

This is the peer reviewed version of the following article:

Pérez-García, Felipe; Martin-Vicente, María; Lía Rojas-García, Rosa; Castilla-García, Lucía; Muñoz-Gomez, María José; Hervás Fernández, Irene; González Ventosa, Victoria; Vidal-Alcántara, Erick Joan; Cuadros-González, Juan; Bermejo-Martin, Jesús F; Resino, Salvador; Martínez, Isidoro. High SARS-CoV-2 Viral Load and Low CCL5 Expression Levels in the Upper Respiratory Tract Are Associated With COVID-19 Severity. J Infect Dis. 2022 Mar 15;225(6):977-982.

which has been published in final form at:

https://doi.org/10.1093/infdis/jiab604

Title page

Type of manuscript: Brief report

Title: High SARS-CoV-2 viral load and low CCL5 expression levels in the upper respiratory tract are associated with COVID-19 severity

Running heading: Biomarkers related to severe COVID-19

Authors: Felipe Pérez-García^{1,2,3,†}, María Martin-Vicente^{1,4,†}, Rosa Lía Rojas-García^{1,†}, Lucia Castilla-García⁵, María José Muñoz-Gomez¹, Irene Hervás Fernández², Victoria González Ventosa², Erick Joan Vidal-Alcántara¹, Juan Cuadros-González^{2,3}, Jesús F Bermejo-Martin^{6,7,8,‡}, Salvador Resino^{1,4,‡,*}, Isidoro Martínez^{1,4,‡,*}

(†) Felipe Pérez-García, María Martin-Vicente, and Rosa Lía Rojas-García contributed equally.

(‡) Jesús F Bermejo-Martin, Salvador Resino and Isidoro Martínez contributed equally.

(*), Salvador Resino and Isidoro Martínez are corresponding autor.

Authors' Affiliations:

(1), Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.

(2), Servicio de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, Madrid, Spain.
(3) Departamento de Biomedicina y Biotecnología, Facultad de Medicina. Universidad de Alcalá de Henares, Madrid, Spain.

(4) Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.

(5) Servicio de Hematología y Hemoterapia, Hospital Universitario Príncipe de Asturias, Madrid, Spain.

(6) Group for Biomedical Research in Sepsis (BioSepsis). Instituto de Investigación Biomédica de Salamanca, (IBSAL), Salamanca, Spain.

(7) Hospital Universitario Río Hortega, Valladolid, Spain.

(8) Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.

Summary: SARS-CoV-2 replication in the nasopharyngeal mucosa induces the expression of several innate immune genes. High SARS-CoV-2 viral load and low CCL5 expression levels were associated with ICU admission or death, although CCL5 was the best predictor of COVID-19 severity.

Footnote Page

Competing interests

The authors declare that they have no competing interests.

The funding sources played no role in the study's design, collection, analysis, interpretation of the data, or manuscript writing.

Funding

This work was supported by awards from the Canadian Institutes of Health Research, (CIHR OV2 – 170357, Research Nova Scotia, Atlantic Genome/Genome Canada, Li-Ka Shing Foundation, Dalhousie Medical Research Foundation [JFBM]), Instituto de Salud Carlos III (COV20/00110 [JFBM], CIBERES 06/06/0028 [SR]), and finally by the "Convocatoria extraordinaria y urgente de la Gerencia Regional de Salud de Castilla y León, para la financiación de proyectos de investigación en enfermedad COVID-19" (GRS COVID 53/A/20 [JFBM]). The study was also funded by the Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas (CB21/13/00044 [SR and IM]).

Corresponding author: Salvador Resino; Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda); Carretera Majadahonda- Pozuelo, Km 2.2; 28220 Majadahonda (Madrid); Phone: +34918223266. E-mail: <u>sresino@isciii.es</u>

Alternative corresponding autor: Isidoro Martínez; Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda); Carretera Majadahonda-Pozuelo, Km 2.2; 28220 Majadahonda (Madrid); Phone: +34918223272. E-mail: <u>imago@isciii.es</u> Character count of Title: 126 Character count of Running Head: 37 Word count of Abstract: 100 Word count of Keywords: 8 Summary word count: 40 Word count of Text: 1941 Count of References: 15 Count of Tables: 0 Count of Figures: 2

Abstract

Mucosal immune response in the upper respiratory tract is crucial for the initial control of viral replication, the clearance of SARS-CoV-2, and the progression of the coronavirus disease 2019 (COVID-19). We analyzed the SARS-CoV-2 RNA load and the expression of selected immune genes in the upper respiratory tract (nasopharynx) of 255 SARS-CoV-2 infected patients and evaluated their association with severe COVID-19. SARS-CoV-2 replication in the nasopharyngeal mucosa induces the expression of several innate immune genes. High SARS-CoV-2 viral load and low CCL5 expression levels were associated with ICU admission or death, although CCL5 was the best predictor of COVID-19 severity.

Key Words

SARS-CoV-2; COVID-19; gene expression; CCL5; innate immunity; nasopharynx; death; ICU; viral load.

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes the coronavirus disease 2019 (COVID-19), a disease with high mortality and morbidity rates worldwide. Clinical manifestations range from mild symptoms to pneumonia and severe acute respiratory syndrome. The proinflammatory response and viral replication are closely related to the severity of the disease and risk of death (1).

