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Abstract

Nanoplastics (NPs) have been found in many ecological environments (aquatic, terrestrial,

air). Currently, there is great concern about the exposition and impact on animal health,

including humans, because of the effects of ingestion and accumulation of these nanoma-

terials (NMs) in aquatic organisms and their incorporation into the food chain. NPs´ mecha-

nisms of action on humans are currently unknown. In this study, we evaluated the altered

molecular mechanisms on human neural stem cell line (hNS1) after 4 days of exposure to

30 nm polystyrene (PS) NPs (0.5, 2.5 and 10 μg/mL). Our results showed that NPs can

induce oxidative stress, cellular stress, DNA damage, alterations in inflammatory response,

and apoptosis, which could lead to tissue damage and neurodevelopmental diseases.

1. Introduction

Large plastic production [1, 2] and use have resulted in the release of plastic waste into aquatic,

terrestrial and even aerial ecosystems, being a great problem to current and future generations

[3]. These plastic materials with time, UV radiation, environmental variables, etc. can frag-

ment into small micro (1 μm—5 mm, microplastics, MPs) and nano (< 1 μm, nanoplastics,

NPs) sized particles [4, 5]. MPs and NPs are made of different plastic types such as polypropyl-

ene (PP), polyethylene (PE), or polystyrene (PS) [6, 7]. NPs and MPs are emerging pollutants

which can accumulate in organisms and whose toxic and health effects have made them one of

the international environmental, public health, and animal health priority targets [7, 8]. The

MPs and NPs can enter the human body by inhalation, ingestion, and skin contact [9]. How-

ever, the answer to how these NMs pass through the gut, lungs and epithelia to other organs is

very scarce. There is scientific evidence that they can reach the systemic circulation, penetrate,

and accumulate in different tissues and organs such as brain, eyes, spleen, liver, bone marrow,

etc. [9–11]. Other studies have shown that MPs and NPs produce impacts on development,

growth, reproduction, behavior, and mortality in aquatic [12] and terrestrial animals [13]. In

addition, some research suggests that NPs can accumulate in living organisms and can cause

inflammation [14], oxidative stress [7], dysregulation of energy metabolism [15], endocrine
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disruption [16], apoptosis [17], and growth inhibition [18], among others. It has been sug-

gested that oxidative stress can cause cellular damage that can lead to neuronal disorders, as

they produce inhibition of acetylcholinesterase (AChE) activity and alter neurotransmitter lev-

els [19, 20]. In addition, studies from our group, demonstrate that PS NPs cause increased

gene expression of oxidative stress markers, apoptosis, inflammation, and inhibition of neuro-

transmitter (AChE) gene expression in zebrafish embryos (Zfe) [21]. Furthermore, these parti-

cles are able to enter the Zfe central nervous system (CNS), and cause deleterious effects, as

well as endocrine system effects and behavioral alterations [11]. Their potential neurodevelop-

mental toxicity is a concern, as these nanomaterials can cross the Blood-Brain Barrier (BBB)

[22]. In aquatic organisms the presence of latex NPs and PS NPs has been observed in various

organs, including the brain of Medaka (Oryzias latipes) and other fish [23], producing behav-

ioral disorders [24]. Currently, there are very few studies investigating the potential neurotox-

icity of PS NPs in neural cell models. However, PS NPs have shown to reduce viability, activate

inflammatory response, and induce apoptosis in other types of human cells such as A549 alve-

olar cells [25]. The relationship between NPs and alterations at the level of gene expression in

stem cells is so far unknown [26].

The development of in vitro models for toxicity testing is currently being encouraged [27].

These models better reproduce human physiology and are replacing animal models. The main

trend is to use immortalized cell lines derived from cancer tissues and, recently, models that

include stem cells have also begun to be used [28]. These new models have advantages over

cancer lines in that they do not have an altered genotype, which allows the presence of physio-

logically more important cell types and makes it possible to estimate interindividual variation

[29, 30]. In our work, we analyzed the effects of NPs in an in vitro model based on human neu-

ral stem cells (hNS1), in order to obtain a real response of the effects caused by exposure to

nanoparticles and to obtain more reliable results. To address this work, gene expression of dif-

ferent metabolic pathways, such as stress response (hsp27/hspB1, hsp60, hsp70/hspA5, and
hsp90α), DNA repair (xrcc1, gad45a, rad51), oxidative damage response (Cu/ZnSOD 1,

