$c - myc^{fl/fl} X mb - 1^{cre/+} \xrightarrow{F2} c - myc^{fl/fl}; mb - 1^{cre/+} (mb1 - fl/fl) (constitutive)$ $c - myc^{fl/fl} X mx - cre^{+} \xrightarrow{F2} c - myc^{fl/fl}; mx - cre^{+} (mx - fl/fl) (inducible)$ $c - myc^{fl/fl}; mb - 1^{cre/+} (mb1 - fl/fl) X rosa26g^{fp}/g^{fp} \xrightarrow{F2} c - myc^{fl/fl}; mb - 1^{cre/+}; rosa26g^{fp}/g^{fp} (g^{fp} - mb1 - fl/fl)$ $c - myc^{fl/fl}; mx - cre^{+} (mx - fl/fl) X rosa26g^{fp}/g^{fp} \xrightarrow{F2} c - myc^{fl/fl}; mx - cre^{+}; rosa26g^{fp}/g^{fp} (g^{fp} - mb1 - fl/fl)$

Fig. S1. Deletion of *c-myc* and induction of GFP expression in *gfp-mb1-fl/fl* and heterozygous *gfp-mb1-fl/+* mice. (*A*) Outline of breedings to generate the indicated mouse models. (*B*, *C*) Flow cytometry analysis of BM and spleen cells from mice of the indicated genotype. Experiment representative of at least three independent experiments. (*D*) Genomic PCR analysis of wt, deleted and flox alleles of *c-myc* from sorted B220+IgM⁻ BM cells from the mice shown in (*B*). Numbers indicate individual mice. Experiment representative of two independent experiments with a total of 4 mice for each genotype. (*E*) Genomic PCR analysis of *wt*, *deleted* and *flox* alleles of *c-myc* from sorted B220+IgM⁺GFP⁺ spleen cells. *gfp-mb1-fl/fl* (*c-mycfl/fl;mb1cre/+;rosa26gfp/gfp*). Experiment representative of three independent experiments with total of 3 mice for each genotype.

Downloaded from http://journals.aai.org/jimmunol/article-supplement/103515/pdf/jimmunol1002753-sup-s/ by guest on 01 February 2024

Α

Fig. S2. c-Myc is necessary for B lymphocyte differentiation. *A*, *B*, and *C*. Flow cytometry analysis of B lymphocytes from BM of mb1-fl/fl and mb1-fl/+ mice. Single-cell suspensions were prepared , stained and analyzed by flow cytometry (see methods). Cells were defined as (Ly6c-NK1.1-DX5-B220+c-Kit+IgM-) pro-B and (Ly6c-NK1.1-DX5-B220+CD25+IgM-) pre-B cells. *D*, Absolute numbers of B lymphocytes in mb1-fl/fl and control mouse BM (n=7) and spleen (n=3). *E*, *F* Flow cytometry analysis of B lymphocytes in BM of mx-fl/fl and fl/fl control mice. B cell populations were defined as in *A*, *B* and *C*. *G*, Absolute numbers of B cells in Hardy Fractions of pIpC-injected mx-fl/fl mice. n=4. Data represent one of \geq 3 independent experiments. *p* values are ***p<0.001, **p<0.01, **p<0.05.

Fig. S3. BM B cell progenitors from *gfp-mb1-fl/fl* **do not generate IgM⁺ cells** *in vitro.* BM cells were depleted of IgM⁺ with beads and cultured with interleukin-7 for 4 days. Experiment representative of three independent experiments. B220⁺IgM⁻ cells were isolated from total BM after depletion of IgM⁺ cells using biotinylated anti-IgM antibody (Southern Biotechnologies) and streptavidin Dynabeads (Invitrogen). Purity of cells was >97% after magnetic separation, as confirmed by flow cytometry. Cells were cultured in 24-well plates (2 x 10⁶ cells/ml) and supplemented with recombinant murine stem cell factor (rSCF, 10 ng/ml), rFlt3 ligand (10 ng/ml) and recombinant murine IL-7 (10 ng/ml; all from Pepro-Tech). Cells were analyzed by flow cytometry at day 4.