SARS-CoV-2 infection initiates in the upper respiratory tract, mainly in nasal epithelial cells, where the binding of the virus to the angiotensin-converting enzyme 2 (ACE2) cell receptor occurs (1). After cellular and viral membrane fusion, the viral genome replicates inside the cell. Viral RNAs activate the innate immune system, triggering signaling pathways leading to the expression of type I and III interferons (IFN- α/β and IFN- λ), proinflammatory cytokines, and chemokines, and the recruitment of inflammatory myeloid cells. Interferon-mediated signaling, in turn, upregulates the expression of multiple antiviral interferon-stimulated genes (ISGs) (1).

Mucosal immune response in the upper respiratory tract is crucial for the initial control of viral replication, the clearance of SARS-CoV-2, and the progression of the COVID-19 (1, 2). A characteristic of SARS-CoV-2 infection is the high viral loads in the upper airways before symptom onset, which may be related to the reduced activation of some innate immunity pathways (3, 4). Also, dysregulated antiviral immunity in the nasal epithelium seems to predict progression to severe COVID-19 (5, 6). Therefore, differentiating protective immune response in the nasopharynx from that leading to fatal outcomes is essential in developing preventative and therapeutic strategies against SARS-COV-2 infection. This study aimed to analyze the viral RNA load and the expression of selected immune genes in the upper respiratory tract (nasopharynx) of SARS-CoV-2 infected patients and evaluate their association with severe COVID-19.

Methods

Study design and patients

We conducted a retrospective study of 255 SARS-CoV-2 infected patients from Hospital Universitario Príncipe de Asturias between November 9th, 2020, and March 8th, 2021, who had a positive Real-Time Polymerase Chain Reaction (RT-PCR) test at the emergency admission. Patients were initially collected to complete three groups with different severity stages: 85 outpatients that were examined at the emergency room and discharged within the first 24 hours (mild cases), 87 hospitalized in medicine wards that did not require critical care (moderate cases), and 83 critical patients that were admitted to the intensive care unit (ICU) or died within 28 days after hospital admission (severe cases). In parallel to the COVID-19 patients, we collected 30 healthy individuals with a negative PCR test for SARS-CoV-2 and no suspicion of any other respiratory infection. Demographic and clinical data were extracted from medical records.

This study was approved by the "Hospital Universitario Príncipe de Asturias" Ethics Committee (Ref.: EXPRES-INMUNE-COVID) and the Hospital's Institutional Review Board. Informed consent waiver was authorized by the Ethics Committee.

Laboratory assays

Nasopharyngeal swabs samples

Biological samples (nasopharyngeal swabs) were obtained during the first 24 hours after the emergency admission. Samples were placed in a transport medium with guanidinium isothiocyanate (NEST Disposable Nasopharyngeal VTM Sampler kit, Wuxi NEST Biotechnology, Wuxi, China) for COVID-19 testing, and stored at -80°C. This medium served as an inactivator and preservative for SARS-CoV-2 RNA and mucosal biomarkers mRNA.

RT-PCR assay for COVID-19 diagnosis

Viral RNA was obtained at the hospital from clinical samples using two automatic extractors: MagCore HF16 (RBC bioscience, Taipei, Taiwan) and ELITe Ingenius (ELITechGroup, Puteaux, France). RNA amplification was performed using two Real-Time PCR platforms randomly according to the usual laboratory workflow: Viasure SARS-CoV-2 RealTime PCR Detection Kit (Certest Biotech S.L.; detected genes: ORF1ab and N) and GeneFinder COVID-19 Plus RealAmp Kit (Osang Healthcare Co.; detected genes: E, N, and RdRP). The concordance of these two platforms showed 100% agreement and similar Ct values (see **Supplementary Table 1**). Samples were considered positive when all SARS-CoV-2 genes included in each RT-PCR assay were amplified.

RT-PCR for quantification of mucosal biomarkers

RNA previously extracted as above was reverse transcribed with the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) following the manufacturer's instructions.

The expression of the selected genes (mucosal biomarkers) was quantified in the generated cDNA by real-time PCR using TaqMan Gene Expression Assays specific for each gene (Applied Biosystems, Foster City, CA, USA). The PCRs were done in triplicate in a Step One instrument (Applied Biosystems) following the manufacturer's instructions. TaqMan Gene Expression Assays containing TaqMan MGB probes (FAM dye-labeled, Applied Biosystems) were used for the following cellular genes: Actin-β (ACTB) (Hs99999903 m1), DExD/H-Box Helicase 58 (DDX58) (RIG-I, Hs00204833_m1), tumor necrosis factor (TNF) (Hs00174128_m1), interleukin 6 (IL6) (Hs00985639_m1), interleukin 8 (IL8) (CXCL8, Hs00174103_m1), interferon-β1 (IFNB1) (Hs01077958_s1), interferon-stimulated gene 15 (ISG15) (Hs00192713_m1), interferon-induced protein with tetratricopeptide (IFIT1) (Hs00174103_m1), chemokine C-X-C motif ligand 10 (CXCL10) (Hs00171042_m1) and chemokine C-C motif ligand 5 (CCL5) (Hs00982282_m1). We used the ACTB (actin- β mRNA) as an endogenous control to normalize the quantitation of an mRNA target for differences in the amount of total RNA added to each reaction. We also performed a relative quantification by the comparative Ct ($\Delta\Delta$ Ct) method (Applied Biosystems User Bulletin no. 2) using as a reference sample (calibrator) a random mixture of samples from 100 SARS-CoV-2 positive individuals. Target mRNA expression was quantified relative to the calibrator for all experimental samples and expressed as n-fold.