MnSOD 2), apoptotic response (Cas3a, Cas7, p53, Bcl2), and mitochondrial response (Cox5A),

were analyzed after PS NP exposure, as biomarkers of NPs damage. Cells were exposed to con-

centrations similar to those present in the environment and/or used in previous studies (0.5,

2.5, and 10 μg/mL) for 4 days [11, 21, 31–34]. Currently, there is limited information on the

neurotoxicity of NPs in mammals [22] and there are no data on the concentration and bioac-

cumulation of these nanomaterials in humans. This study provides a platform to examine the

impacts of Polystyrene nanoparticles (PS NPs) on human neural stem cells, focusing on poten-

tial damage at the neurotoxicogenomic level in humans as the mechanisms of toxicity are

largely unknown.

2. Material and methods

2.1 Cell culture

Cell line hNS1 was used as a model of human neural stem cells (hNSCs) that has been previ-

ously characterized [35–38]. This cell line is non-transformed, derived from human fetal fore-

brain and immortalized with v-myc [39]. Cells were cultured on poly-L-lysine (10 μg/mL;

Sigma) coated plastic plates and proliferated in human stem cell (HSC) medium [Dulbecco’s

Modified Eagle Medium (DMEM)/F12 with GlutaMAX-I medium (Gibco) containing 0.26%

AlbumaMAXb (Gibco), 0.6% glucose (Merck), N2 Supplement 1X (Gibco), 5 mM HEPES

(Gibco), penicillin/ streptomycin 1× (P/S; Lonza), non-essential aminoacids 1X (Gibco)] and

supplemented with 20 ng/mL epidermal growth factor (EGF; PreproTech) and 20 ng/mL basic

fibroblast growth factor (FGF2; PreproTech). hNS1 cells were differentiated by withdrawal of
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growth factors (EGF and FGF2) and addition of 0.5% heat-inactivated fetal bovine serum

(FBS) (differentiation medium). Cells were kept in an incubator set to 37 ˚C and 5% CO2.

2.2 Nanoparticle preparation and cells exposure

Pristine PS particles with an average diameter of 30 nm were purchased from Thermo Scienti-

ficTM (Spain). NP of 1.05 g/cm3 density were provided as a 1% and 10% solution in water

respectively, both with< 2% surfactant (SDS) to prevent agglomeration, and< 0.05% the anti-

bacterial agent NaN3 (only fluorescently labelled particles). Nanoplastic particle size and

charge were characterized in cell culture medium by nanoparticle tracking analysis (NTA),

direct light scattering (DLS), and electron microscopy [21]. We published this characterization

previously [21]. All cells were treated for 4 days with PS NPs after 2 days of seeding in the cul-

ture plate [3x105 cells/well (P6)]. The stock solution was shaken and sonicated for 10 min

before utilization. The NPs were diluted in differentiation medium at 0.5, 2.5, and 10 μg/mL.

The cells were differentiated for 4 days under exposure to PS NPs because preliminary studies

showed that during that time of cell differentiation, a higher amount of NPs was found inside

the treated cells. The stock solution of NPs was vortexed and sonicated for 10 min before use.

NPs were diluted in differentiation medium to a final concentration of 0.5, 2.5 and 10 μg/mL.

These concentrations were selected based on literature published. Due to methodological diffi-

culties, very little work had been done measuring nanoparticles in the environment. However,

a recent article by Materić [34] using novel methodology to measure NPs, has found these par-

ticles in Swedish lakes and streams with an average concentration of 0.56 mg/L. It is only logi-

cal to assume that concentrations in more populated/contaminated areas will be higher.

2.3 RNA extraction and cDNA synthesis

Total RNA extraction was performed from 0.5, 2.5, and 10 μg/mL treated 6x105 hNS1 cells and

untreated control cells using a commercial kit (Trizol, Invitrogen) according to the manufac-

turer’s protocol. Cells frozen at -80 ˚C were homogenized in 500 μL of Trizol and left for 5 min

at room temperature. Next, 0.2 volumes of chloroform were added to each sample, mixed, and

left for 5 minutes at room temperature. Samples were centrifuged at 15,000 g for 15 minutes at

4 ˚C. The aqueous phase containing RNA was transferred to an eppendorf tube and precipi-

tated with isopropyl alcohol (0.5 v/v), washed with 70% ethanol, and resuspended in DEPC

water. Subsequently, RNA was treated with RNase-free DNase (Roche) followed by phenoliza-

tion (phenol: chloroform: isoamyl alcohol-extracted, 25:24:1, and isopropanol-precipitated),

and resuspended in DEPC water [40]. The quality and quantity of total RNA was determined

by agarose electrophoresis and absorbance (Biophotomer Eppendorf). RNA was stored at -80

˚C until use. The cDNA was synthesized from 500 ng total RNA, 500 ng Oligo dT20 (Invitro-

gen), and 100 u/μL MMLV enzyme (Invitrogen, Germany). The cDNA was frozen at -20 ˚C.