D

Fig. S4. (*A*) Gene expression by qPCR of sorted pro-B and pre-B cells $(B220^+IgM^-)$ from *mb1 fl/fl* and *mb1-fl/+* control mouse BM (mean ± SD for 3 mutant and 3 control mice); numbers indicate the x-fold change $(2-\Delta Ct)$. (*B*) Gene expression of $B220^+IgM^-GFP^+$ BM cells from pIpC-injected *gfp-mx-fl/fl* and control *fl/fl* mice. A pool of 3 mice was used for each genotype in two independent experiments. (C and D). Flt3 and c-myc expression by qPCR of purified pro-B (Ly6c-NK1.1-DX5-B220+c-Kit+IgM-) and(Ly6c-NK1.1-DX5-B220+CD25+IgM-) pre-B cells. Experiment represents 3 mice of each genotype.

Fig. S5. c-Myc deficient pro- and pre-B lymphocytes do not rearrange the T cell Receptor loci. Sorted B220⁺IgM⁻GFP⁺ BM cells from *gfp-mb1-fl/fl*, and *gfp-mb1-fl/+ control* mice were cultured in the presence of the OP9-DL-1 cell line. Subsequently, cells were subjected to genomic PCR analysis to detect TCR rearrangements. Thymus and spleen DNA were used as positive controls. Experiment representative of three independent experiments with a total of three mice of each genotype.

Fig. S6. Luciferase reporter assays. (*A*) Genomic locus of *ebf1* and *pGL3-ebf1* reporter constructs. (*B*, *C*, *D*) *ebf1\beta*, *e2a* and *pax-5* genomic loci do not respond to c-Myc. Black squares represent E-boxes. pGL3-E2A contains 2 conserved and one non-conserved E-Boxes. Data representative of three independent experiments.

Fig. S7. (*A*) Flow cytometry analysis of the BM of the mice with the indicated genotype. (*B*) BM cellularity. n=5 ***p<0.001. (*C*) CD19 surface expression in B220⁺IgM⁺ cells in the BM. Flow cytometry experiments are representative of at least three independent experiments.

Fig. S8. qPCR of transcriptional levels of *pax5*, *ebf*, and *c-myc* in sorted B220⁺IgM⁻ from *ik-mb1-fl/fl*, *mb1-fl/+*, *and ik-mb1-fl/+* mice. 3 mice of each genotype were used.