Expression of SARS-CoV-2 nucleocapsid gene was performed, according to the manufacturer's instructions, using SYBR-Green reaction mix (Power-Up SYBR-Green Master MIX, Applied Biosystems) and the following primers: ACTB (forward: 5'-CACCAACTGGGACGACAT-3', reverse: 5'- ACAGCCTGGATAGCAACG-3') and N (forward: 5'-

GGGAGCCTTGAATACACCAAAA-3', reverse: 5'-TGTAGCACGATTGCAGCATTG-3'). The expression of ACTB was used as endogenous control, and relative quantification was made by the comparative Ct ($\Delta\Delta$ Ct) method using the same calibrator as above.

Severe COVID-19 outcomes

The primary endpoint during hospital admission was ICU admission or death within 28 days (ICU admission/death). A single episode was considered for each patient. When a patient was discharged from the emergency department and later readmitted during the study period, only the first hospital admission episode was considered for the analysis, and the corresponding respiratory sample for mucosal biomarkers.

Statistical analysis

Statistical analysis was performed by Stata IC 15.1 (StataCorp, Texas, USA). Figures were generated using GraphPad Prism 8.0 (GraphPad Software, Inc., San Diego, CA, USA). All p-values were two-tailed, and the significance level was set at 0.05 (2-tailed).

The differences between independent groups were assessed using the Mann-Whitney U test, Chisquare test, or Fisher's exact test. Correlation analysis between mucosal biomarkers was performed using the Pearson coefficient (r). Logistic regression analysis was employed to determine the association of mucosal biomarkers with COVID-outcomes, providing the odds ratio (OR) and their 95% confidence intervals (CIs). In all cases, we performed univariate and multivariate regression analyses adjusted by significant covariables prior to SARS-COV-2 infection (age, gender, and comorbidities) and covariables at baseline (time from COVID-19 symptoms to sample collection, international normalized ratio, C-reactive protein, ferritin, lactate dehydrogenase, alanine aminotransferase, albumin, eGFR, creatinine, glucose, thrombocytes, neutrophils, lymphocytes, and hematocrit). Covariables were selected by a stepwise forward selection method (pin <0.05 and pout <0.10) to avoid model overfitting. For association analysis, mucosal biomarker values were log2-transformed (base-2 logarithms). The predictive performance of severe COVID-19 was assessed by area under the receiver-operating characteristic curve (AUC), which was considered excellent (0.90–1), good (0.80–0.90), reasonable (0.70–0.80), and poor (0.60–0.70). Also, we divided the study population in half into training and validation cohorts to evaluate the predictive value of the tested genes.

Results

Characteristics of COVID-19 patients

Baseline characteristics of COVID-19 patients are shown in Supplementary Table 2. Patients were 60% males, the median age was 63.8 years, and the main comorbidities were chronic heart disease, hypertension, chronic obstructive pulmonary disease, obesity, diabetes, and dyslipidemia. After hospital admission, 19.6% entered the ICU, 16.1% had invasive mechanical ventilation, and 14.1% died within 28 days. Moreover, healthy controls were 47.7% males, and the median age was 60 years.

Innate immunity genes are upregulated in COVID-19 patients

COVID-19 patients had higher levels of ISG15, IFN- β , IFIT1, RIGI, TNF- α , IL-6, CCL5, and CXCL10 than healthy controls (*p*-value<0.05; **Supplementary Figure 1**). Patients with severe COVID-19 had significantly higher values for SARS-CoV-2 viral load, IFN- β , IFIT1, IL-6, and IL-8 than patients with mild or moderate disease, while CCL5 values were substantially lower in patients with severe COVID-19 (*p*-value<0.05; **Figure 1**). Moreover, we found a strong direct correlation between SARS-CoV-2 viral load and ISG15, RIGI, TNF- α , IL-6, and CXCL10 (*p*-value<0.001; **Supplementary Figure 2**).

Figure 1. Relative expression of innate immunity genes and SARS-CoV-2 viral load in the upper respiratory tract of COVID-19 patients. Values are expressed as log₂ (fold-changes) to the median of healthy controls to facilitate comparisons between groups.

Statistics: The differences between groups were assessed using the Mann-Whitney U test. **Abbreviations**: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ISG15, interferon-stimulated gene 15; IFN- β , interferon-beta; IFIT1, Interferon-induced protein with tetratricopeptide repeats 1; TNF- α , tumor necrosis factor-alpha; IL-6, interleukin 6; IL-8, interleukin 8; CCL5, chemokine (C-C motif) ligand 5; CXCL10, C-X-C motif chemokine ligand 10; RIGI, retinoic acid-inducible gene I; p-value, level of significance.

