Exploring the HIV-1 Rev Recognition Element (**RRE**)-**Rev inhibitory capacity and antiretroviral action of benfluron analogs**

Supplementary Materials

Sergi Chumillas, Saurabh Loharch, Manuela Beltrán, Mateusz P. Szewczyk, Silvia Bernal, Maria C. Puertas, Javier Martinez-Picado, José Alcamí, Luis M. Bedoya, Vicente Marchán^{*}, José Gallego^{*}

Supplementary Figures

Figure S1. Antiretroviral activity and cellular toxicity of benfluron in PBMC. In this cell type this agent had an antiretroviral EC₅₀ of 5.50 μ M (95% confidence interval 4.65-6.54 μ M, R²=0.9781) and a toxic concentration CC₅₀ of 7.09 μ M (4.81-10.3 μ M, R²=0.9147), making for a selectivity index of 1.3.

Figure S2. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 2 in CDCl₃.

Figure S3. HR ESI-MS spectrum of compound 2 in MeOH.

Figure S4. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 3 in DMSO- d_6 .

Figure S5. HR ESI-MS spectrum of compound 3 in MeOH.

Figure S6. 1 H (DMSO- d_{6} , 400 MHz) and 13 C NMR (CDCl₃, 101 MHz) spectra of 4.

Figure S7. HR ESI-MS spectrum of compound 4 in MeOH.

Figure S8. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 5 in CDCl₃.

Figure S9. HR ESI-MS spectrum of compound 5 in MeOH.

Compound 6

Figure S11. HR ESI-MS spectrum of compound 6 in MeOH.

Figure S12. Reversed-phase HPLC chromatograms of benfluron analogs 2-6.

¹H and ¹³C NMR spectra and HR ESI-MS of compounds 2b-5b

Figure S14. HR ESI-MS spectrum of compound 2b in MeOH.

Figure S15. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound **3b** in CDCl₃.

Figure S16. HR ESI-MS spectrum of compound 3b in MeOH.

Figure S17. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 4b in CDCl₃.

Figure S18. HR ESI-MS spectrum of compound 4b in MeOH.

Figure S19. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 5b in CDCl₃.

Figure S20. HR ESI-MS spectrum of compound 5b in MeOH.

Reversed-phase HPLC analysis of compounds 2b-5b

Figure S21. Reversed-phase HPLC chromatograms of compounds 2b-5b.

¹H and ¹³C NMR spectra, HR ESI-MS and HPLC analysis of compounds 4a-5a

Figure S22. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 4a in CDCl₃.

Figure S23. HR ESI-MS spectrum of compound 4a in MeOH.

Figure S24. Reversed-phase HPLC chromatogram of compound 4a.

Figure S25. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 5a in CDCl₃.

Figure S26. HR ESI-MS spectrum of compound 5a in MeOH.

Figure S27. Reversed-phase HPLC chromatogram of compound 5a.

¹H and ¹³C NMR spectra, HR ESI-MS and HPLC analysis of compound 7.

Figure S28. ¹H (400 MHz) and ¹³C NMR (101 MHz) spectra of compound 7 in CDCl₃.

Figure S29. HR ESI-MS spectrum of compound 7 in MeOH.

Figure S30. Reversed-phase HPLC chromatogram of compound 7.