2.4 Real-time PCR

cDNA was used as a template in real-time PCR to analyse the messenger RNA (mRNA)

expression profile of genes related to cell stress (hsp27/hspB1, hsp90α, and hsp70/hspA5), oxi-

dative stress (Cu/ZnSOD 1, MnSOD 2, and cat), DNA repair (gadd45α, rad51, and xrcc1), apo-

ptosis (Cas3a, Cas7, Bcl2, and p53), inflammatory (iL-6 and iL-8), and mitochondrial (cox 5A)

responses. To amplify the sequence of the genes analysed in this study, oligonucleotides were

designed from the GenBank accession sequences (Table 1). Treated cells RNAs were compared

with RNAs extracted from control cells. The reaction was performed under the following con-

ditions: initial denaturation at 95 ˚C for 3 min and 40 cycles of denaturation at 95 ˚C for 5 s;

annealing at 58 ˚C for 15 s; and elongation at 65 ˚C for 10 s. The sequences of the
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oligonucleotides designed in this study for each of the mentioned genes are shown in Table 1.

All samples were analysed in duplicate, and two replicates of each plate were performed. ADH:

ubiquinone oxidoreductase subunit B4 (NDUFB4) and Ribosomal protein S27 (RPS27) genes,

with a coefficient of variation< 0.25 and an M-value< 0.5, were used as endogenous reference

controls to normalize the expression data of the selected study genes. PCR efficiency was per-

formed by making calibration curves. A standard curve based on five dilutions of an equimolar

mixture of cDNA samples was produced in triplicate to verify the amplification efficiency of

each gene (Table 1).

Amplification of a single DNA fragment was confirmed by analysing the melting curve

after amplification. All samples were analysed in duplicate and three independent PCR

Table 1. Oligonucleotide sequences.

Gene name Function Gene

symbol

Accession number Primer (5’–3’) RT-PCR product size

(bp)

NADH: ubiquinone oxidoreductase

subunit B4

Reference gene NDUFB4 NM_004547.6 F: TTGGATCGAACATTTCACCTCTCA
R1: GTCTGCTTCTGTGTTGTTAGGG

176

Ribosomal protein S27 Reference gene RPS27 NM_001030.6 F: CGAGAACATGCCTCTCGCAAAG
R: AGCATCCTGGGCATTTCACAT

128

Cytochrome c oxidase subnit 5A

mitochondrial

Mitochondrialresponse Cox5A NM_004255.4 F: GGCTTAGGGGACTGGTTGTC
R: CCGTAAGAGGGCTTGGCTAC

133

Superoxide dismutase 1 Antioxidant activity Cu/ZnSOD1 NM_000454.5 F: ATGACTTGGGCAAAGGTGGA
R: GGGCCTCAGACTACATCCAAG

120

Superoxide dismutase 2 Antioxidant activity MnSOD2 NM_001024465.3 F: GCACTAGCAGCATGTTGAGC
R: TTGATGTGAGGTTCCAGGGC

139

Catalase Antioxidant activity cat NM_001752 F: CTGACTACGGGAGCCACATC
R: GATGAGCGGGTTACACGGAT

184

Heat shock protein Stress response hsp90α NM_001017963.3 F: GTGCTCGAGTCACATTCTGC
R: CAACCCTTGGAGCAGCTAGT

174

Heat shock protein Stress response hsp70/
hspA5

NM_005347 F: TGAACCCTAGCTGTGTCAGA
R: GCACCAGCCTGTCCTTTATT

222

Heat shock protein Stress response hsp27/
HspB1

NM_001540.5 F: GGCCCAGAAGCTGCAAAATC
R: AAAGAACACACAGGTGGCGG

112

Growth arrest and DNA-damage-

inducible

DNA repair gadd45α NM_001924.4 F: CACTGTCGGGGTGTACGAAG
R: GTTGATGTCGTTCTCGCAGC

157

X-ray repair cross complementing 1 DNA repair xrcc1 NM_006297.3 F: CCGATACGTCACAGCCTTCA
R: TGTAGATCCATCGGGGACGA