	Seq	V name	3' V region	%homolog	Р	N1	Р	D	Р	N2	Р	5' JH3 region (JH3*01)	%homolog	D Name	%homolog	Vmut	Dmut	Jmut
/fl	85JH3-1	IGHV1-50*01	tgtgcaaga	59.33		cgtg		aggtcgg				.ctggtttgcttactgg	97.91	IGHD3-2*01	66.66	0	1	0
	85JH3-7	IGHV14-3*01	tgtgc	58.18		CCC		tttttggtacggtagtagctac		gga		.ctggtttgcttactgg	97.91	IGHD1-1*01	82.60	0	3	0
	85JH3-10	IGHV14-1*02	tgtgcaag.	56.57		ggg		gattacgac		gagg		gcttactgg	87.5	IGHD2-4*01	71.42	1	0	0
	85JH3-11	IGHV1-69*01	tgtgcaaga	59.60		agg		ggcctg		g		cctggtttgcttactgg	100	IGHD3-3*01	66.66	0	1	0
	85JH3-12	IGHV1-52*01	tgtgcaag.	60.13		cggg		.gacagctcaggcta.				.ctggtttgcttactgg	97.91	IGHD3-2*02	92.30	0	0	0
	85JH3-13	IGHV1S126*01	tgtgcaa	57.89		nagg		attact		ctt		tttgcttactgg	91.66	IGHD1-1*01	71.42	0	0	0
	85JH3-16	IGHV1-69*01	tgtgcaag.	60		ta		atgattacgac		gga	g	cctggtttgcttactgg	100	IGHD2-4*01	84.61	0	0	0
	85JH3-18	IGHV1S7*01	tgtgcaa	56.66		gagcgg		actacggtagtagc		cctg		cctggtttgcttactgg	100	IGHD1-1*01	60.86	0	0	0
	85JH3-21	IGHV1S2*01	tgtgcaaga	56.20		ggagg		ggttactac		agg		ggtttgcttactgg	93.75	IGHD2-3*01	61.53	0	0	0
	85JH3-25	IGHV14-2*02	tgtgcaag.	52.98		tcccct		ctatgattac		cctcgg		cctggtttgcttactgg	100	IGHD2-4*01	63.15	1	0	0
	85JH3-30	IGHV1S126*01	tgtgcaaga	56.29		gagggaa		atggttacgac		g		ggtttgcttactgg	95.83	IGHD2-2*01	57.14	0	0	0
T	88JH3-1	IGHV1S2*01	tgtgcaag.	56.86		gg		atgattacgac		gttaa		gcttactgg	87.5	IGHD2-4*01	77.77	0	0	0
mb-1	88JH3-3	IGHV1S2*01	tgtgcaag.	54.77		gg		atgattacgac		gttaa		gcttactgg	87.5	IGHD2-4*01	77.77	0	0	0
	88JH3-12	IGHV1S126*01	tgtaca	57.61		gtt		ctatgattacgac		gacccc		gtttgcttactgg	95.83	IGHD2-4*01	87.5	1	0	0
	88JH3-28	IGHV1-69*01	tgtgcaag.	56.52		gg		atgattacgac		gttaa		gcttactgg	87.5	IGHD2-4*01	77.77	0	0	0
	91JH3-5	IGHV1S126*01	tgtgcaaga	56.37				gggaccccgg.				cctggtttgcttactgg	100	IGHD2-14*01	100	0	3	0
	91JH3-8	IGHV1S126*01	tgtgcaaga	56.66				gggaccccgg.				cctggtttgcttactgg	100	IGHD2-14*01	100	0	3	0
	91JH3-10	IGHV1S126*01	tgtgcaaga	57.04				gggaccccgg.				cctggtttgcttactgg	100	IGHD2-14*01	100	0	3	0
	91-JH313	IGHV1S126*01	tgtgcaaga	56.37				gggaccccgg.				cctggtttgcttaccgg	97.91	IGHD2-14*01	100	0	3	1
	92JH3-2	IGHV1-50*01	tgtgcatga	56.37		g	ga	tctactatgattacgac		gagg		.ctggtttgcttactgg	97.91	IGHD2-4*01	100	1	0	0
-	92JH3-3	IGHV1S126*01	tgtgcatga	57.04		g	ga	tctactatgattacgac		gagg		.ctggtttgcttactgg	97.91	IGHD2-4*01	100	1	0	0
	92JH3-6	IGHV1S126*01	tgtgcaaga	57.04		gg		attact		ctt		tttgcttactgg	89.58	IGHD1-1*01	80.0	0	0	0
	92JH3-9	IGHV1S126*01	tgtgcaaga	56.66		gg		attact		ctt		tttgcttactgg	89.58	IGHD1-1*01	80.0	0	0	0
	92JH3-15	IGHV1-50*01	tgtgcaaga	52.34		gggggg		attactacggtagtagctac	-		g	cctggtttgcttactgg	86.95	IGHD1-1*01	100	0	0	0
	Seq	V name	3' V region	%homolog	Р	N1	Р	D	Р	N2	Р	5' JH3 region (JH3*01)	%homolog	D Name	%homolog	Vmut	Dmut	Jmut