Mucosal biomarkers predict COVID-19 outcomes

In adjusted regression models (Figure 2; the full description in Supplementary Table 3), SARS-CoV-2 viral load was a risk factor (aOR=1.19, *p*-value<0.001), and CCL5 was a protective factor for ICU admission or death during hospital admission (aOR=0.70, *p*-value=0.002). When the whole cohort was divided in half (training and validation cohorts), we also found significant associations for SARS-CoV-2 and CCL5 viral load in both cohorts (*p*-value<0.05), supporting that the association between high levels of SARS-CoV-2 viral load and low levels of CCL5 expression with COVID-19 severity is robust.

Moreover, CCL5 was the only one with an AUC> 0.70 (**Supplementary Figure 3A**), and the combination with other mucosal biomarkers did not significantly improve the AUC value (data not shown). CCL5 was also directly correlated with higher peripheral oxygen saturation (SpO2) values at emergency admission (r=0.295; p<0.001) (**Supplementary Figure 3B**).

Statistics: The association analysis was performed by logistic regression adjusted by the most significant covariables.

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ICU, intensive care unit; OR, odds ratio; aOR, adjusted odds ratio; 95% CI, 95% confidence interval; p-value, level of significance; CCL5, Chemokine (C-C motif) ligand 5; VL, viral load.

Discussion

This study found that decreased expression of CCL5 and elevated SARS-CoV-2 viral load in nasopharyngeal samples were associated with poor COVID-19 outcomes.

In our study, COVID-19 patients had upregulated innate immunity genes, which were directly associated with SARS-CoV-2 viral load. Characterizing the immune response triggered in the upper respiratory tract by SARS-CoV-2 is essential since the virus's infection, replication, and dissemination begins in this place. An adequate immune response in the nasopharynx contributes to controlling virus replication, preventing its spread towards the lower respiratory tract, and avoiding disease complications. Conversely, an unbalanced innate immune response is closely related to the COVID-19 severity and the risk of death (1).

We found that COVID-19 patients with high values of SARS-CoV-2 viral load had higher odds of ICU admission or death. In agreement with our data, some studies have found that SARS-CoV-2 viral loads on the upper respiratory tract are positively associated with disease severity (7-9). However, others have found no correlation (4, 10, 11). This difference may be related to different times between sample collection and SARS-CoV-2 viral load quantification.

Moreover, higher levels of CCL5 were associated with better COVID-19 outcomes, and it was also the only biomarker with acceptable predictive performance. CCL5 (also known as RANTES) is a potent chemoattractant for several immune cells such as monocytes and NK cells and promotes interaction between T cells and dendritic cells, essential for virus control (12). Thus, the CCL5 expression may help eliminate SARS-CoV-2 infection and prevent patients from developing severe COVID-19 (13). In agreement with this, it has been described that in patients with critical COVID-19, CD8+ cytotoxic lymphocytes expressed lower levels of CCL5 (14). Besides, COVID-19 patients with mild disease had higher nasopharyngeal CCL5 expression than those with severe pneumonia at the emergency room (15). Thus, profiling the expression of the CCL5 gene in the nasopharyngeal mucosa with the same sample used for diagnosis could help improve the prognosis of patients at the initial phase of infection and guide potential treatments.

However, our study can be considered preliminary and has several limitations, such as it was retrospective, had a limited sample size, and only a few biomarkers were evaluated. Further studies should confirm our findings and corroborate the potential use of nasopharyngeal biomarkers to predict the clinical course of COVID-19.

Conclusion

SARS-CoV-2 replication in the nasopharyngeal mucosa induces the expression of several innate immune genes. High SARS-CoV-2 viral load and low CCL5 expression levels were associated with ICU admission or death, although CCL5 was the best predictor of COVID-19 severity.

Declarations

Ethics approval and consent to participate

This study was approved by the "Hospital Universitario Príncipe de Asturias" Ethics Committee (Ref.: EXPRES-INMUNE-COVID). The Institutional Review Board of the Hospital also approved this study. The Ethics Committee authorized the informed consent waiver.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding authors upon reasoned request.

Author contributions

Funding acquisition: JFBM, SR, and IM.

Study concept and design: SR and IM.

Patients' selection and clinical data acquisition: FPG, LCG, IHF, VGV, and FCG.

Sample preparation, RNA isolation, and RT-PCRs: MMV, RLRG, MJMG, and EJVA.

Statistical analysis and interpretation of data: FPG, SR, and IM.

Writing - original draft preparation: FPG, MMV, SR, and IM.

Writing – Review & Editing: JFBM.

Supervision and visualization: SR and IM.

Acknowledgments

We want to acknowledge the patients in this study for their participation. This study would not have been possible without the collaboration of all medical and nursing staff and data managers who have taken part in the project.

Authors' information

Not applicable.

References

1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54.

2. Gallo O, Locatello LG, Mazzoni A, Novelli L, Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021;14(2):305-16.

3. Mick E, Kamm J, Pisco AO, Ratnasiri K, Babik JM, Castaneda G, et al. Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses. Nat Commun. 2020;11(1):5854.

4. Ng DL, Granados AC, Santos YA, Servellita V, Goldgof GM, Meydan C, et al. A diagnostic host response biosignature for COVID-19 from RNA profiling of nasal swabs and blood. Sci Adv. 2021;7(6).