152

DNA repair protein RAD51 homolog 1 DNA repair rad51 NM_002875.5 F: GCAGTGCAAGCTATTTCAAGACA
R: GCACAATCATCTGCAAGTGGG

123

Interleukin Inflammatory response IL-6 NM_000600.5 F: TGCAATAACCACCCCTGACC
R: GTGCCCATGCTACATTTGCC

98

Interleukin Inflammatory response IL-8 BC013615.1 F3: GGCAACCCTAGTCTGCTAGC
R3: TAAAGTGCTTCCACATGTCCTC

139

Tumor necrosis factor alpha Inflammatory response TNFα NM_000594.4 F: AGAACTCACTGGGGCCTACA
R: GCTCCGTGTCTCAAGGAAGT

177

Tumor suppression Inflammatory response p53 NM_000546.6 F: TTCTGTCCCTTCCCAGAAAACC
R: AACCCACAGCTGCACAGGGC

156

Apoptosis regulator Bcl-2 Apoptotic response Bcl2 NM_000633.3 F: CCTATCTGGGCCACAAGTGAA
R: ACAGCCTGCAGCTTTGTTTC

122

Caspase-3 Apoptotic response Cas3a NM_004346.4 F: TGGTTTGAGCCTGAGCAGAG
R: TGGCAGCATCATCCACACAT

122

Caspase-7 Apoptotic response Cas7 NM_001227.5 F: TGGTTTGAGCCTGAGCAGAG
R: TGGCAGCATCATCCACACAT

142

https://doi.org/10.1371/journal.pone.0295816.t001
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replicates were performed for each experiment. Cycle threshold (Ct) values were converted to

relative gene expression levels by using the 2-DDCt method and Bio- Rad CFX Manager 3.1

software.

2.5 Statistical analysis

The RNA levels obtained were normalized against NADH: ubiquinone oxidoreductase subunit
B4 (NDUFB4) and Ribosomal protein S27 (RPS27) reference genes. The comparison between

the control and the treated larvae were done using the variance analysis test (ANOVA) with

Dunnett’s multiple comparison tests. A level of significance is indicated: p�0.05 (*). All statis-

tical tests were performed with SPSS1 27.0 (SPSS Incorporated, Chicago IL, USA).

3. Results and discussion

Electron microscopy characterization of PS NPs showed that these particles were round with

an average size of 25.1 ± 4 nm [21]. However, nanoparticle tracking analysis (NTA) analysis in

cell culture medium showed agglomeration of these particles, even after sonicating. Particle

size distribution and charge was as follows: 112.4 ± 37.5 nm size and -25 ± 1.06 mV charge for

the 0.5 μg/mL concentration; 112.0 ± 44.2 nm and -33.8 ± 1.3 mV for the 2.5 μg/mL concentra-

tion; and 115 ± 43.9 and -33.95 ± 0.64 mV for the 10 μg/mL concentration. Even though aggre-

gation was observed, we did not interfere with this natural phenomenon by adding surfactants

as these could confound toxicity studies [41]. In addition, NPs are found in nature in both

aggregated and unaggregated states and its important to evaluate effects of aggregated particles

[42, 43]. Future studies should study aggregation patterns in test media as these could affect

results [44].

3.1 Effects of PS NPs on gene expression of human neural stem cell line

(hNS1)

To assess the molecular mechanisms of action of PS NPs, the expression changes of several

genes in hNS1 cells were evaluated after PS NP exposure to three concentrations (0.5, 2.5 and

10 μg/mL) for 4 days. In general, we have found that NPs affected most gene expression in a

concentration dependent manner, although some genes were upregulated while others were

downregulated. Several genes were not altered.

3.2 Stress response: hsp27/ hspB1, hsp90α, and hsp70/hspA5
HSPs belong to a large family of conserved proteins whose function is to maintain cellular bal-

ance in response to different external factors [45–47]. In this study, the alteration of three stress

response genes (hsp27/hspB1, hsp70/hspA5 and hsp90α) were assessed after 4 days of exposure.

The results showed an increase of hsp27/hspB1 and hsp90α mRNA expression by PS NPs at

0.5, 2.5 and 10 μg/mL (Fig 1), being statistically significant at the highest concentration.

