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Although polyploidization is a hallmark of adult 
mammalian cardiomyocytes and may constrain 
their proliferation, the mechanisms leading to 

ploidy increase in cardiomyocytes remain elusive.1 Our 
laboratory and others have reported the formation of 
DNA bridges between daughter nuclei as a potential 
route to cardiomyocyte polyploidization.2,3 These earlier 
in vivo studies found DNA bridges on thin tissue sections, 
but this approach does not cover all events because not 
all cardiomyocytes were oriented in the same 2-dimen-
sional plane.

To detect all DNA bridges, we dispersed cardiomyo-
cytes obtained from Myh6-H2B-mCh mice4 at postna-
tal day 4 on a culture plate and labeled them with the 
mitosis marker phospho-histone H3 (pH3) and DAPI 
(4’6-diamidino-2-phenylindole). No apparent mitotic 
errors were identified in prophase or metaphase, but DNA 
bridges were apparent in 54±7.9% of cardiomyocytes in 
early anaphase (Figure [A and B]). The percentage of 
cardiomyocytes with DNA bridges decreased rapidly to 
17.8±9.5% in late anaphase. On the contrary, the per-
centage of cardiomyocytes with resolved or broken DNA 
bridges (cardiomyocytes with discontinuous DNA fibers 
between sister chromatids) increased from 11.7±6.4% 
in early anaphase to 28.9±16.3% in late anaphase. 
DNA bridge remnants were present in 8±3.7% of telo-
phase cardiomyocytes. This analysis indicates that DNA 
bridges form in early anaphase and are resolved in the 
subsequent mitotic stages. Time-lapse videomicroscopy 
of postnatal day 4 cardiomyocytes reinforces the finding 
that DNA bridges between sister chromatids resolve as 
mitosis advances (Figure [C]).

DNA bridges can form as the result of diverse physi-
cal connections. Of these connections, covalently ligated 
telomere fusions can arguably operate in postnatal car-
diomyocytes because after birth, telomerase activity 
declines and cardiomyocyte telomeres shorten very rap-
idly and become dysfunctional, being susceptible to non-
homologous end joining.2 To analyze whether telomeres 
fuse in mouse hearts after birth, we sequenced telomere-
enriched genomic DNA obtained from postnatal day 1 and 
postnatal day 8 hearts to search for reads containing at 
least three 5’-TTAGGG telomere sequences followed by 
3 or more CCCTAA-3’ reverse-complementary telomere 
sequences5 (Figure [D]). Analysis of telomere-enriched 
sequences identified a 1.8-fold increase of telomere 
fusions in cardiac cells and a 1.6-fold increase in purified 
ventricular cardiomyocytes during the process of DNA 
bridging and binucleation (Figure [E]). The hypothesis 
that telomeres fuse to generate polyploid cardiomyocytes 
predicts that telomere fusion will be less frequent in dip-
loid than in polyploid cardiomyocytes. Comparison of the 
mononuclear and binuclear fractions of sorted postnatal 
day 7 cardiomyocytes revealed a 227% increase in the 
number of telomere fusions in binuclear cardiomyocytes 
(Figure [F]). These findings indicate that telomere fusions 
are present in newborn cardiomyocytes and increase in 
frequency during DNA bridging and binucleation.

To assess whether telomere fusions occur in other 
species relevant to the cardiovascular research, we 
repeated the telomere enrichment and sequence anal-
ysis on DNA extracted from zebrafish, pig, and human 
hearts (Figure [G]). We found reads containing telomere 
fusion sequences in all these species. Frequencies of 
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Figure. Telomeres fuse during cardiomyocyte maturation. 
A, Chromosome bridging and subsequent resolution in postnatal mouse cardiomyocytes. Examples of nuclear division abnormalities appearing in 
postnatal day 4 pH3+-cardiomyocytes from early anaphase: DNA bridges (white arrowheads), resolved/broken DNA bridges (blue arrowheads), 
and micronucleus (red arrowhead; bars=4 µM). B, Percentage of mitotic (pH3+) cardiomyocytes with intact DNA bridges, broken DNA bridges, 
and no DNA bridges in early anaphase, late anaphase, and telophase. A total of ≈150 000 cardiac cells from 4 postnatal day 4 mouse hearts 
were examined by automated high-content image screening. Between-group differences were analyzed by 2-way ANOVA followed by Tukey-
Kramer post hoc comparisons (*P<0.05; ***P<0.001). C, Time-lapse imaging of eGFP-anillin (green) and H2B-mCh (red) in a cardiomyocyte 
during mitosis. An intact DNA bridge (white arrowhead) and a broken DNA bridge (blue arrowheads) are observed in frame iii, and a micronucleus 
in frame v. Anillin, a multidomain protein involved in the closure of the contractile ring during cytokinesis, converged at the described midzone 
during late anaphase but was displaced laterally at the end of mitosis (frames iv–v; bars=4 µM). D, Telomere fusions generated by classic 
nonhomologous end-joining (c-NHEJ). E, Postnatal increases in telomere fusions in cardiac cells (left) and purified cardiomyocyte (right). Data 
are shown as the mean±SD of 3 independent experiments (**P<0.01; Student t test). F, Binucleated cardiomyocytes contain more telomere 
fusions than mononucleated cardiomyocytes. FACS enrichment of P7 mononucleated vs binucleated cardiomyocytes before sorting (left) and 
after sorting (middle). Right, Normalized number of telomere fusions in mononucleated and binucleated cardiomyocytes. (Continued )
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permutations of the TTAGGG-CCCTAA sequence were 
similar at the junction in mouse, zebrafish, pig, and human 
hearts, indicating a conserved need for specific bases at 
the breakpoint across these species.