fl/fl	20JH3-1	IGHV1S126*01	tgtgcaaga	54.71		tc		.ctactatgattacgac		gtgggccg		ctgg	79.16	IGHD2-4*01	90.90	0	0	0
	20JH3-5	IGHV1S47*01	tgtgcaag.	55.26		gggt		tatggtaactac		gta		tggtttgcttactgg	95.85	IGHD2-1*01	75.0	0	0	0
	20JH3-6	IGHV1-34*01	tgtgcaaga	56.64		g		atgattacgac		а		gggttgcttactgg	93.75	IGHD2-4*01	88.88	0	0	1
	20JH3-17	IGHV14-2*02	tgt	58.04		aatgcatgg		tactacggtagtagcta.		ta		cctggtttgcttactgg	100	IGHD1-1*01	78.26	0	0	0
	20JH3-30	IGHV1S50*01	tgtgcaaga	56.05		с		ctacggcta.				cctggtttgcttactgg	100	IGHD1-2*01	88.88	0	0	0
	18JH3-4	IGHV1-61*01	tgtgca	57.14		ttaa		actataggtacga		gg		cctggtttgcttactgg	100	IGHD2-14*01	81.25	0	0	0
	18JH3-7	IGHV14-1*01	tgt	59.60				gcaag		at		cccggtttgcttactgg	97.91	IGHD6-1*01	66.66	0	1	1
	18JH3-9	IGHV1S50*01	tgtgcaaga	56.0		tccttcg		aggtacg		сс		ggtttgcttactgg	95.83	IGHD2-14*01	66.66	0	0	0
	18JH3-10	IGHV14-2*02	tgt	59.44				аасс				cctggtttgcttactgg	100	IGHD6-1*01	100	0	0	0
	18JH3-12	IGHV1-23*01	tgtgcaag.	55.33		ggacg		attactacggt		с		ttgcttactgg	91.66	IGHD1-1*01	70	1	0	0
	18JH3-15	IGHV1S50*01	tgtgcaaga	57.04	t	gggac		ctaactgggac		gtgg		gcttactgg	87.5	IGHD4-1*01	100	0	0	0
	19JH3-2	IGHV1-61*01	tgtgcaaga	55.78		aggtcg		gattacgac		gtaaaactt		tttgcttactgg	89.58	IGHD2-4*01	75	0	0	0
	19JH3-3	IGHV1-12*01	tgtgcaaga	55.78		gaggaa	а	tctatgatggttactac		gtaggtacc		gcttactgg	85.41	IGHD2-3*01	100	0	0	0
	19JH33-4	IGHV1S50*01	tgtgcaaga	57.33		cggggaaa		aactgggac		gg		ggtttgcttactgg	95.83	IGHD4-1*01	87.5	0	0	0
	19JH3-5	IGHV1S56*01	tgtgcaaga	58.50		ggg		tactacggtagtacct				cttactgg	83.33	IGHD1-1*01	88.88	0	1	0
	19JH3-7	IGHV1-12*01	tgtgcaaga	57.14		tggggga		tataggtacgacg		agggaa	L_	cctggtttgcttactgg	97.91	IGHD2-14*01	68.42	0	0	0
	19JH3-8	IGHV1-23*01	tgtgcaaga	56.66		tct		ctatggttacgac		gag		ggtttgcttactgg	93.75	IGHD2-2*01	80	1	0	0
	19JH3-15	IGHV1S126*01	tgtgcaaga	57.04		gg		agggc		ccg		cctggtttgcttactgg	100	IGHD3-3*01	66.66	0	0	0
ļ	30JH3-3	IGHV1-15*01	tgtgcaa	59.33		tatgg		gattacgac		gtt		tttgcttactgg	91.66	IGHD2-4*01	83.33	1	0	0
													1	100000 4 4404	00.50	I .		

Table S1. Sequence analysis of VH558 - JH3 distal rearrangements in sorted BM B220⁺IgM⁻ cells from *mb1-fl/fl* and *fl/fl* control mice. Analysis of 24 sequences from mutant and 20 from control cells of 4 independent mice from each genotype are shown. The V, D and J family and designation are indicated in the table, as well as the % of homology with the corresponding germline segment. All V sequences belong to the VHJ558 subgroup, except for some segments of the VHSM7 family, which is related to the VHJ558 but maps 3' of it. We also analyzed the extension and frequencies of P and N regions, finding no differences between mutant and control. Sequences are normal in terms of VDJ diversity.