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Summary
Microbes have developed many strategies to subvert host organisms, which, in turn, 
evolved several innate immune responses. As major lipid storage organelles of eukary-
otes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular 
viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and 
the current view is that they “hijack” LDs to draw on substrates for host colonization. 
This dogma has been challenged by the recent demonstration that LDs are endowed 
with a protein-mediated antibiotic activity, which is upregulated in response to danger 
signals and sepsis. Dependence on host nutrients could be a generic “Achilles’ heel” of 
intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity 
to organize a front-line defense. Here, we will provide a brief overview of the state of 
the conflict and discuss potential mechanisms driving the formation of the ‘defensive-
LDs’ functioning as hubs of innate immunity.
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1  |  INTRODUC TION

To date, approximately 1400 species of human pathogens have 
been identified, including viruses, bacteria, fungi, protozoa, and 
helminths. As the Earth Microbiome Project advances, this number 
is expected to raise dramatically.1 These pathogens cause 16 million 
deaths each year, and this situation is predicted to worsen in the 
future.2 Biodiversity reduction and microbe genome plasticity will 
enable the estimated trillions of viruses and bacteria living on earth 
to colonize new host species. Furthermore, by 2050, an estimated 
10 million people will die each year from antimicrobial resistant bac-
teria.2 It is therefore imperative that countermeasures to face this 
global threat are identified and implemented as soon as possible.

A premise of our research is that countermeasures could be 
learnt from the sophisticated defense mechanisms that eukaryotes 
have developed over millions of years to cope with the pervasive 
presence of microbes. In eukaryotic cells, front-line defense is orga-
nized around rapid and generic responses collectively defined as “in-
nate immunity”. Being mechanisms generated to face a never-ending 
variety of microbes, innate immunity first detects common vulner-
able aspects of pathogens and then organizes generic responses to 
confront invaders.3

Intracellular pathogens are largely or completely dependent 
on host nutrients. In eukaryotes, nutrients are stored in the form 
of lipids and managed by atypical organelles called lipid droplets 
(LDs).4 Since Rudolf Virchow's description in 1863 that biopsies of 
Mycobacterium leprae-infected patients accumulate fat-laden cells,5 
the list of pathogens known to induce accumulation of host LDs has 
grown exponentially3 (Table 1). Although mechanistic details remain 
largely unknown, LDs accrue in cells infected with some of the most 
medically relevant viruses (e.g., Hepatitis C, Zika, Dengue, and SARS-
CoV), bacteria (e.g., Mycobacterium, Chlamydia, and Salmonella), and 
parasites (e.g., Plasmodium, Trypanosoma, and Leishmania). The most 
accepted explanation for these lipid-laden cells is that host LDs are 
first induced and then manipulated by virulence factors produced 
by pathogens to obtain substrates needed for growth, chronic per-
sistence, or to evade immunity.6–8

In this context, our work and that of others has revealed that 
the LD–pathogen dynamic is far more complex than initially con-
sidered. Dependence on host lipids could be a generic weakness 
of microbes identified by innate immunity and thus the LD a stra-
tegic chokepoint for organizing a first defensive line.3 A pioneering 
indication that LDs are active innate immunity players is found in 
studies describing that in virally infected cells, viperin (RSAD2), an 
interferon (IFN)-inducible broad-spectrum antiviral protein, resides 
on LDs to simultaneously participate in killing and transduction of 
type I IFN signaling.9,10 This challenging concept was extended with 
the demonstration that histones on LDs protect Drosophila embryos 
when infected with Gram-negative and Gram-positive bacteria.11

More recently, we demonstrated that LDs have a complex an-
tibacterial activity, which is upregulated in mice treated with the 
lipopolysaccharide (LPS), a potent activator of innate immunity, or 
subjected to a polymicrobial sepsis.12 Quantitative profiling of the 

proteome of hepatic LDs purified from mice treated with LPS proved 
that viperin and histones are just components of a complex and mul-
tifaceted defensive strategy organized on/around LDs. A stringent 
analysis identified 689 proteins differentially regulated by LPS in 
purified LD fractions (317 enriched/372 reduced), a major share po-
tentially related to immunity for the first time. Functional annotation 
analysis predicted that in LPS-activated cells, LDs accrue proteins 
(i) with anti-pathogenic activity, (ii) involved in immune signaling, 
(iii) mediating inflammation, and (iv) regulating immunometabolism. 
Among cellular organelles, LDs display a unique flexibility in terms 
of formation, protein/lipid composition, and interaction with other 
organelles and thus have the capacity to rapidly assume all these 
defensive mechanisms urgently activated by infected cells.13

Here, we will provide a summary of the cell biology of LDs and 
examine representative LD-pathogen dynamics that exemplify the 
state of the conflict. Further, we will discuss, from computational 
predictions and current annotations, mechanisms potentially driving 
the profound transformation of LDs into hubs of innate immunity. To 
define these newly formed LDs, we will use the term “defensive-LDs” 
(d-LDs) that, in our opinion, emphasizes the profound compositional 
and functional differences existing between the LDs assembled in 
infected cells and other well-characterized LDs that, activated by 
energy sensors, provide metabolic flexibility to healthy cells (Box 1).

2  |  LIPID DROPLETS MANAGE THE 
NUTRIENTS OF EUK ARYOTIC CELL S

The capacity to store nutrients in rich environments to be used 
during scarcity periods provides cells with the metabolic flex-
ibility needed to survive when facing environmental fluctuations.4 
Triacylglycerol (TAG), a highly hydrophobic and reduced ester 
formed by glycerol and three fatty acids, is the preferred molecule 
for eukaryotes to store energy and nutrients. LDs are the special-
ized organelles evolved to gather, administrate and supply TAGs.14 
TAG-enriched LDs are ancient organelles present in the simplest 
unicellular organisms, such as green algae or yeast, to the most spe-
cialized mammalian cells, such as hepatocytes, cardiomyocytes, or 
macrophages.4,15,16

The cellular content of LDs is remarkably flexible; LDs can be 
promptly formed or efficiently consumed depending on the cellular 
status. In the presence of nutrients, LDs are rapidly formed by accu-
mulating the fatty acids generated de novo, from glucose or amino 
acids (lipogenesis), and the lipids imported by cells from the extracel-
lular medium (Figure 1A). Fatty acids are esterified into TAG by the 
sequential action of enzymes residing in the endoplasmic reticulum 
(ER)14 (Figure 1B). Assisted by structural proteins, such as seipin, fat 
storage-inducing transmembrane protein 2 (FIT2), or LD assembly 
factor 1 (LDAF1),16–18 TAGs are gradually accrued into lipid lens that 
phase separate within the ER bilayer to form a nascent LD.19 As ad-
ditional lipid arrives and esterifies, the lens progressively grows into 
the cytosol to generate a spherical organelle, encircled by a single 
monolayer of phospholipids, and with a hydrophobic core of TAGs, 
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TA B L E  1 Pathogens inducing LDs in host cells and their proposed mechanism of action.

Pathogen Host cell Mechanism References

Bacteria

Mycobacterium 
tuberculosis (Mtb)

Human macrophages Mice 1.	Restriction of bacterial growth
2.	 Inflammatory responses
3.	Production of host defensive eicosanoid

[79,83,156,240]

Chlamydia trachomatis Human Hela
Mouse embryonic fibroblasts (MEF)

1. Association with reticulate bodies for lipid 
delivery

2. Remodeling of the LD proteome for 
bacterial growth

[58,63]

Chlamydia pneumoniae Murine adipocytes Mobilization of free fatty acids for bacterial 
growth

[161]

Salmonella Typhimurium macrophages LD accumulation for bacterial proliferation 
and secretion of PGE2

[162]

Viruses

Dengue (DENV) Hamster CHO
Human HepG2/Hela/A549/Hek293T/

hepatocytes
Monkey Vero E6
Mosquito Aag2

1. Scaffold for nucleocapsid formation
2. Virus replication

[45,166]

Sindbis Mosquito Aag2 1. LD accumulation
2. Activation of Toll and IMD pathways

[241]

Hepatitis C (HCV) Human HuH7/hepatocytes Virus production [168,169,242]

Zika (ZIKV) Human primary astrocytes
Human HuH7/HEK293T/Hela
Murine primary MEF
Monkey Vero

