monte-Neto R, Reis PG. Antimony transport mechanisms in resistant leishmania parasites. Biophys Rev. 2014; 6:119–132. https://doi.org/10.1007/s12551-013-0134-y PMID: 28509965
- Saporito L, Giammanco GM, De Grazia S, Colomba C. Visceral leishmaniasis: host-parasite interactions and clinical presentation in the immunocompetent and in the immunocompromised host. Int J Infect Dis. 2013; 17:e572–576. https://doi.org/10.1016/j.ijid.2012.12.024 PMID: 23380419
- 32. Carrillo E, Carrasco-Anton N, Lopez-Medrano F, Salto E, Fernandez L, San Martin JV, et al. Cytokine Release Assays as Tests for Exposure to Leishmania, and for Confirming Cure from Leishmaniasis, in Solid Organ Transplant Recipients. PLoS neglected tropical diseases. 2015; 9:e0004179. <u>https://doi.org/10.1371/journal.pntd.0004179</u> PMID: 26496365
- Leprohon P, Fernandez-Prada C, Gazanion E, Monte-Neto R, Ouellette M. Drug resistance analysis by next generation sequencing in Leishmania. Int J Parasitol Drugs Drug Resist. 2015; 5:26–35. <u>https://doi.org/10.1016/j.ijpddr.2014.09.005</u> PMID: 25941624
- Ubeda JM, Raymond F, Mukherjee A, Plourde M, Gingras H, Roy G, et al. Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania. PLoS Biol. 2014; 12:e1001868. https://doi.org/10.1371/journal.pbio.1001868 PMID: 24844805
- Decuypere S, Vanaerschot M, Brunker K, Imamura H, Muller S, Khanal B, et al. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS neglected tropical diseases. 2012; 6:e1514. https://doi.org/10.1371/journal.pntd.0001514 PMID: 22389733
- Mehta A, Shaha C. Mechanism of metalloid-induced death in Leishmania spp.: role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radic Biol Med. 2006; 40:1857–1868. https://doi.org/10. 1016/j.freeradbiomed.2006.01.024 PMID: 16678023
- Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006; 19:111– 126. https://doi.org/10.1128/CMR.19.1.111-126.2006 PMID: 16418526
- Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, Marty P, Michel G, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother. 1997; 41:827–830. https://doi.org/ 10.1128/AAC.41.4.827 PMID: 9087498
- Rastrojo A, Garcia-Hernandez R, Vargas P, Camacho E, Corvo L, Imamura H, et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int J Parasitol Drugs Drug Resist. 2018; 8:246–264. https://doi.org/10.1016/j.ijpddr.2018.04.002 PMID: 29689531
- 40. Rais S, Perianin A, Lenoir M, Sadak A, Rivollet D, Paul M, et al. Sodium stibogluconate (Pentostam) potentiates oxidant production in murine visceral leishmaniasis and in human blood. Antimicrob Agents Chemother. 2000; 44:2406–2410. <u>https://doi.org/10.1128/AAC.44.9.2406-2410.2000</u> PMID: 10952587
- Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 2008; 22:590–602. <u>https://doi.org/10.1096/fj.07-9254com PMID: 17884972</u>
- Tsigankov P, Gherardini PF, Helmer-Citterich M, Spath GF, Zilberstein D. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res. 2013; 12:3405–3412. https://doi.org/10.1021/pr4002492 PMID: 23688256
- 43. Fialho L, da Fonseca Pires S, Burchmore R, McGill S, Weidt S, Ruiz JC, et al. Proteomic analysis reveals differentially abundant proteins probably involved in the virulence of amastigote and promastigote forms of Leishmania infantum. Parasitol Res. 2021; 120:679–692. <u>https://doi.org/10.1007/s00436-020-07020-8 PMID</u>: 33415401

- 44. Vanaerschot M, De Doncker S, Rijal S, Maes L, Dujardin JC, Decuypere S. Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite burden. PloS one. 2011; 6:e23120. https://doi.org/10.1371/journal.pone.0023120 PMID: 21829701
- Moreira W, Leprohon P, Ouellette M. Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania. Cell Death Dis. 2011; 2:e201. <u>https://doi.org/10.1038/cddis.2011.</u> 83 PMID: 21881603
- 46. Papadopoulou B, Roy G, Ouellette M. A novel antifolate resistance gene on the amplified H circle of Leishmania. EMBO J. 1992; 11:3601–3608. https://doi.org/10.1002/j.1460-2075.1992.tb05444.x PMID: 1396560
- Drummelsmith J, Girard I, Trudel N, Ouellette M. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem. 2004; 279:33273–33280. https://doi.org/10.1074/jbc.M405183200 PMID: 15190060
- Ouellette M, Drummelsmith J, El-Fadili A, Kundig C, Richard D, Roy G. Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. Int J Parasitol. 2002; 32:385–398. <u>https://doi.org/ 10.1016/s0020-7519(01)00346-0 PMID: 11849635</u>