5. Ziegler CGK, Miao VN, Owings AH, Navia AW, Tang Y, Bromley JD, et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell. 2021;184(18):4713-33 e22.

6. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036-45 e9.

7. Guo X, Jie Y, Ye Y, Chen P, Li X, Gao Z, et al. Upper Respiratory Tract Viral Ribonucleic Acid Load at Hospital Admission Is Associated With Coronavirus Disease 2019 Disease Severity. Open Forum Infect Dis. 2020;7(7):ofaa282.

8. Maltezou HC, Raftopoulos V, Vorou R, Papadima K, Mellou K, Spanakis N, et al. Association Between Upper Respiratory Tract Viral Load, Comorbidities, Disease Severity, and Outcome of Patients With SARS-CoV-2 Infection. J Infect Dis. 2021;223(7):1132-8.

9. Tanner AR, Phan H, Brendish NJ, Borca F, Beard KR, Poole S, et al. SARS-CoV-2 viral load at presentation to hospital is independently associated with the risk of death. J Infect. 2021.

10. Yilmaz A, Marklund E, Andersson M, Nilsson S, Andersson LM, Lindh M, et al. Upper Respiratory Tract Levels of Severe Acute Respiratory Syndrome Coronavirus 2 RNA and Duration of Viral RNA Shedding Do Not Differ Between Patients With Mild and Severe/Critical Coronavirus Disease 2019. J Infect Dis. 2021;223(1):15-8.

11. Rodriguez C, de Prost N, Fourati S, Lamoureux C, Gricourt G, N'Debi M, et al. Viral genomic, metagenomic and human transcriptomic characterization and prediction of the clinical forms of COVID-19. PLoS Pathog. 2021;17(3):e1009416.

12. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659-702.

13. Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5(13).

14. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol. 2020;38(8):970-9.

15. Montalvo Villalba MC, Valdes Ramirez O, Mune Jimenez M, Arencibia Garcia A, Martinez Alfonso J, Gonzalez Baez G, et al. Interferon gamma, TGF-beta1 and RANTES expression in upper airway samples from SARS-CoV-2 infected patients. Clin Immunol. 2020;220:108576.

Supplementary file

Supplementary Figure 1. Relative expression of innate immunity genes (log2 values) in the upper respiratory tract of COVID-19 patients and healthy controls. Values are expressed as log₂ (fold-changes) to the median of healthy controls to facilitate comparisons between groups.

Statistics: The differences between groups were assessed using the Mann-Whitney U test. **Abbreviations**: COVID-19, coronavirus disease 2019; ISG15, interferon-stimulated gene 15; IFN- β , interferon-beta; IFIT1, Interferon-induced protein with tetratricopeptide repeats 1; TNF- α , tumor necrosis factor-alpha; IL-6, interleukin 6; IL-8, interleukin 8; CCL5, Chemokine (C-C motif) ligand 5; CXCL10, C-X-C motif chemokine ligand 10; RIGI, retinoic acid-inducible gene I; p-value, level of significance.

Supplementary Figure 2. Correlation between mucosal biomarkers (log₂ values) in the upper respiratory tract of COVID-19 patients.

Statistics: The correlation analysis was performed by Pearson correlation.

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ISG15, interferonstimulated gene 15; IFN- β , interferon-beta; IFIT1, Interferon-induced protein with tetratricopeptide repeats 1; TNF- α , tumor necrosis factor-alpha; IL-6, interleukin 6; IL-8, interleukin 8; CCL5, Chemokine (C-C motif) ligand 5; CXCL10, C-X-C motif chemokine ligand 10; RIGI, retinoic acidinducible gene I.

log2 VL	1.00	0.62	-0.05	0.15	0.45	0.24	0.34	-0.15	-0.11	0.54		1.0
	0.62	1.00	0.04	0.45	0.75	0.18	0.31	-0.10	0.10	0.59		0.8
	0.02	1.00	0.04	0.45	0.75	0.10	0.51	-0.10	0.10	0.55		0.6
IOG2 IFINIS	-0.05	0.04	1.00	0.54	0.02	0.08	0.19	0.76	0.08	-0.01		0.4
log ₂ IFIT1	0.15	0.45	0.54	1.00	0.41	0.03	0.27	0.33	0.18	0.20		0.2
log2 RIGI	0.45	0.75	0.02	0.41	1.00	0.19	0.26	-0.09	0.23	0.54		0
log_2TNF_α	0.24	0.18	0.08	0.03	0.19	1.00	0.49	0.21	0.08	0.37		0
log2 IL6	0.34	0.31	0.19	0.27	0.26	0.49	1.00	0.31	-0.09	0.38		-0.2
log2 IL8	-0.15	-0.10	0.76	0.33	-0.09	0.21	0.31	1.00	-0.15	-0.17		-0.4
log2 CCL5	-0.11	0.10	0.08	0.18	0.23	0.08	-0.09	-0.15	1.00	0.42		-0.0
log2 CXCL10	0.54	0.59	-0.01	0.20	0.54	0.37	0.38	-0.17	0.42	1.00		-0.0
	log2VL	log2ISG15	log2IFNß	log2IFIT1	log2RIGI	log_2TNF_{α}	log2IL6	log2IL8	log2CCL5	log2CXCL10		-1.0

Supplementary Figure 3. AUC values of CCL5, IL-6, and SARS-CoV-2 viral load in the upper respiratory tract to predict severe COVID-19 (A, C, and E), and Person correlations of CCL5, IL-6, and SARS-CoV-2 viral load with SpO at the emergency room (B, D, and F).

Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; AUC, area under the receiver-operating characteristic curve; SpO, peripheral oxygen saturation; IL-6, interleukin 6; CCL5, Chemokine (C-C motif) ligand 5; p-value, level of significance.

	Viasure SARS-CoV-2 RealTime PCR Detection Kit					GeneFinder COVID-19 Plus RealAmp Kit						
	ORF1	b gene	N	gene	_	E gene	1	<i>RdRP</i> ge	ne	N gene	e	_
Sample	Interpretation	Ct value	Interpretation	Ct value	Result	Interpretation	Ct value	Interpretation	n Ct value	Interpretation	Ct value	Result
71470454	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
71521754	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
71558577	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
71445944	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
71553033	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
71558573	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
71446047	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
60091239	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
32674737	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
30138045	Negative	N/A	Negative	N/A	Negative	Negative	N/A	Negative	N/A	Negative	N/A	Negative
71470455	Positive	31,1	Positive	32,0	Positive	Positive	33,9	Positive	35,7	Positive	33,3	Positive
11157975	Positive	33,2	Positive	32,7	Positive	Positive	34,3	Positive	32,3	Positive	32,7	Positive
71501223	Positive	19,6	Positive	20,5	Positive	Positive	21,6	Positive	22,4	Positive	21,5	Positive
71521947	Positive	19,7	Positive	20,5	Positive	Positive	21,4	Positive	21,7	Positive	21,0	Positive
71543004	Positive	30,5	Positive	30,5	Positive	Positive	30,8	Positive	33,2	Positive	30,9	Positive
71465878	Positive	34,5	Positive	35,2	Positive	Positive	35,8	Positive	35,9	Positive	34,8	Positive
71494627	Positive	24,8	Positive	27,0	Positive	Positive	26,7	Positive	26,0	Positive	27,4	Positive
71547774	Positive	21,6	Positive	20,5	Positive	Positive	22,5	Positive	23,5	Positive	20,6	Positive

Supplementary Table 1. Agreement between RT-PCR assays.

71558588	Positive	18,6	Positive	19,5	Positive	Positive	17,9	Positive	18,3	Positive	18,2	Positive
71446052	Positive	28,1	Positive	27,0	Positive	Positive	27,5	Positive	27,2	Positive	26,1	Positive
71558587	Positive	33,4	Positive	32,2	Positive	Positive	31,4	Positive	32,4	Positive	31,4	Positive
71465905	Positive	36,1	Positive	35,2	Positive	Positive	35,7	Positive	36,7	Positive	35,4	Positive
71553034	Positive	23,1	Positive	22,6	Positive	Positive	22,3	Positive	23,2	Positive	23,0	Positive
71446051	Positive	30,4	Positive	29,0	Positive	Positive	29,1	Positive	30,4	Positive	29,5	Positive
71558589	Positive	29,1	Positive	27,5	Positive	Positive	27,7	Positive	28,8	Positive	28,4	Positive
71445945	Positive	27,5	Positive	26,2	Positive	Positive	25,8	Positive	25,4	Positive	25,1	Positive
32672291	Positive	23,4	Positive	22,1	Positive	Positive	20,7	Positive	21,7	Positive	20,5	Positive
42672474	Positive	30,2	Positive	31,0	Positive	Positive	32,5	Positive	33,1	Positive	31,8	Positive
42671498	Positive	19,3	Positive	17,8	Positive	Positive	18,3	Positive	18,9	Positive	18,2	Positive
11157674	Positive	20,5	Positive	22,9	Positive	Positive	22,7	Positive	22,7	Positive	22,1	Positive

Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Ct, cycle threshold; N/A, not applicable; RT-PCR: real-time polymerase chain reaction.