In contrast, inhibition of hsp70/hspA5 mRNA expression by PS NPs was observed at all

concentrations studied, although only significant at 10 μg/mL. These results demonstrate that

PS NPs alter the cellular response to stress in human neural cells. HSP27/HSPB1 belongs to

the family of small heat shock protein (SHSPs, between 12 and 43 kDa) [48] which plays an

essential physiological and pathophysiological role in diverse neurodegenerative diseases [47].

Members of this family, including HSP27/HSPB1, are expressed in the central nervous system

in stress and non-stress situations [49] and are related to neurodegenerative diseases (Alzhei-

mer’s, Alexander’s disease, multiple sclerosis) [47]. Moreover, The SHSPs interact with protein

aggregates that present a detrimental conformation, such as β-amyloid peptide aggregates in
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Alzheimer’s disease, superoxide dismutase 1 in sclerosis, etc. Our data show that the presence

of NPs can induce activation of hsp27/hspB1 gene expression. This is important because previ-

ous studies show that it is upregulated in the brains of people with Alexander and Alzheimer’s

diseases [50–52]. Moreover, HSP27/HSPB1 regulates the activation of proinflammatory genes

[53] and the release of proinflammatory mediators [54], in reaction to cell damage or stress

[55]. Furthermore, previous studies showed that when this protein is administered extracellu-

larly it modulates immune and inflammatory processes [56], and it has also been shown to

block the apoptotic pathway [57, 58]. On the other hand, the other two HSPs studied, HSP70/

HSPA5 and HSP90α, are large ATP-dependent chaperones with a molecular mass of approxi-

mately 40 to 105 kDa. As mentioned above, our results seem to indicate that NPs modify the

expression of both genes. hsp70/hspA5 and hsp90α can be induced under stress, unlike the

hsp90β isoform that is constitutively expressed [46]. In the presence of PS NPs, hsp90α expres-

sion levels increased. In contrast, treatment with PS NPs downregulated hsp70/hspA5 expres-

sion. Inhibition of the antiapoptotic gene hsp70/hspA5 has been described in Zfe [21], in

human cells [26], and in Apostichopus japonicus [59] exposed to NPs. It appears that these

nanomaterials alter the stress and anti-apoptotic response of the hsp70/hspA5 gene. Previous

studies suggest that this down-regulation of the hsp70/hspA5 antiapoptotic gene may be related

Fig 1. Expression levels of the hsp27/hspB1, hsp70/hspA5, and hsp90α genes. Statistical differences compared to control were marked with asterisks (p—

value< 0.05). C: control. Error bars are based on the standard deviation.

https://doi.org/10.1371/journal.pone.0295816.g001
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to entry into apoptosis [60, 61]. On the other hand, HSP70/HSPA5 has an alternate role in pro-

tein folding, together with HSP90α [62]. This is the first evidence that NPs induce hsp90α
overexpression in human neuronal cells. However, hsp70/hspA5 and hsp90α up-regulation has

been observed in Daphnia pulex after treatment to 75 nm PS particles [63]. It is possible that in

the face of the inhibition of hsp70/hspA5 expression shown in our results, the correct folding

carried out by HSP70/HSPA5 together with HSP90α [62] cannot take place and this has neu-

rotoxic consequences in the cell by accumulation of misfolded proteins. Clearly further work

is needed to corroborate these hypotheses.

3.3 Oxidative stress response: Cu/Zn SOD1, MnSOD2, and cat
Previous studies have described that NPs can stimulate reactive oxygen species (ROS) produc-

tion and cause oxidative stress in human cells [64], Zfe [17, 21, 63–65], and in Daphnia pulex
and Karenia mikimotoi [66]. Increased ROS can generate oxidative stress, mitochondrial dam-

age, amplified inflammatory cytokines and proapoptotic factors that could induce apoptosis in

cells and in animals [56, 67–70]. Superoxide dismutase (SOD) and catalase (CAT) enzymes

can be activated in the presence of ROS. These antioxidant enzymes have the function of pro-

tecting against ROS [71]. There are two different SOD isoenzymes (SOD1 and SOD2) present

inside cells [72]. SOD 1 (Cu/ZnSOD1) is located in the cytoplasm and in the mitochondrial

intermembrane space, peroxisomes, and nucleus. SOD 2 (MnSOD2) is a mitochondrial man-

ganese protein, responsible for the removal of superoxide anions produced during oxidative

phosphorylation. Catalase (CAT) is an enzyme that mitigates the toxic effects of hydrogen per-

oxide [73]. In this study, the effect of PS NPs (30 nm) on hNS1 induced changes in the expres-

sion of Cu/ZnSOD1 and cat (Fig 2), specifically, it resulted in the activation of RNA expression

of these oxidative stress-related genes, although not in a dose-dependent manner (Fig 2).