1. Increase the motility of LDs
2. Enhanced INFI/III production
3. Control early viral replication

[42,175]

Poliovirus (PV) Human HeLa S3/HuH7 1. RC biogenesis
2. PV replication

[48]

Herpes simplex 1 
(HSV-1)

Human primary astrocytes
Human HuH7/HEK293T/Hela
Murine primary MEF
Monkey Vero

1. Enhanced INFI/III production
2. Control early viral replication

[42]

Rotavirus Human MA104/Caco-2/BSC-1/Cos-7/
MA104

Generation of infectious progeny virus [171]

Reovirus Hamster CHO
Monkey CV-1

Induction of apoptosis [172]

SARS-Cov2 Human primary monocytes/A549
Monkey Vero-E6

1. Assembly viral platform
2. Increase pro-inflammatory mediators

[174]

Rabies Human N2a/BSRSK-N-SH
Mice C57BL/6

Facilitate viral budding [173]

Parasites

Plasmodium derivates Mice hepatocytes
Erythrocytes

1. LD increases associated with liver 
dysfunction

2. Accumulation or degradation of LDs in 
stage development specific manner of 
parasite

[243,244]

Candida albicans 
derivates

Candida albicans
Candida parapsilosis
Candida tropicalis

LD accumulation in response to squalene 
synthase inhibitor

[245]

Trypanosoma cruzi Rat macrophages
C57BL/6 mice macrophages

1. Increase in LD number and PGE2 
production

2. Formation of inflammatory macrophages

[65,182]

Toxoplasma gondi Human primary skeletal muscle 1. Lipids delivery to PV
2. Increase of inflammatory indicators PGE2 

and COX-2

[180]

Leishmania amazonensis Mouse myeloid dendritic leucocytes LD accumulation and contact with PV [181]
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cholesterol esters, and other hydrophobic molecules such as vita-
mins or pigments (Figure 1C). Although requiring the coordination 
of many different proteins and formation/transformation of many 

lipid species,14 the biogenesis of LDs is an extremely rapid metabolic 
reaction occurring a few minutes after the arrival/formation of lip-
ids.19 Complexes of functionally connected enzymes at the sites of 

BOX 1 Defining defensive-LDs, implications in immunity and disease.

Eukaryotic cells rapidly accumulate LDs after infection by microbes or when activated by danger signals3 (Figure 2A). When 
compared to LDs activated by energy sensors and assembled to produce metabolic energy during fasting (“fasting-LDs”, f-LDs), the 
LDs of infected cells exhibit unique compositional and functional traits.13 Comparative proteomics of hepatic LDs purified from 
fasted or from LPS-treated mice determined that at least 689 proteins are differentially regulated on/around LPS-activated LDs (317 
enriched/372 reduced).12 The Ingenuity Pathway Analysis concluded that these LDs have the potential to be innate immunity hubs 
functioning in several defensive fronts including killing, signaling, inflammation, and immunometabolism.12 Our work and that of 
others is beginning to indicate that these could be generic roles assumed by the LDs of infected cells.12,42,79,83,149 Therefore, to refer 
to the distinct LDs formed by activation of innate immunity programs, we propose the name of ‘defensive-LDs’ (d-LDs).

When compared with f-LDs, the d-LDs formed during a polymicrobial sepsis or in response to LPS demonstrated a significantly 
enhanced protein-mediated antibiotic activity in classical bacterial killing assays.12 In contrast to activated f-LDs, activated d-LDs are 
depleted of proteins related to mitochondrial and phospholipid metabolism but enriched in proteins involved in immunity (Figure 2B). 
Such a different proteome is, at least in oxidative cells, potentially determined by the relative composition of PLINs, with d-LDs en-
riched in PLIN2 but depleted of PLIN5.12 Forced PLIN5 expression in infected fibroblasts and macrophages diminishes the amplitude 
of the defensive response against bacteria.12 The low PLIN5 levels on d-LDs likely reduces crowding to favor recruitment of PLIN2 
and of newly synthesized defensive proteins, with some of them physically interacting with PLIN2.12,40 Furthermore, the low PLIN5 
levels on d-LDs lessen their interaction with mitochondria and the signaling that, driven by PLIN5 during fasting, potentiates oxida-
tive metabolism in cells.4 Therefore, by cancellation of key traits of f-LDs, d-LDs likely contribute to generate a particular metabolic 
environment conducive for defense.

Among the upregulated proteins, the d-LDs assembled in host cells recruit viperin, CAMP, IRGs (IGTP, IFI47, IIGP1, and TGTP) 
(12), histones,11 GBPs (GBP2 and GBP6), and Rab GTPases (Rab7 and Rab18) (Bosch et al, unpublished) (Figure 2C). Other studies 
have described that the LDs of infected cells accrue RNF213/ISG15 (134), HIG-2,79 STING/TBK1,97 and COX-2/PGE2 synthase,84 
some of them also identified in the proteomic characterization of d-LDs12 (Figure 2B,C).

In contrast to f-LDs interacting with mitochondria, d-LDs interact with the phagolysosomal membranes containing invad-
ers.43,48,49,63,71,89,160 These contact sites could be driven by IRGMs, GBPs, and Rab GTPases.87–89,115 Electron microscopy, designed 
for membrane preservation, revealed that d-LDs generate a discontinuity in the phagolysosomal membrane possibly allowing phys-
ical interaction of antimicrobial proteins with the bacterial outer membrane3,12 (Figure 2D). Proteins on dLDs, such as CAMP and 
histones, form functional connected complexes and cooperate in different steps of the killing.105 In support to the existence of these 
trafficking mechanisms and contact sites, d-LDs efficiently accumulate and deliver hydrophobic antibiotics into bacterial inclusions 
to reduce microbes' viability.90,91

In silico analysis predicts that intricated signaling networks, involving transcriptional programs and posttranslational modifica-
tions, converge to generate d-LDs. Upstream regulation inference analysis anticipates that a major share of the proteome program-
ming upon activation of d-LDs is mediated by IFNs, TLR2 and TLR4/NF-kB, and SRF/SMADs axes12 (Figure 3A,B). The stability and 
function of d-LD proteome is regulated by PTMs. The d-LD proteome is enriched in substrates of cytokine-activated kinases, includ-
ing AKT, GSK3, and IKK12 (Figure 4B). The activity of the ubiquitin-proteasomal system on d-LD proteins likely regulates the extend 
and duration of the defensive response.144–146 Furthermore, the RNF213-driven ISGylation of LD proteins (see details in section 5), is 
involved in the switching from f- to d-LDs133,149 (Figure 4C). Additional signals contributing to the programming of d-LDs have been 
attributed to receptor tyrosine kinases, such as the EGFR in virally infected cells,42 and additional transcription factors, such as HIF-1 
in Mtb infected cells.79

The new concept of the d-LD could have important implications for understanding progression of diseases in which cells display 
an abnormal accumulation of LDs, including obesity, cancer, and aging.157,158 These pathological processes are all characterized by 
chronic inflammation and cellular damage. For example, after a stroke microglia accumulates LDs resembling to d-LDs and containing 
proteins such as viperin, ISG15, RNF213, IFI47, TGTP1, IIGP1, and GBP6. The accumulation of d-LDs is exacerbated in the microglia 
of old individuals driving an exaggerated type I IFN immune response and worsening the neurological outcome.159 Hence, the equi-
librium between f- and d-LDs could be somehow disrupted in unhealthy cells and contribute to pathogenesis.
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biogenesis and on LDs provide a high efficiency to the process.14 
These LDs are relatively static organelles and accumulate in the cell 
center waiting for the lipids and proteins they store to be required.20

The surface of LDs is a crowded domain (Figure 1D). Dynamic 
competition between LD proteins allows rapid remodeling of the 
organelle's proteome to efficiently respond to fluctuations in 