Unlike mice, pigs, and humans, zebrafish maintain the 
capability for heart regeneration and cardiomyocyte prolif-
eration well beyond the neonatal period. The proliferation 
competence of adult zebrafish cardiomyocytes corre-
lates with their mostly diploid nuclear DNA content.1 To 
determine whether ploidy in mouse and zebrafish hearts 
correlates with the abundance of telomere fusions, we 
extracted DNA from 3-month-old mouse hearts and 
3-month-old zebrafish hearts. Analysis after the enrich-
ment and sequencing step detected an average of 4.0 
fewer telomere fusions in the adult zebrafish heart than in 
the adult mouse heart (Figure [H]). To determine whether 
generation of binucleated cardiomyocytes in zebrafish is 
influenced by telomerase, we isolated cardiomyocytes 
from wild-type and telomerase-null 3-month-old zebrafish. 
We detected a small fraction of binucleated cardiomyo-
cytes in wild-type zebrafish hearts, as previously reported1 
(Figure [I and J]). We also detected a distinct cardiomyo-
cyte subpopulation containing one elongated nucleus with 
a circularity factor <0.4, suggesting the presence of DNA 
bridges between 2 separating DNA masses. The propor-
tion of binucleated and dumbbell-shaped cardiomyocytes 
was higher in the hearts of telomerase-null zebrafish. 
Cytoplasm division in dumbbell cardiomyocytes seems to 
stop precisely at the location of the bridge, suggesting that 
DNA bridging physically obstructs cytokinesis (Figure [J]).

Our findings uncovered telomere fusions as a potential 
molecular mechanism underlying the formation of DNA 
bridges in polyploid cardiomyocytes, which might explain the 
genesis of the main types of polyploid cardiomyocytes seen 
in the mature heart and why polyploid cardiomyocytes do not 
usually divide (Figure [K]). Future research will be needed 
to determine whether telomere fusion plays a direct role in 
ploidy increases during development, growth, and aging, and 
whether it can be manipulated to enhance the plasticity of 
the mammalian myocardium in the event of injury.

All animal procedures complied with the Institutional 
Animal Care and Use Committee. The institutional review 

board has approved procedures and documents to obtain 
informed consent. The data that support the findings of 
this study and study materials, as well as experimental 
procedures and protocols, are available from the corre-
sponding author on reasonable request.
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Figure Continued. Data are shown as the mean±SD of 3 independent experiments (**P<0.01; Student t test). G, Telomere fusions follow a 
conserved and distinctive pattern. Frequency of sequences at the telomere fusion junction in mouse, zebrafish, pig, and human hearts. Red and 
blue letters highlight the telomeric sequences at the fusion point. H, Telomere fusion frequency correlates with the percentage of binucleated 
cardiomyocytes in mouse and zebrafish hearts. Normalized number of telomere fusions in cardiac genomes from 3-month-old mouse and 
zebrafish hearts. Data are shown as the mean±SD of 3 independent experiments (*P<0.05; Student t test). I, Percentage of mononucleated, 
dumbbell, and binucleated cardiomyocytes in wild-type and Tert−/− zebrafish cardiomyocytes. The circularity of dumbbell cardiomyocyte nuclei 
is <0.4. Data are shown as the mean±SD of 6 independent experiments (*P<0.05; ***P<0.001; Student t test). J, Examples of mononucleated 
(left), dumbbell (middle), and binucleated cardiomyocytes (right) from zebrafish hearts. K, DNA bridging and rupture as the origin of polypoid 
cardiomyocytes and cardiomyocyte proliferation blockade. Formation of DNA bridges as a result of telomere fusion might explain the genesis of 
the main types of polyploid cardiomyocytes seen in the mature heart. A tetraploid cardiomyocyte with one nucleus would form if the DNA bridge 
or bridges persist and the 2 sister chromatids rejoin. A binucleated cardiomyocyte would form if the DNA bridge or bridges break at one site. A 
binucleated cardiomyocyte containing a fragmented DNA micronucleus would form if the DNA bridge or bridges break at 2 or more sites. An 
origin in telomere fusion might also explain why polyploid cardiomyocytes do not usually divide. Tetraploidy and chromosome breakage are early 
and late consequences of telomere fusions, respectively, and both are associated with a DNA damage response (DDR) that ultimately prevents 
cell division. MyHC indicates myosin heavy chain.
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