These results agree with data obtained in human HepG2 cells exposed to 50 nm NPs [74]

and in zebrafish embryos (Zfe) exposed to 30 nm NPs [21]. However, the opposite result was

reported by Aliakbarzadeh [30] who demonstrated that exposure to NPs inhibited CAT activ-

ity in zebrafish larvae. Oxidative stress can be considered as one of the molecular initiating

events responsible for the toxicity of NPs [75].

3.4 DNA Damage response: gadd45α, rad51, and xrcc1
NPs can cause DNA damage in blood cells in mussels [76], in fish [77, 78], and in other aquatic

species [79–82]. Most of these evaluations have been performed using the comet assay, but

there are almost no studies that analyze the response at the molecular level of genes implicated

in response to DNA damage. In this study, we decided to analyze the expression of three genes

related to the DNA repair process, gadd45α, rad51, and xrcc1 in human neural stem cells

exposed to PS NPs for 4 days. Gadd45α is involved in the repair of DNA by nucleotide excision

[83] and in mediating apoptosis induced by stress and genotoxic agents, such as pollutants or

radiation. RAD51 is a protein implicated in DNA repair of double-strand breaks (DSBR), and

their dysfunction is linked to diseases like cancer [84]. XRCC1 is a protein that interacts with

multiple enzymatic components in single-stranded DNA break repair (SSBR) [85]. Together

they are capable of accelerating SSRP and DSBR. In NP-treated hNS1 cells, the expression lev-

els of the genes, gadd45α and rad51, were increased at the highest dose, whereas the xrcc1
expression was decreased after NPs exposure, only significant at 2.5 μg/mL (Fig 3).

These results suggest that oxidative stress induced by NPs [26, 69, 86–88] can produce

DNA damage [89]. Previous studies in mice with the xrcc1 gene deletion show a link between

DNA strand break repair and neurogenesis [90]. Also, deletion of xrcc1 in the brain results in

neuropathologies [90]. Inherited mutations in xrcc1 lead to neurodevelopmental disorders
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and/or neurodegeneration [91, 92]. The inhibition of xrcc1 expression and hsp27/hspB1 activa-

tion in the presence of NPs suggests that these nanomaterials could cause DNA damage with

neuropathological implications that could be related to neurodegenerative disorders. This

information opens an avenue for further study of the possible damage of NPs at the level of the

nervous system. Overexpression of gadd45α and rad51 genes would indicate activation of

DNA repair mechanisms by the presence of NPs, suggesting that DNA damage was likely

caused by activation of oxidative stress induced in hNSCs. These results agree with those

obtained in Allium cepa cells [93] but are in discordance with results obtained with NPs in Zfe

[21]. The model used for the toxicity tests (whole organism vs cells) and the exposure condi-

tions could explain the difference between the results. This is the first study demonstrating

that NPs produce DNA damage in human neuronal cells.

3.5 Apoptotic response: Cas3a, Cas7, p53 and anti-apoptotic gene Bcl2
Quantitative polymerase chain reaction (qPCR) assays indicated that the mRNA level of Cas7
increased significantly in cells treated with NPs at the lowest concentration, whereas Bcl2
increased significantly at all concentrations studied and Cas3α and p53 did not change expres-

sion levels (Fig 4). Bcl2 is a member of the family of anti-apoptotic genes inhibiting

Fig 2. Cat, Cu/ZnSOD1 and MnSOD2 genes expression. Statistical differences of controls versus larvae exposed to NPs are indicated by asterisks (p-

value< 0.05). C: control. Error bars are based on the standard deviation.

https://doi.org/10.1371/journal.pone.0295816.g002
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proapoptotic genes [88]. The up regulation of this antiapoptotic gene could be a consequence

of the entry into apoptosis and could be in agreement with the observed activation of the

expression of the hsp27/hspB1 gene, whose anti-apoptotic function has been described [57,

58]. This would suggest that NPs induce the expression of antiapoptotic proteins. This result

agrees with those obtained in Zfe, Crassostrea virginica, and Sterechinus neumayeri exposed to

NPs [94–96]. In contrast, our previous results showed down-regulation of Bcl2 activity after