F I G U R E  1 Lipid droplets: metabolism, morphology, and composition. (A) Simplified scheme of the main metabolic pathways and 
intermediate metabolites involved in the biogenesis and consumption of LDs. See the text for additional details. FA, fatty acid; FA-CoA, 
acyl-CoA; CPT1, carnitine palmitoyltransferase I; CAC, citric acid cycle; FASn, fatty acid synthase; OxPhos, oxidative phosphorylation; 
ACC, acetyl-CoA carboxylase; GPAT, glycerol-3-phosphate acyltransferase; AGPAT, 1-acyl-sn-glycerol-3-phosphate acyltransferase; PAP, 
phosphatidic acid phosphatase; DGAT, diglyceride acyltransferase-1 and -2; ACSL, acyl-CoA synthetases; ATGL, adipose triglyceride lipase; 
HSL, hormone sensitive lipase; MAGL, monoacylglycerol lipase; NCEH, neutral cholesterol ester hydrolase. (B) Schematic representation 
of LD biogenesis occurring in the endoplasmic reticulum (ER). After esterification, neutral lipids accumulate within the ER bilayer forming 
a lens structure that undergoes a phase separation within the ER bilayer and grows into the cytosol forming a nascent LD. Cytoplasmic 
and ER proteins are recruited to the surface of LDs, facilitating their growth, and budding into mature LDs. Accessory proteins cooperate 
during the process. The esterification of fatty acids (FA) into triacylglycerol (TAG) is illustrated in the upper panel (red: the chemical 
structure of TAG). (C). Hepatic HuH7 cells were treated with oleic acid to induce LD formation for 16 hours (left panel). PLIN2 (green) was 
localized with specific antibodies and neutral lipid stained with LipidTox. (N) indicates the nucleus of the cells. The arrow marks the LD in 
the high magnification inset. THP-1 cells were processed for TEM analysis (right panel). Lipid droplets are distinguished by their spherical 
morphology, by being relatively low electron dense, and by being delimited by a single monolayer of phospholipids. (D) Simplified scheme 
representing major proteins on LDs. (E) The scheme contains a few examples of LD proteins (black) manipulated by virulence factor secreted 
by pathogens in host cells (red) (see the text for details).
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nutritional, metabolic, and stress conditions.21 To accurately admin-
ister nutrients, the surface of LDs accommodates at steady state an 
estimated 150 different proteins.22,23 The LD proteome includes its 
own family of regulatory proteins, the perilipins (PLINs).24 The main 
function of PLINs (−1 to −5) is to modulate the activity of the lipases 
residing on the LD surface.

When lipids are needed, LDs are promptly but progressively ac-
tivated to meet the cellular demands. PLINs are phosphorylated by 
energy sensors, such as the protein kinase A (PKA), to function as 
scaffolds that reorganize the LD surface by releasing, excluding, or 
attracting other proteins such as acyl-CoA synthetases (ACSL), ac-
cessory proteins (e.g., comparative gene identification-58, CGI58), 
and lipases (adipose triglyceride lipase, ATGL; hormone sensitive li-
pase, HSL; and monoacylglycerol lipase, MAGL).4 Especially during 
periods of prolonged starvation, TAG-LDs are also metabolized by 
acid lipases in a process conducted by different types of autophagy; 
lipophagy involving small parts of LDs, macroautophagy involving 
the whole organelle, and chaperone-mediated autophagy involving 
specific LD proteins.4,20,25–27 These LDs activated in nutrient poor 
environments will be defined from here as “fasting-LDs” (f-LDs).

Activated LDs are highly dynamic organelles forming contact 
sites with most cellular organelles.28 Up to 26 Rab GTPases, regula-
tors of membrane trafficking, reside on LDs.22 The presence of these 
GTPases reflects the potential of LDs for delivering lipids and pro-
teins where and when necessary, although the mechanisms involved 
are still largely unresolved.29,30 For example, in a process activated 
by the energy sensor 5′ AMP-­activated protein kinase (AMPK) when 
sensing low ATP levels, f-LDs move on microtubules to physically 
interact with mitochondria and, by forming a “metabolic synapse”, 
locally deliver the fatty acids that will be oxidized to produce meta-
bolic energy.20 The enormous potential of LDs in supplying cells with 
energetic substrates is reflected in the fact that these organelles 
provide the liver with the necessary metabolic energy to regenerate 
after a 70% hepatectomy, a compensatory hyperplasia accomplished 
in just 7 days.31

Furthermore, reflecting additional roles beyond lipid adminis-
tration, the LD monolayer accommodates proteins not obviously 
related to lipids, such as histones,32 toxic proteins,33 caveolins,34,35 
transcription factors,36 proteins of the ubiquitin system,37 com-
ponents of the ER associated degradation of proteins,38,39 and 

immune-related proteins.40 The role of LDs in maintaining cellular 
homeostasis by functioning as generic stress buffers has been pro-
posed.21,29 A major share of the knowledge behind this paradigm 
shift about the functions of LDs has been enabled by the use of 
systematic molecular profiling approaches, capable of revealing and 
describing non-intuitive systems-level relationships.41

3  |  LIPID DROPLETS,  AN AT TR AC TIVE 
SOURCE OF NUTRIENTS FOR 
INTR ACELLUL AR PATHOGENS

Accumulation of host LDs is observable during the first hour following 
infection of protozoan parasites, bacteria, and viruses42,43 (Figure 2A) 
(Box 2, 3, and 4). This is well characterized in the case of positive-
strand RNA viruses, the largest group infecting eukaryotes, that 
parasitize host LDs in all steps of their lifecycle.44 These pathogens 
exploit LDs to generate replication compartments, for virion assem-
bly, to form lipoviroparticles for egression, and by forcing host me-
tabolism to produce the energy needed to fuel the aforementioned 
processes.45–51 For example, Poliovirus (PV) produces PV-2 and PV-3 
that displace PLIN-3 and activate ATGL and HSL to release the fatty 
acids that, converted into phospholipids, generate the replication 
compartments in the ER48 (Figure 1E). Hepatitis C and Dengue viruses 
produce HCV-NS5a and DENV-NS3 to activate fatty acid synthase 
(FASN, key lipogenic enzyme) and diacylglycerol O-acyltransferase 1 
(DGAT1, key fatty acid esterifying enzyme) to generate the LDs that 
will be used for viral packaging.51–54 Viral components are concen-
trated on the LD monolayer by physically interacting with abundant 
LD resident proteins such as PLINs and Rab GTPases.51,52,54–57

Similarly, intracellular Gram-positive and -negative bacteria in-
duce and target host LDs.3 When infecting fibroblasts or macro-
phages, Chlamydia trachomatis rapidly induces formation of host 
LD.58,59 To obtain fatty acids and cholesterol, C. trachomatis manip-
ulates host LDs by secreting Ct-LDAs (LD-associated proteins).59–62 
For example, Ct-LDA3 displaces PLIN-2 and promotes the apparent 
translocation of host LDs into the bacterial inclusion.63 Further, C. 
trachomatis, Chlamydia pneumoniae, and Coxiella burnetii use the 
fatty acids from host LDs for the synthesis of prostaglandin E2 
(PGE2), an immune suppressor employed also by Trypanosoma cruzi 

F I G U R E  2 Defensive-­lipid droplets: formation, composition, and interaction with bacteria. (a) THP-­1 cells (left panel) were infected with 
Escherichia coli for 1 hour (central panel) or 8 hours (right panel) and subsequently processed for flow cytometry or TEM analysis. Infected 
THP-1 rapidly accumulated LDs as shown in the graph (arbitrary fluorescence units corresponding to LipidTox quantification) and in the 
image (green asterisks). Bacteria are indicated with red asterisks. (b) The left panel shows relevant functional annotation terms among the 
proteins enriched (red) or depleted (blue) in d-LDs. Functions are displayed as a network based on their relationship and hit overlap through 
the REVIGO open resource.238 The right panel shows a schematic representation of d-LDs and includes some proteins discussed in the 
text. The presence of GBP and RNF213 was detected by proteomics.12 (c) Tagged (flag- and GFP-) human forms of viperin were transfected 
in human hepatic HuH7 cells. Cells were treated with OA to induce LD formation. Cells were fixed after 16 hours and stained with anti-­
flag antibodies (green) and LipidTox staining (LD, red). In the right panel, GFP-viperin distribution was analyzed using an APEX genetic tag 
together with stable nanobodies against GFP and analyzed by TEM. (d) Human monocyte derived macrophages (HMDMs) were infected 
with E. coli for 4 hours, fixed, and processed for TEM analysis. The bacteria and the ER have been pseudocolored (blue: putative ER; red: E. 
coli interior [excluding periplasm]; green: periplasm with bounding membranes; yellow: vacuolar membrane). White arrows indicate the LD 
monolayer and black arrows the bacterial outer membrane.
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to evade immunity.64,65 Burkholderia pseudomallei activates the host 
nuclear receptor NR1D2 that downregulates ATGL and prevents the 
autophagy-dependent suppression of infection.66