Characteristic	All	Mild	Moderate	Severe
No. patients	255	85	87	83
Age (years)	63.8 (49.0 – 74.9)	47.3 (31.5 – 61.4)	66.1 (54.8 – 75.1)	71.0 (62.5 – 81.9)
Gender (male)	153 (60.0%)	41 (48.2%)	49 (56.3%)	63 (75.9%)
Comorbidities				
Chronic heart disease	44 (17.3%)	3 (3.5%)	18 (20.7%)	23 (27.7%)
Hypertension	113 (44.3%)	17 (20.0%)	50 (57.5%)	46 (55.4%)
COPD	31 (12.2%)	4 (4.7%)	13 (14.9%)	14 16.9%)
Asthma	13 (5.1%)	4 (4.7%)	4 (4.6%)	5 (6.0%)
Chronic kidney disease	18 (7.1%)	1 (1.2%)	6 (6.9%)	11 (13.3%)
Liver cirrhosis	13 (5.1%)	3 (3.5%)	2 (2.3%)	8 (9.6%)
Cancer	4 (1.6%)	0 (0.0%)	2 (2.3%)	2 (2.4%)
Obesity	89 (34.9%)	5 (5.9%)	37 (42.5%)	47 (56.6%)
Diabetes	44 (17.3%)	4 (4.7%)	12 (13.8%)	28 (33.7%)
Dyslipidemia	80 (31.4%)	10 (11.8%)	31 (35.6%)	39 (47.0%)
Smoker	27 (10.6%)	12 (14.1%)	12 (13.8%)	3 (3.6%)
Charlson comorbidity index	2 (0 – 4)	0 (0 – 2)	3 (1 – 5)	4 (2 – 5)
Time from COVID-19 symptoms to	66(25 99)	56(20 79)	75 (20 05)	60(22 00)
samples collection (days)	0.0 (3.3 - 0.0)	5.0 (2.9 - 7.0)	7.5 (3.9 - 9.5)	0.9 (3.3 - 0.0)
Oxygen saturation in room air (%)	94 (90 – 96)	97 (95 – 98)	94 (91 – 95)	88 (83 – 93)
Baseline laboratory findings				
Hematocrit (%)	42.7 (39.7 – 45.4)	43.7 (41.1 – 46.8)	42.1 (39.4 - 44.4)	42.7 (39.5 - 46.8)
White blood cells (x 10^3 cells/µl)	6.0 (4.7 – 8.3)	5.8 (4.8 – 7.6)	6.2 (4.8 – 8.4)	6.0 (4.4 – 9.1)
Lymphocytes (x 10³ cells/µl)	1.0 (0.7 – 1.4)	1.3 (1.1 – 1.7)	1.0 (0.9 – 1.4)	0.8 (0.5 – 1.1)
Neutrophils (x 10 ³ cells/µl)	4.4 (3.3 – 6.4)	4.0 (3.0 – 5.4)	4.4 (3.4 - 6.0)	4.7 (3.4 – 7.5)
Thrombocytes (x 10 ⁹ cells/L)	186 (143 – 239)	188 (156 – 244)	202 (170 – 263)	155 (122 – 208)
International normalized ratio	1.00 (0.95 – 1.10)	0.98 (0.94 – 1.06)	0.98 (0.94 – 1.07)	0.96 (1.05 - 1.13)
Glucose (mg/dL)	117 (101 – 142)	104 (94 – 111)	116 (101 – 145)	124 (113 – 164)
Creatinine (mg/dL)	0.92 (0.78 – 1.21)	0.81 (0.69 – 0.94)	0.92 (0.75 – 1.18)	1.05 (084 – 1.43)
eGFR (mL/min)	78.4 (56.3 – 91.7)	90.2 (76.1 – 103.5)	80.8 (55.8 – 94.3)	69.3 (45.3 - 85.4)
Albumin (g/dL)	4.0 (3.7 – 4.3)	4.4 (4.1 – 4.5)	4.1 (3.8 – 4.3)	3.8 (3.6 - 4.0)
Alanine aminotransferase (IU/L)	29 (19 - 44)	24 (19 – 35)	27 (17 – 40)	31 (19 – 67)
Lactate dehydrogenase (IU/L)	299 (238 – 414)	214 (194 – 271)	284 (243 - 363)	407 (302 – 506)
Ferritin (ug/L)	444 (195 – 872)	197 (88 – 429)	406 (210 – 835)	657 (265 – 1200)
C-reactive Protein (mg/L)	70.3 (23.3 – 123.3)	8.6 (3.2 - 32.5)	73.8 (28.5 – 122.2)	83.2 (57.3 - 163.1)

Supplementary Table 2. Characteristics of COVID-19 patients.

Clinical outcomes				
Invasive mechanical ventilation	41 (16.1%)	0 (0.0%)	0 (0.0%)	41 (49.4%)
ICU admission	50 (19.6%)	0 (0.0%)	0 (0.0%)	50 (60.2%)
Mortality within 28 days	36 (14.1%)	0 (0.0%)	0 (0.0%)	36 (43.4%)
ICU/death	83 (32.6%)	0 (0.0%)	0 (0.0%)	83 (100.0%)

Statistics: Values are expressed as the median and interquartile range (IQR) for continuous variables and absolute count (percentage) for categorical variables.

Abbreviations: IQR, interquartile range; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; COVID-19, coronavirus disease 2019; ICU, intensive care unit; IU, international units; µl: microliter; L, liter; mg, milligrams.