NPs exposure in Zfe [21]. This discrepancy in results may be due to the difference in response

to PS NPs from a whole organism or from a specific cell culture of hNSC, as in the Zfe model

observe the response of all cell types within the individual, and not only neural cells. On the

other hand, the exposure times were different in both models. Caspases are a family of highly

conserved intracellular proteases cysteine-dependent intracellular proteases with an important

role in inflammatory responses and apoptosis [92]. Caspases -3, -6 and -7 belong to the group

of apoptosis executioners [97]. In this study, we analyzed the expression of two caspases

(Cas3a and Cas7) involved in apoptosis. The results show a tendency to activate Cas7 gene

expression at the lowest concentration, but Cas3a was not significantly altered (Fig 4).

It is possible that predicted NP-induced apoptosis could be partially blocked by overexpres-

sion of anti-apoptotic genes (Bcl2 and hsp27/hspB1). This is supported by previous results sug-

gesting that the NPs activate programmed cell death in human lung epithelial cells [25]. Assays

Fig 3. Representation of gadd45α, rad51, and xrcc1 gene expression. Asterisks indicate statistical differences compared to controls (p-value< 0.05). C:

control. Error bars are based on the standard deviation.

https://doi.org/10.1371/journal.pone.0295816.g003
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with shorter exposure times would probably allow us to test this hypothesis. The p53 tumor

suppressor is a homotetrameric transcription factor involved in the control of cell proliferation

and cell cycle, senescence, cell survival and apoptosis [88, 98]. ROS act as a key initiator in sev-

eral signalling pathways involving cell cycle and energy metabolism [99]. Qiang and Cheng

[100] have reported ROS-mediated activation of the p53 apoptotic cascade due to MPs expo-

sure. Moreover, the p53 gene transduces signals to stimulate apoptosis through activation of

cas3b and gadd45ba [101, 102]. Our results show that p53 gene expression does not change in

human neuronal cells after exposure to NPs for 4 days (Fig 4).

In general, we hypothesize that the increased expression of the anti-apoptotic genes Bcl2
and hsp27/hspB1 after exposure of neuronal cells to NPs is possibly the result of activation of

apoptosis as this process usually occurs as a consequence of oxidative stress and DNA damage

induced by NPs. Ultimately, our results suggest that DNA damage and oxidative stress pro-

duced by NPs in human neuronal cells induce apoptosis. This is supported by the overexpres-

sion of the anti-apoptotic genes Bcl2 and hsp27/hspB1, together with the activation of the

apoptotic gene Cas7. Our results show that the executing caspases are only activated at the low-

est concentration of NPs. It is possible that the anti-apoptotic response is preventing the cell

from entering apoptosis.

Fig 4. Expression of the Cas3a, Cas7, Bcl2 and p53 genes. Error bars are based on the standard deviation. Asterisks indicate statistical differences

compared to controls (p-value< 0.05). C: control.

https://doi.org/10.1371/journal.pone.0295816.g004
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3.6 Inflammatory and mitochondrial response: IL-6, IL-8, TNF and Cox5A
Our results show that PS NPs induced biphasic responses in these genes as they inhibited

TNFa expression after 2.5 μg/mL exposure and activated TNFa expression after 10 μg/mL

exposure (Fig 5).

Moreover, they inhibited the expression of IL-6 at all concentrations used but specially at

0.5 μg/mL (albeit not significantly) and IL-8 gene when cells are exposed to 0.5 μg/mL (Fig 5).

However, as the graph shows (Fig 5), a trend of IL-8 gene activation is observed when we

increased the concentration of PS NPs. Therefore, here we demonstrate that PS NPs can mod-

ify the expression of TNFα and IL-6 and IL-8, which are essential genetic markers in the

inflammatory mechanisms. Activation of the inflammatory response has been described in

human lung epithelial cells [25] and in Zfe exposed to NPs [14, 21, 103]. On the other hand, it

has been previously shown in human synovial fibroblasts (SFC) that proinflammatory cyto-

kines such as TNF, IL-1, and IL-6 can induce the expression of hsp70/hspA5 under cellular

stress [104] in order to protect the cell from apoptosis. It is possible that the inhibition of

hsp70/hspA5 observed in our results after exposure to PS NPs is a consequence of the non-acti-

vation of one of the proinflammatory genes analyzed (IL-6). Our results suggest that NPs can

Fig 5. Expression of the TNFα, IL-8, and IL-6 genes. Error bars are based on the standard deviation. Asterisks indicate statistical differences compared to

controls (p-value< 0.05). C: control.

https://doi.org/10.1371/journal.pone.0295816.g005
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modify the inflammatory response in human neural stem cells, but this depended on the con-

centration of the NPs.