One of the most medically relevant examples of bacteria in-
teracting with LDs is Mycobacterium tuberculosis (Mtb), the leading 
cause of death from a single infectious agent.67 By extensively re-
wiring host cell metabolism, Mtb infection causes the accumulation 
of LDs and the formation of foamy macrophages.68,69 Because Mtb 
persists in a dormant state within such foamy macrophages in vitro 
and in the lung granulomas of tuberculous patients, it is commonly 
accepted that host LDs benefit the pathogen by providing a nutrient 
source.70–72 Mtb expresses coordinated fatty acid and cholesterol 
import systems that support bacterial survival in vivo.73 Remarkably, 
Mtb synthesizes its own LDs, a process involving TAG from host 
LDs and requiring the interaction of host LDs with the bacteria-
containing phagosomes.70,71,74

4  |  ARE LIPID DROPLETS AC TIVE 
DEFENSIVE ORGANELLES?

In this context, few studies have begun to illuminate a more complex 
relationship between invaders and LDs, in which the accumulation of 

host LDs could reflect a defensive response.3 For example, host LDs 
rapidly accumulate even in cells infected with killed pathogens.43,75,76 
The formation of host LDs is triggered by common pathogen-
associated molecular patterns (PAMPs), such as LPS or lipoarabi-
nomannan, and danger-associated molecular patterns (DAMPs), such 
as synthetic nucleic acids.42,75,77 Furthermore, LDs also accumulate in 
uninfected cells in the vicinity of infected cells.43,78 Thus, driven by 
signals produced and emitted by infected cells when sensing danger, 
formation of host LDs seems to be a defensive innate immunity re-
sponse when identifying common microbial molecular patterns.79,80

The LDs assembled by host cells could actively participate in the 
defense. Hepatic cells with reduced LD content had a concomitant 
reduction in Type I and III IFN production when infected with Sendai, 
Herpes simplex 1, and Zika viruses.42,81 Similarly, inhibitors of LD 
formation markedly attenuated expression of anti-viral genes driven 
by Type II IFN in pancreatic beta cells.82 In the case of bacteria, LDs 
of Mtb-infected macrophages critically mediate the production of 
protective eicosanoids,79,83 a process at least partially conducted by 
host LD enzymes and lipids.84 Hence, infection-induced LDs partici-
pate in innate immune signal transduction and production of inflam-
matory mediators.3,68,85

Despite the growing possibility that LDs have assumed defen-
sive roles, until recently only three immunity-related proteins had 

BOX 2 Lipid droplets and bacteria.

In this box, we provide an overview of what is known regarding the mechanisms underlying the induction and utilization of LDs 
by several bacterial pathogens (Table 1).

Intracellular bacteria cannot survive inside host cells without continuous nutritional fatty acid support. Cytosolic bacteria or 
vacuole-containing bacteria secrete virulence factors that will hijack LDs to complete their life cycle and sustain their optimal growth 
and persistence. Bacteria will benefit from the contact with LDs to activate TAG lipolysis and subsequently fulfill their replication 
needs from fatty acids.

Chlamydia trachomatis is an obligate intracellular bacterium that causes genital and ocular diseases. During infection, LDs are 
translocated from the host cytoplasm to the lumen of the bacteria-containing parasitophorous vacuole at IncA-enriched subdo-
mains, enabling the replication of the bacteria. The docking of LDs to the vacuole is promoted through the removal of PLIN2 from 
the surface of LDs by the chlamydial protein Lda3 which could initiate lipolysis.63 LDs isolated from cells infected with C. trachomatis 
are enriched in proteins related to lipid metabolism and LD biogenesis.58 Furthermore, treatment with triacsin C (an inhibitor of LD 
biogenesis) negatively impacted C. trachomatis replication, further indicating the role of LD in bacterial growth.59 A second example 
of Chlamydia species, Chlamydia pneumoniae proliferates inside host cells by activating FABP4/HSL-mediated lipolysis which releases 
fatty acids from LDs needed for ATP synthesis, a vital molecule for bacterial replication.161

Salmonella enterica is a facultative intracellular pathogen that causes salmonellosis. Following S. enterica typhimurium macro-
phages infection, TLR2 signaling is activated leading to LD accumulation via SPI1-related T3SS activity. The pharmacologic inhibition 
of DGAT1 and cytosolic phospholipase A2 lowered bacterial proliferation and abrogated the synthesis of PGE2.162

Mycobacterium tuberculosis (Mtb), the causal agent of tuberculosis, is a facultative intracellular pathogen that primarily targets 
lung macrophages. Activation of TLR2/4 by Mtb components leads to an important reprogramming of energy and lipid metabolism, 
with inhibition of lipolysis and fatty acid oxidation and concomitant increase in lipid uptake, mobilization and de novo synthesis lead-
ing to LD accumulation.68,69 Intracellular Mtb can import fatty acids deriving from host LDs, suggesting that the pathogen uses them 
as a lipid source. However, maintenance of LDs in infected macrophages appears to require IFN-γ-driven induction of HIF-1α, which 
inhibits lipolysis and blocks Mtb's acquisition of LD-derived fatty acids.79 In Mtb-infected macrophages LD formation also boosts 
the production of host protective eicosanoids such as LXB4 and PGE2.79 In support of host LDs having antimycobacterial functions, 
chemically or genetically inhibiting fatty acid oxidation in macrophages increased their ability to control Mtb growth.163,164
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been localized to LDs: (i) viperin, which is active against viruses as-
sembled on LDs such as Hepatitis C and Dengue viruses10; (ii) IFN-
γ-inducible GTPase (IGTP), related with antigen cross-presentation 
and required for resistance to Toxoplasma gondii40; and (iii) histones 
that on LDs increase survival of bacterially infected Drosophila 
embryos.11 This picture must be radically revised with the recent 
demonstration that the protein complements of LDs changes 
dramatically upon infection, with immense implications for 

understanding the role of LDs in defense.12 Proteomic analysis of 
LDs purified from the liver of mice treated with LPS, identified 689 
regulated proteins (317 enriched/372 reduced), including changes 
in ~30% of the annotated “core” LD proteome.12 The Ingenuity 
Pathway Analysis suggested that these LDs could be involved in 
different aspects of the innate immune defense, including killing, 
signaling, and inflammation, and thus, from hereafter will be re-
ferred as “defensive-LDs” (d-LDs) (Box 1).

BOX 3 Lipid droplets and viruses.

In this box, we will provide a few examples of viruses to briefly uncover the role of LDs in viral immunity (Table 1).
The classical role of LDs during viral infection is particularly highlighted in the positive single strand RNA (+ssRNA) viruses from 

the Flaviviridae family45,165 (Table 1). These viruses induce a rearrangement of host membranes to provide a specialized replication 
compartment (RC) within host cells for the synthesis of viral genome. The ER membrane is the preferable site for +ssRNA viruses, 
where the RC is employed for genome packaging, viral replication, translation, assembly, and immune evasion. Since the ER is the 
formation site of LDs, it is not surprising that a strong connection was described between LDs and +ssRNA virus during their life 
cycle, where many viral proteins are trafficked to or interacting with LDs.165

For instance, Dengue virus capsid proteins strongly bind to LDs to have a scaffold for nucleocapsid formation during encapsula-
tion166,167 and activate LDs consumption to release fatty acids for virus replication.45 Another well-studied example of the Flaviviridae 
virus family is the Hepatitis C virus, where the core protein is targeted to LDs for efficient viral replication and assembly through the 
formation of a RC.168,169

Poliovirus, belonging to the enterovirus's family, utilizes its 2C protein to generate a contact site between LDs and the RC. 
Consequently, viral proteins activate the lipolysis machinery by interacting with HSL and ATGL (lipases on the surface of LD) to en-
able the generation of fatty acids from LD and thereby provide lipids for RC biogenesis and Poliovirus replication.48