A) Whole cohort (100%)	Unadjusted reg	ression	Adjusted regression		
Biomarkers	OR (95%CI)	<i>p</i> -value	aOR (95%CI)	<i>p</i> -value	
SARS-CoV-2				<u> </u>	
Viral load	1.09 (1.04 – 1.15)	0.001	1.19 (1.09 – 1.29)	< 0.001	
Antiviral genes					
ISG15	1.08 (0.95 – 1.24)	0.227	1.21 (0.97 – 1.51)	0.090	
IFN-B	1.09(0.96 - 1.24)	0.183	0.98(0.83 - 1.16)	0.817	
IFIT1	1.19(1.00 - 1.43)	0.054	1.08(0.84 - 1.38)	0.570	
RIGI	1.05(0.90 - 1.22)	0 569	1.05(0.83 - 1.33)	0.673	
Cytokine genes	1.00 (0.90 1.22)	0.007	1.00 (0.00 1.00)	0.070	
TNF-α	1 01 (0 89 – 1 14)	0924	1 11 (0 92 – 1 35)	0 261	
II -6	1.01(0.05 - 1.11) 1.16(1.05 - 1.28)	0.002	1.08(0.96 - 1.22)	0.201	
II -8	$1.10(1.03 \ 1.20)$ $1.15(1.02 \ 1.20)$	0.002	$1.00(0.90 \ 1.22)$ 1.02(0.88 - 1.17)	0.225	
Chomoking gones	1.13(1.02 - 1.27)	0.022	1.02 (0.00 - 1.17)	0.040	
CCL5	0 62 (0 52 - 0 75)	~ 0 001	0 70 (0 55 - 0 88)	0.002	
	0.02(0.32 - 0.75)	0.264	1.05(0.01 - 1.21)	0.002	
$\mathbf{P} \mathbf{T}_{\mathbf{r}} = \mathbf{P} \mathbf{T}_{\mathbf{r}} \mathbf{T}_{\mathbf{r}} \mathbf{P} \mathbf{T}_{\mathbf{r}} $	0.90(0.00 - 1.03)	0.304	1.03(0.91 - 1.21)	0.303	
B) framing conort (50%)			Aujusteu regre	2551011	
Biomarkers	OR (95%CI)	<i>p</i> -value	auk (95%LI)	<i>p</i> -value	
SARS-CoV-2					
Viral load	1.10 (1.02 – 1.18)	0.010	1.21 (1.06 – 1.37)	0.003	
Antiviral genes					
ISG15	1.05 (0.89 – 1.25)	0553	1.32 (0.93 – 1.87)	0.115	
IFN-β	1.12 (0.93 – 1.36)	0.243	1.15 (0.91 – 1.45)	0.240	
IFIT1	1.09 (0.84 – 1.40)	0.515	0.89 (0.61 – 1.32)	0.566	
RIGI	0.98 (0.79 – 1.20)	0.816	0.92 (0.68 – 1.23)	0.570	
Cytokine genes					
TNF-α	1.04 (0.89 – 1.23)	0.608	1.04 (0.80 - 1.34)	0.777	
IL-6	1.26 (1.09 – 1.46)	0.002	1.10 (0.92 – 1.32)	0.277	
IL-8	1.36 (1.10 – 1.68)	0.004	1.23 (0.97 – 1.57)	0.088	
Chemokine genes					
CCL5	0.62 (0.48 – 0.79)	< 0.001	0.66 (0.47 – 0.91)	0.010	
CXCL10	0.96 (0.85 - 1.09)	0.542	1.03 (0.84 – 1.27)	0.769	
C) Validation cohort (50%)	Unadjusted reg	ression	Adjusted regre	ession	
Biomarkers	OR (95%CI)	<i>n</i> -value	aOR (95%CI)	<i>n</i> -value	
SARS-CoV-2		<u>p value</u>	uon (757001)	p value	
Viral load	100(101 117)	0.024	1 21 (1 07 1 27)	0 002	
Antiviral ganas	1.09 (1.01 - 1.17)	0.024	1.21 (1.07 - 1.37)	0.003	
	1 1 2 (0 0 2 1 2 0)	0.246	112(001 155)	0 4 0 1	
12012	1.15(0.92 - 1.56)	0.240	1.12(0.01 - 1.55)	0.401	
IFIN-B	1.06(0.90 - 1.26)	0.480	0.88(0.67 - 1.16)	0.359	
	1.30 (1.01 - 1.69)	0.041	1.11 (0.78 - 1.57)	0.572	
RIGI	1.15 (0.90 – 1.46)	0.253	1.15 (0.80 – 1.65)	0.459	
Cytokine genes					
ΤΝΓ-α	0.95 (0.78 - 1.15)	0.615	1.04 (0.78 – 1.39)	0.781	
IL-6	1.08 (0.95 – 1.22)	0.267	1.03 (0.87 – 1.21)	0.739	
IL-8	1.04 (0.90 – 1.20)	0.565	0.89 (0.71 – 1.10)	0.278	
Chemokine genes					
CCL5	0.61 (0.46 - 0.81)	0.001	0.70 (0.49 – 0.99)	0.047	
CXCL10	0.95 (0.83 – 1.09)	0.497	1.06 (0.86 – 1.30)	0.605	

Supplementary Table 3. Association between mucosal biomarkers (log₂ values) in the upper respiratory tract and ICU/death during hospital admission.

Statistics: The association analysis was performed by logistic regression adjusted by the most significant covariables. The statistically significant differences are shown in bold.

Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ICU, intensive care unit; OR, odds ratio; aOR, adjusted odds ratio; 95% CI, 95% confidence interval; p-value, level of significance; ISG15, interferon-stimulated gene 15; IFN- β , interferon-beta; IFIT1, Interferon-induced protein with tetratricopeptide repeats 1; TNF- α , tumor necrosis factor-alpha; IL-6, interleukin 6; IL-8, interleukin 8; CCL5, Chemokine (C-C motif) ligand 5; CXCL10, C-X-C motif chemokine ligand 10; RIGI, retinoic acid-inducible gene I.