Cytochrome c oxidase (COX) is a mitochondrial enzyme of the respiratory chain. This pro-

tein is implicated in proton pumping and is essential for ATP synthesis. Deficient COX5A

expression significantly impairs COX function, thus causing mitochondrial dysfunction in

skeletal muscle, pulmonary arterial hypertension, and growth retardation [105, 106]. COX has

a regulatory role in electron transport [107]. Many xenobiotics inhibit COX activity and gener-

ate mitochondrial stress, but their mechanisms are unknown [108, 109]. However, little is

known about the role of COX5A in the response to pollutants. Our results showed that hNS1

cells exposed to different concentrations of NPs did not modify Cox5A expression (Fig 6).

These results contradict previous data and possible differences in NP size and/or concentra-

tions could be responsible for these differences [110, 111].

4. Conclusions

Our results show that Cu/ZnSOD 1 and cat expression are activated in hNSC exposed to PS

NPs. This antioxidant response may be a consequence of the production of reactive oxygen

species (ROS) induced by NPs entering the cells. Possibly the antioxidant metabolism response

is not sufficient to stop ROS damage to DNA. As a consequence of this DNA damage, the

expression levels of genes involved in DNA repair (gadd45a and rad51) are increased, although

an inhibition of xrcc1 is also seen. All this suggests that DNA repair mechanisms are altered in

hNSC treated with PS NPs. The oxidative stress and DNA damage produced by NPs would

activate cell apoptosis. This is supported by the increased expression of anti-apoptotic genes,

such as Bcl2 and hsp27/hspB1, together with the apoptotic gene Cas7. However, the up regula-

tion of anti-apoptotic genes (Bcl2 and hsp27/hspB1) would not have been sufficient to block

the activation of apoptotic gene expression (Cas7). It is possible that there is a partial blockade

of these apoptotic genes at the concentrations and times studied, but further research is needed

in this line of investigation. On the other hand, inhibition of hsp70/hspA5, a chaperone

Fig 6. Expression of the Cox5A gene. C: control. Error bars are based on the standard deviation.

https://doi.org/10.1371/journal.pone.0295816.g006
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involved in the early steps of protein folding, would avoid the activity of HSP90α. This would

lead to the accumulation of misfolded proteins and potential cellular neurotoxic effects.

Finally, NPs alter the inflammatory response (TNFα, IL-6 and IL-8) of hNSC, but effects

depended on concentrations, and possibly timing and size of NPs studied. The results of this

study suggest that PS NPs can cause damage and functional alterations in human neuronal

cells. Therefore, the effects of NPs on pathways related to neurodevelopmental problems and

neurodegenerative diseases need to be further investigated.
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Supervision: Mónica Morales.

Writing – original draft: Raquel Martin-Folgar, Mónica Morales.

Writing – review & editing: Mª Carmen González-Caballero, Mónica Torres-Ruiz, Ana I.
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gating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. Front

Toxicol. 27;5:1112212. https://doi.org/10.3389/ftox.2023.1112212 PMID: 36777263

30. Aliakbarzadeh F., Rafiee M., Khodagholi F., Khorramizadeh M.R., Manouchehri H., Eslami A., et al.

2023. Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish

nervous system: From oxidative stress to impaired neurotransmitter system. Environ Pollut.

15:317:120587. https://doi.org/10.1016/j.envpol.2022.120587 PMID: 36336178

31. Torres-Ruiz M., De la Vieja A., de Alba Gonzalez M., Esteban Lopez M., Castaño Calvo A., Cañas

Portilla A.I., 2021. Toxicity of nanoplastics for zebrafish embryos, what we know and where to go next.

Sci Total Environ. 797, 149125. https://doi.org/10.1016/j.scitotenv.2021.149125 PMID: 34346375

32. MaterićD., Holzinger R., Niemann H., 2022a. Nanoplastics and ultrafine microplastic in the Dutch

Wadden Sea–The hidden plastics debris? Science of The Total Environment; 846: 157371. https://

doi.org/10.1016/j.scitotenv.2022.157371 PMID: 35863583

33. MaterićD., Kjær H.A., Vallelonga P., Tison J.L., Röckmann T., Holzinger R., 2022b. Nanoplastics
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