Rotavirus early-stage assembly in infected cells arises in viroplasms which are shown to be associated with LDs proteins170 
such as PLIN2 through the rotaviral protein NSP5.171 Intriguingly, the inhibition of LD formation using chemical compounds like 
isoproterenol plus isobutylmethylxanthine and triacsin C lowered the number of viroplasms and inhibited the production of progeny 
viruses.171 On the other hand, the reovirus capsid protein micro1 induces apoptosis in infected cells when co-localized with LD, ER, 
and mitochondria.172

Rabies viral infection upregulates N-myc downstream regulated gene-1 (NDRG1), which increases the expression of DGAT1 and 
DGAT2, responsible for the TAG biogenesis in LDs and thus promotes LDs formation. Then, rabies virus employs LDs carriers to 
facilitate pudding process for virus production.173

During SARS-CoV-2 infection, viral proteins and double stranded-RNA were found in close proximity to LDs in host cells. The 
pharmacological inhibition of LD formation using A922500 (DGAT1 inhibitor) impeded not only the replication of the virus, but also 
the release of pro-inflammatory mediators and cell death.174

Following Zika virus infection, the motility of LDs was significantly increased, while their number remains unaffected. In fact, 
LD displacement (peaked at 48 h post-­infection) and mean speed (peaked at 8 h post-­infection) were enhanced in a time-­dependent 
manner in infected cells.175

Influenza A virus triggers autophagy in infected cells, which contributes to the accumulation of LDs in infected cells. As LDs can 
enhance the viral replication, treatment with atorvastatin (an HMG-CoA reductase inhibitor) reduced Influenza A virus reproduction 
with partial suppression of ER stress and Reactive oxygen species (ROS).176

Beyond the conventional role of LDs as supporters of viral infection, a paradigm shift in the field points to an antiviral role of LDs 
as part of immune responses.85 Infected cells secrete antiviral cytokines, mainly IFNs, which trigger the expression of ISGs. Some of 
these ISGs are localized on LDs (e.g. viperin and immunity-related GTPase), which confer to them the capability of counteracting viral 
propagation. In fact, when Herpes simplex 1 and Zika viruses infect cells, LDs are produced at early time points (2 h post-infection) 
to facilitate the magnitude of the early antiviral immune response via the enhanced secretion of type I and III IFNs.42 In addition, 
the localization of viperin on the surface of LDs enables its interaction with the HCV-NS5A protein which causes the inhibition of 
Hepatitis C virus replication.177
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We experimentally confirmed that d-LDs are simultaneously 
enriched in viperin, IGTP, histones, and other immunity-related 
GTPases (IRG) such as IIGP1, TGTP1, and IFI47 (Figure  2B,C). 
Furthermore, d-LDs also recruit cathelicidin (CAMP), a broad-
spectrum antimicrobial peptide with chemotactic properties (see 
details in following sections). Demonstrating a direct participation 
of d-LDs in intracellular defense, cells expressing a genetically engi-
neered LD-associated CAMP were more resistant to the infection of 
Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), 
and Listeria monocytogenes. Intriguingly, Pseudomonas aeruginosa 
was not affected by LD-CAMP, suggesting that some bacteria may 
have evolved mechanisms of resistance.

Electron microscopy of human macrophages infected with E. coli 
confirmed the commonly observed interaction of d-LDs with phago-
cytic and parasitophorous membranes.12 Although the nature of this 
junction and the mechanism of any protein, peptide, or lipid transfer 
from d-LDs to bacteria is unknown, our imaging methods preserv-
ing lipid membranes showed that the d-LD monolayer produced an 
apparent discontinuity in the phagolysosomal membrane, possibly 

allowing interaction of the antibacterial proteins on d-LDs with the 
bacterial outer membrane3,12 (Figure  2D). These studies demon-
strate the existence of sensing, trafficking, and docking mechanisms 
to facilitate the engagement of d-LD proteins with intracellular 
pathogens. Relocation of LDs to interact with the lysophagosome 
containing Mycobacterium marinum was observed only 10 minutes 
after phagocytosis,86 being likely mediated by Rab GTPases such 
Rab7 or Rab18.87–89 In silico analysis demonstrated that twenty-
three different Rab GTPases are enriched on d-LDs, including Rab7 
and Rab18,12 suggesting candidate interactors among other organ-
elles (Table 2).

In support of the existence of mechanisms to deliver toxic mol-
ecules from d-LDs into invaders, recent studies have described that 
LDs are efficient antibiotic reservoirs and suppliers. Bedaquiline is 
a highly lipophilic antibiotic reducing Mtb viability by interacting 
with ATP synthase. In infected macrophages, host LDs operate as 
intracellular bedaquiline reservoirs and suppliers enhancing its an-
timycobacterial activity.90 Similarly, the broad-spectrum antiviral 
compound ST-669 accumulates within LDs to restrict chlamydial 
inclusion development and Coxiella burnetii growth.91 Thus, the dy-
namic interaction of d-LDs with bacteria could be therapeutically 
exploited.

Functional annotation analysis of the proteins upregulated on d-
LDs suggested that these organelles may simultaneously participate 
in (i) killing by using bactericidal proteins and lipids, increasing anti-
microbial autophagy, and generating toxic nucleotides; (ii) immune 
responses by acting as intracellular signaling platforms; (iii) con-
trolling production of pro- and anti-inflammatory lipids in different 
phases of the response; and (iv) dynamic regulation of immunome-
tabolism by regulating lipid distribution within host cells (Box  5). 
Indeed, characterizing the protein and lipid composition of d-LDs 
has the potential to illuminate completely novel mechanistic aspects 
of the host-pathogen battlefront.

5  |  THE BIOLOGIC AL ADVANTAGES OF 
LIPID DROPLETS A S HUBS OF INNATE 
IMMUNIT Y

In addition to organelles attracting intracellular pathogens, d-LDs 
present several assets for antimicrobial defense. The rapid forma-
tion and consumption of LDs make them a suitable site for the 
assembly of urgently formed but transient signaling platforms. 
Collecting immune proteins at the surface of d-LDs could facili-
tate proximity between functionally connected enzymes and pro-
teins sequentially contributing to defensive reactions. Further, 
because most antibiotic and antiviral compounds are cytotoxic, 
restriction of these molecules on d-LDs assures safety for the 
rest of cellular organelles. Indeed, d-LDs simultaneously handle 
a bunch of potentially toxic proteins that, as viperin, CAMP, his-
tones, IRGs, and guanylate binding proteins (GBPs), participate in 
complementary, sequential, or synergistic defensive mechanisms 
(Figure 2B).

BOX 4 Lipid droplets and parasites.

LDs constitute a nutrient-fueling organelle for the rep-
lication of parasites178 (Table 1). Some parasites survive in-
side their parasitophorous vacuole, while others are living 
in the cytoplasm of host cells. Protozoan parasite infection 
with Trypanosoma cruzi, Leishmania amazonensis, Leishmania 
major, and Toxoplasma gondii induces an accumulation of 
large LDs in host cells.179–182 Although both populations of 
parasitized and non-parasitized cells accumulate LDs, the 
number of LDs is higher in infected cells containing par-
asites, consistent with the fact that LD biogenesis is trig-
gered by the parasite uptake.183 During parasite infections 
(e.g., Trypanosoma cruzi, Toxoplasma) LDs are recruited in 
direct contact with the parasitophorous vacuole, where 
they constitute a site for lipid delivery and PGE2 synthesis 
to favor parasite growth.65,183

Several parasites (e.g., Plasmodium falciparum and 
Toxoplasma gondii) can synthesize neutral lipids and store 
them in their own LDs, specifically in lipid-enriched con-
ditions.89 Parasite LDs of Schistosoma mansoni are associ-
ated with hemozoin (heme toxic metabolite), which could 
suggest a heme detoxification role of LDs during parasite 
blood feeding cycle.184

The crosstalk between protozoan parasites and mam-
malian host in disease pathogenesis is continuing to be 
unveiled. Parasites have evolved ways to attract LDs to182 
engulf them, and to steal their lipid components. Therefore, 
LDs act as a bystander amplification of the host response 
to parasite infection, which could constitute an interesting 
therapeutic target.
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Viperin (RSDA2) is an ancient core factor of the IFN mediated in-
nate immunity in vertebrates.92 Viperin is a broad-spectrum antiviral 
protein and a key transducer of the type I IFN-mediated response 
in many cell types, including macrophages and hepatocytes.92 After 
synthesis in response to different PAMPs, viperin is targeted to 
the ER and LDs93 (Figure 2C). By using a variety of antiviral mech-
anisms, viperin inhibits replication of a large number of viruses 
such as Hepatitis C, Dengue, Zika, West Nile, and Influenza A vi-
ruses.92 Viperin is a radical S-adenosyl-L-methionine (SAM) enzyme 
that catalyzes the conversion of cytidine triphosphate (CTP) into 
3′-­deoxy-­3′,4′-­didehydro-­CTP (ddhCTP), a ribonucleotide that func-
tions as a chain terminator of viral RNA synthesis.94 Viperin restricts 
replication of Zika and Tick-borne encephalitis viruses by targeting 
NS3 to proteasomal degradation, a process involving an unknown 
E3 ubiquitin ligase.95 Furthermore, viperin nucleates signaling plat-
forms that, like the STING/IRAK1 and TRAF6/TBK1 axes, activate 

IRF3 and IRF7 to regulate the IFN-mediated immune response10,96,97 
(Figure 4). HCV NS5A deactivates viperin to catalyze the conversion 
reaction of CTP to ddhCTP.98 The ribonuclease UL41 produced by 
the Herpes simplex virus 1 (HSV-1) can degrade the mRNA of viperin 
to restrain its antiviral function.99

Cathelicidin (CAMP) is a broad-spectrum antimicrobial pep-
tide with chemotactic and immunomodulatory properties.100 
Antimicrobial effects of CAMP have been observed against fungal, 
bacterial, and viral pathogens. For example, CAMP is secreted by 
adipocytes to protect the skin during Staphylococcus aureus infec-
tion.101 The C-terminal domain of CAMP is proteolytically cleaved 
to produce LL37, the active peptide that folding as an alpha-helix 
causes damage in pathogen's membranes. A pool of CAMP is in-
tracellularly retained and accumulated on d-LDs, at least in macro-
phages and hepatocytes.12 Cells expressing a genetically engineered 
LD-associated CAMP were more resistant to different bacterial 

Rab-GTPase ΔZq Roles in innate immunity References

1 3.10 Phagocytosis and phagosome maturation [246]

1b 3.41 Antiviral innate immunity [247]

2 3.99 Phagocytosis and phagosome maturation [246]

2b 2.93 Phagocytosis and phagosome maturation? [246]

3d 2.68 Autophagy [246]

5a 2.50 Phagocytosis and phagosome maturation?/
degranulation and secretion?

[246]

5c 2.56 Phagocytosis and phagosome maturation?/
degranulation and secretion?

[246]

7 L1 1.65 Phagocytosis and phagosome maturation?/
degranulation and secretion?

[246]

7a 3.43 Phagocytosis and phagosome maturation/
Antigen presentation?

[246]

8b 1.65 Degranulation and secretion? [246]

8a 2.57 Degranulation and secretion? [246]

10 1.82 Phagocytosis and phagosome maturation [246]

12 2.58 Autophagy [246]

13 2.22 ND –

14 2.80 Phagocytosis and phagosome maturation [246]

17 2.25 Phagocytosis and recycling endosomes [248]

18 7.10 Trafficking of proteins to facilitate viral 
replication

[54]

20 5.47 Phagocytosis and phagosome maturation [246]

21 2.19 TLR4 endosomal traffic [249]

22a 2.10 Phagocytosis and phagosome maturation [246]

27a 3.00 Autophagy [246]

30 3.89 Degranulation and secretion [246]

32 2.36 Degranulation and secretion [246]

33b 1.69 Degranulation and secretion? [246]

35 2.34 Phagocytosis [250,251]

Note: Light blue color represents the speculated role of Rabs in innate immunity based on the same 
family member. ΔZq indicated the relative enrichment of the Rab GTPase on d-LDs when compared 
with f-LDs.
Abbreviation: ND, not determined.

TA B L E  2 List of Rab-­GTPases 
upregulated in hepatic LDs of mice treated 
with LPS and their potential roles in innate 
immunity.
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BOX 5 Lipid droplets in the regulation of immunometabolism.

With the popularity and substantial development of the immunometabolism concept in the past years, LDs emerged as a central 
bridge integrating cell metabolism and immunity. Despite the increased knowledge of metabolic pathways governing cellular fates, 
the understanding of immunometabolism is still in its infancy. Immune cells are in constant transition between rested and activated 
phenotypes, which entails reattribution of nutrients into different metabolic pathways to sustain functional changes.185–187 As an 
accepted metabolic fact, immune cells highly rely on aerobic glycolysis when mediating inflammatory processes; while they exploit 
fatty acid oxidation for energy production when switching to their immune modulatory and reparative roles.188

Being an energetic reservoir, LDs orchestrate host immunity through the release of lipids that could (i) act directly as signaling 
molecules or (ii) be converted into inflammatory mediators.189 The release of free fatty acids from the breakdown of TAG or other 
esterified lipids activates several signaling pathways in immune cells through their binding to cell surface receptors such as TLRs, G 
protein-coupled receptors (GPCRs), intracellular transport proteins and nuclear receptors. Sterol regulatory element-binding proteins 
(SREBPs), PPARs, and NF-κB represent some examples of nuclear receptors activated by the release of fatty acids.190,191

In addition, LDs stockpile polyunsaturated fatty acids (PUFAs) which are precursors of lipid mediators such as eicosanoids and 
specialized pro-resolving mediators (SPMs). These lipid intermediates are massively and instantaneously released from activated 
immune cells to alter inflammatory and immune responses in their microenvironment by binding to GPCRs on target cells.192,193 
The initiation of cellular responses does not follow a general trend, but rather different fatty acids, eicosanoids, SPMs and related 
oxygenated fatty acids species have distinct abilities to trigger pathways in a context dependent manner, according to the immune 
cell type and the presence of specific receptors on target cells.194,195 This amalgam of complex and dynamic lipid mediators controls 
transcriptional programs integrating immunity, metabolism, and inflammation that results in disparate physiological outcomes.190

One of the illustrations of the metabolic adaptation to activating signaling is the polarization phenotypes of macrophages known 
as pro-inflammatory M1 and pro-resolving M2.196,197 Upon exposure to TLR, IFN-γ, or TNF-α ligands, macrophages employ aerobic 
glycolysis (upregulation of glucose uptake through GLUT-1) and the pentose phosphate pathway to meet their energetic needs 
through the TLR/NF-­кB,198 HIF1α,199 and/or AKT/mTOR200 signaling. Emerging macrophages, called M1, are characterized by an in-
crease in lipogenesis (fatty acids and cholesterol) to support their inflammatory and phagocytic roles.201 Consequently, the fatty acid 
pool will rise in the cytoplasm which triggers the formation of LDs through TLR-mediated upregulation of LD-associated proteins, 
induction of ER stress and inhibition of ATGL (increase of its endogenous inhibitor HILPDA).202,203 The formation and accumulation 
of LDs are typically described in the pro-inflammatory status of macrophages, which fuel immune responses by storing bioactive 
molecules.204

When shifting to the M2 phenotype, macrophages rely on fatty acid oxidation and OXPHOS. Following TGF-β, IL-4/10/13 stimuli, 
an upregulation of STAT6, GATA3, PCG-1α, and PPARγ205,206 is provoked leading to a reduced glycolytic rate and an increased ex-
pression of CD36 and lysosomal lipolysis genes.207,208 Thus, the breakdown of lipids and cholesterol efflux are prompted by the LXR 
transcription factor to prevent the accumulation of LDs.

The role of LDs in dictating the fate of myeloid and lymphoid lineage is poorly investigated due to the complexity of their met-
abolic regulation and the tissue-dependent microenvironment. A study conducted by Ecker et al,209 distinguished the metabolic 
behavior of different subsets of T-cells in the presence and absence of glucose. When glucose is abundant in the medium, both naïve 
and effector memory T-cells accumulate LDs and survive on glycolysis. However, during glucose deprivation, only effector T-cells 
fail to upregulate fatty acid synthesis, OXPHOS, and to reduce glutaminolysis, which allow them to maintain high levels of IFN-γ and 
preserve their T-cell function in nutrient-depleted microenvironments.209 A second study exemplified the implication of unsaturated 
fatty acids in the regulation of the Myeloid suppressor cells (MSC) phenotype.210 Treatment with sodium oleate (C18:1) and linoleate 
(C18:2), but not stearate (C18:0), confers a functional phenotype to MSC and suppresses T-cell activation through the formation 
of LDs, facilitating tumor escape from the immune system.210 In agreement with this study, Wu H et al demonstrated that Tumor-
associated macrophages (TAMs) enriched in LDs endured an in vitro polarization and promoted tumor growth in vivo, uncovering a 
new therapeutic strategy to restore immune surveillance by inhibiting LDs in TAMs.211 In neutrophils, LDs lipolysis and autophagy-
mediated lipid degradation are essential to supply the mitochondria with free fatty acids for a correct neutrophil differentiation in the 
bone marrow.212 During chronic airway inflammation, innate lymphoid cells (ILC) increase their external glucose and lipid uptake.213 
The free fatty acids accumulating in the cytoplasm are stored in LDs and converted into phospholipids to sustain the proliferation of 
the tissue-resident type 2 ILCs via mTOR signaling. When mice are fed with a ketogenic diet, ILC2-mediated airway inflammation is 
resolved through an impairment of lipid metabolism and LDs formation.213
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species including E. coli, MRSA, and Listeria monocytogenes. C. tra-
chomatis produces Pgp3, a virulence factor, that neutralizes the anti-
chlamydial activity of CAMP.102

Histones participate in several aspects of immunity includ-
ing the extracellular-mediated antimicrobial and inflammatory 
responses.103 Histones accumulate on LDs of Drosophila em-
bryos104 and mammalian cells.11,12,22 In the presence of LPS or 
lipoteichoic acid, LD-histones could be released to kill both Gram-
negative and Gram-positive bacteria.104 Interestingly, Histone 
H2A and CAMP constitute a synergistic antibiotic mechanism, 
with CAMP forming pores to allow the entry of H2A into bacteria 
to bind bacterial DNA and to inhibit transcription of E. coli and 
Staphylococcus aureus.105,106 Hence, by bringing together histones 
and CAMP, the d-LDs might optimize bacterial killing. Strains of 
the group A Streptococcus, belonging to the hypervirulent M1T1 
serogroup, have developed a virulence factor, the Streptococcal 
M1 Protein, which binds and neutralizes both histones and 
CAMP.107,108

The IFN-inducible immune GTPases orchestrate anti-microbial 
activities against a diverse range of pathogens such as bacteria, 
protozoan, and viruses.109 The d-LDs are enriched in IRGs such as 
IFI47, IIGP1, or TGTP112 and, as suggested by proteomic studies,12 
in GBPs such as GBP2, GBP5, or GBP6.12,110 GBPs and IRGs spe-
cifically target phagolysosomal membranes enclosing invaders and 
restrict intracellular vacuolar pathogen replication by disrupting the 
vacuolar compartment.111 By transporting antimicrobial cargo to the 
pathogen-containing vacuole, GBPs participate in the resistance to 
bacteria such as Listeria monocytogenes or Mycobacterium bovis BCG, 
and parasites such Toxoplasma gondii.112,113 In addition, GBPs me-
diate in the activation of the inflammasome to regulate pyroptosis, 
cytokine production, and defensive autophagy.111,114,115 Shigella se-
cretes IpaH9.8, an E3 ubiquitin ligase, that targets GBPs to degra-
dation and promotes the spread of bacteria and death of infected 
mice.116,117 Virulent Toxoplasma gondii secretes ROP18, a kinase, 
which phosphorylates IRGs to inhibit their relocation and function-
ing on the parasitophorous vacuole.118

Although important during infection, histones and CAMP 
can be quite harmful for the host and promote cell damage and 
inflammation.119,120 Thus, compartmentalization of toxic an-
tibacterial proteins on d-LDs is likely avoiding indiscriminate 
cellular damage. Due to its prokaryotic origin, this mechanism 
could be especially relevant for mitochondria. Among the five 
PLINs, PLIN5 was the only one downregulated on d-LDs.12 An 
important role of PLIN5 is to function as a tether between LDs 
and mitochondria.121 Thus, low PLIN5 levels on d-LDs promote 
physical and functional disconnection from mitochondria and a 
concomitant reduction of oxidative metabolism and ketogenesis, 
characteristic hallmarks of immunometabolic response to infec-
tion.122,123 Forcing PLIN5 expression in infected cells increased 
the number of contacts d-LD with mitochondria, reducing the 
number of interactions d-LD with bacteria, and compromising the 
antimicrobial capacity of cells,12 as described in more detail in the 
following sections.

6  |  PROGR AMMING DEFENSE- LIPID 
DROPLETS TO FUNC TION A S INNATE 
IMMUNIT Y HUBS

One of the most intriguing questions arising from these studies is 
how innate immunity drives the formation of the d-LDs that finally 
become defensive hubs. When compared with f-LDs, such a trans-
formation involves the downregulation of 372 proteins.12 The d-LDs 
purified from the liver of LPS-treated mice liver were depleted of 
proteins involved in mitochondrial metabolism, such as PLIN5 and 
VPS13D,121,124 and proteins related to phospholipid metabolism, 
such PCYT1A, PLPP3, and ABCB4 (Figure 2B). Forced PLIN5 expres-
sion in fibroblasts and macrophages reduces the amplitude of the 
defensive response when infected with E. coli.12 Hence, acquisition 
of the defensive d-LD capacity seems to require switching off the 
metabolic activity of f-LDs that, largely mediated by PLIN5 espe-
cially in oxidative cells, is probably interfering in the defense.

The impaired immune response of cells expressing high levels of 
PLIN5 could be caused by several traits that make this PLIN a unique 
member of the family. First, PLIN5 stimulates interaction of LDs with 
mitochondria121,125 and thus, reduces the number of d-LDs available 
to interact with bacteria.12 Second, because PLIN5 and PLIN2 com-
pete for mutually excluding subdomains on LDs,126 the low levels of 
PLIN5, and its mitochondrial tethering, probably reduces molecular 
crowding to allow the documented enrichment of PLIN2 on d-LDs.12 
By physically interacting with immune proteins, such as CAMP or 
IGTP,12,40 PLIN2 could organize on d-LDs clusters of functionally 
connected defensive proteins.12 Finally, because PLIN5 activates 
the key oxidative SIRT-1/PPARα/PGC-1α axis,127 the absence of 
PLIN5 on d-LDs and concomitant reduction of oxidative metabolism 
are probably generating a metabolic environment conducive for de-
fense. Indeed, many examples illustrate that the activity of the PKA/
SIRT-1/PPARα/PGC-1α axis must be low for an optimal immune 
response.128–133

Among the 317 proteins enriched on d-LDs, we inferred with 
high confidence the upstream regulation of 140 proteins, predicting 
a strong control of d-LDs by the Toll like receptors TLR2 and TLR4/
NF-κB and the SRF/SMADs signaling axes (Figure 3A). Remarkably, 
79 of these annotated proteins are direct targets of IFNs, indicating 
that these cytokines are fundamental signals transcriptionally driv-
ing the remodeling of d-LDs (Figure 3A,B).

Molecular underpinnings, physiopathological roles, and evolu-
tionary conservation of the IFN networks have been the subject of 
intense research134 (Box 6). A plethora of PAMPs and DAMPs trigger 
the initiation of signaling pathways activating transcription factors 
that, as NF-κB, AP-1, IRF-3, and IRF-7, finally converge to stimulate 
the expression of IFNs. These IFNs function as autocrine and para-
crine cytokines activating the Signal transducer and activator of 
transcription (STAT) stimulating expression of IFN-stimulated genes 
(ISGs) and triggering a plethora of defensive programs3 (Figure 4A). 
Among the hundreds of ISGs, in addition to viperin, d-LDs accumu-
late IRGs and GBPs12 (Figure 3B). Beyond their intrinsic antimicrobial 
activity (previous section), these GTPases may function as scaffolds 

 1600065x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/im

r.13199 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



126  |    SAFI et al.

 1600065x, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/im

r.13199 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  127SAFI et al.

F I G U R E  3 Upstream regulators of the defensive-­lipid droplet proteome. (A) Analysis for main upstream regulators of LPS-­induced LD 
proteins using the IPA™ resource identifies 140 polypeptides, of which 79 are annotated as directly regulated by the interferon network (red 
hue nodes in the circular layout; stronger stroke edges; not including relationships with other upstream regulators). Extensive crosstalk is 
also predicted with two other major upstream regulatory modules (TLR2/4-NF-kB; SRF/SMADs). (B) A detailed depiction of gene networks 
inferred from those genes predicted as directly regulated by the interferon network. Functional grouping is highlighted.

BOX 6 Interferons in innate immunity.

Interferons are a group of small cytokines that were first described as entities “interfering” with viral infection.214 There are three 
families of IFNs: (i) Type I, consisting of IFN-α, IFN-β (most abundant IFNs), IFN-ω, IFN-κ, IFN-ε, IFN-ζ, IFN-δ, and IFN-τ subtypes,215 
(ii) Type II, including IFN-γ,216 and (iii) Type III, encompassing IFN-λ1 (IL-29), IFN-λ2 (IL-28A), IFN-λ3 (IL-28B), and IFN-λ4 subgroups.217 
In this section, we will briefly discuss the implication of type I and II IFNs in bacterial infections.

During infection, bacteria secrete PAMPs, which are detected by host cells through pattern recognition receptors (PRRs), en-
abling the production of type I and II IFN cytokines.218 There are distinct PRRs, including TLRs, retinoic acid-inducible gene-I-like re-
ceptors (RLRs), nucleotide-binding oligomerization domain-like receptors (NLRs), and cyclic GMP-AMP synthase (cGAS). IFNs signal 
in an autocrine and paracrine manner upon recognition by their respective receptors, triggering the assembly of signaling complexes 
(JAK/STAT) and the activation of intracellular adaptor proteins (mitochondria-antiviral signaling protein [MAVS], STING, MyD88 and 
TRIF).219 This cascade of signaling pathways will lead to the expression of interferon-stimulated genes (ISGs) which enhance patho-
gen detection, activate innate immune cells and promote adaptive immune responses218 (Figure 4).

The role of IFNs in host defense against bacterial infections is enigmatic. They play diverse and context-dependent functions, 
varying according to the pathogen and the host. While it has been described that IFNs have mostly antibacterial properties in vitro, 
their functions are more complex to delineate in vivo because they can harbor beneficial or detrimental effects on pathogens. For 
instance, ISGs-mediated type I IFN impeded the replication of many intracellular bacteria in tissue culture models, such as Mtb,220 C. 
trachomatis,221 Listeria monocytogenes,222 and Shigella flexneri.223 In vivo, type I IFN mainly blocked the migration process of bacteria 
across endothelial and epithelial barriers, specifically in E. coli,224 Helicobacter pylori,225 and Streptococcus pneumoniae.226 In contrast, 
IFN signaling can promote bacterial infection. For example, IFN-β exacerbated Mtb infection, where a correlation has been established 
between the presence of type I IFN-inducible transcripts and the disease's pathogenesis. In addition, some respiratory bacterial super-
infection (Streptococcus pneumoniae or Staphylococcus aureus), could be triggered by IFN signaling secondary to viral infections.227,228

Considering the disparate role of IFNs in bacterial infection, the field will benefit from more comprehensive examination of IFN 
responses using different types of pathogens. In this context, the enrichment of Interferon-inducible GTPases on LDs is an interest-
ing ground to explore in innate immunity. Type I and II IFNs are known to induce the expression of more than 2000 ISGs, including 
prominently the family of IFN-inducible GTPases.218 Four subgroups of IFN-inducible GTPases exist, encompassing immunity-
related GTPases (IRGs, 47 kDa), guanylate-­binding proteins (GBPs, 65 kDa), Myxoma proteins (Mx, 72–­82 kDa), and very large induc-
ible GTPases (VLIGs or GVINs, 200–­285 kDa).115 Among these subgroups, IRGs and GBPs have gained much attention due to their 
capacity to destroy the pathogen's replication vacuole and to interfere with the spatial arrangement of bacteria.

IRGs confer resistance to host cells (in mice or in IFN-primed cells) by targeting the pathogen's vacuole through recruiting and 
loading Irgbs (Irgb6, Irgb10, Irgd), followed by vesiculation and blebbing, leading finally to the disruption of the vacuole's membrane 
and exposure of the pathogen to the cytoplasm.110,229 Afterwards, host cells either undergo necrosis which will lead to the simul-
taneous death of the pathogen and the host cell229 or Irgb-dependent autophagy process is activated as a potential mechanism for 
pathogen clearance.230

GBPs can destabilize the vacuole (Mycobacterium bovis BCG, Salmonella typhimurium)112,231 similarly to IRGs, and also restrict di-
rectly the professional cytosolic pathogens (Listeria monocytogenes and Francisella novicida).112,232 GBPs undergo homo-oligomerization 
and hetero-oligomerization processes, isoprenylation and ultimately targeting the endomembranes via the catalytic activity of the 
GTPase domain.233,234 Moreover, GBPs are able to recruit in close vicinity to the bacteria's vacuole (i) NADPH oxidase components 
(gp91phox and p22phox) to promote the NADPH oxidase activity and (ii) autophagy factor p62 to trigger vacuole rupture.112 GBPs 
function goes beyond cell-autonomous immunity, as they were shown to drive inflammasome complexes assembly through canonical 
and non-canonical pathways, leading to pyroptotic cells death.114,235 For instance, during Shigella flexneri and Salmonella typhimurium 
infections, GBP1 binds to bacterial LPS through electrostatic interactions and recruits other GBPs to the signaling platform. This will 
enable the activation of caspase 4, triggering the assembly of the non-canonical inflammasome and subsequently bacteria clearance 
by pyroptosis.236,237 Furthermore, a study conducted by Meunier et al showed that GBP2-mediated Francisella novicida killing leads 
to the release of bacterial DNA, which is a prerequisite for efficient AIM2 inflammasome activation.232
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on d-LDs for recruiting signaling and inflammatory proteins and, 
because they are also involved in lipid and mitochondrial metabo-
lism,135–137 participate in the metabolic rewiring mediated by d-LDs 
in host cells.

In fact, the IFN signaling is highly sensitive to the metabolic 
status of cells and thus, it may in turn be positively or negatively 
regulated by LDs.12 For example, the Stimulator of interferon genes 
(STING), a key inductor of type I IFN, is only active when the ER 
cholesterol levels are low.138,139 In macrophages low cholesterol lev-
els heighten the activation of the STING-TBK1-IRF3 axis to enhance 
type I IFN production and resistance to MHV-68, Influenza A, and 
Human immunodeficiency virus 1.138 Conversely, replenishing cells 
with free cholesterol reduced the expression of type I IFN in virally 
infected cells.138 Thus, because LDs are major cholesterol reservoirs 
and suppliers, the activity of d-LDs and the IFNs signaling could gen-
erate a loop to determine the intensity and duration of the defensive 
programs.

Following the example of f-LDs, we anticipate that the activ-
ity of the d-LD proteome is finely modulated by phosphorylation. 
During the transition from fed to fasting conditions, PLINs and 
other LD proteins are dynamically phosphorylated by energy 
sensors (such as PKA and AMPK) to function as scaffolds that 
reorganize the LD proteome and gradually activate the lipolytic, 
signalling, and trafficking machineries functioning on f-LDs.140–142 
Kinase-specific acceptor site prediction and substrate enrichment 
analysis, using combined machine learning approaches and public 
datasets, confirmed that the LD proteome is tightly regulated by 
PKA (PRKACA) (Figure  4B) but additionally predicted that d-LD 
proteins are phosphorylated by kinases involved in different as-
pects of immunity such as PKB (AKT), Glycogen synthase kinase-3 
(GSK3), Casein Kinase II Subunit Alpha (CSNK2A), and the I-kappa 
B kinase (IKK) (Figure 4B).12 Indeed, as occurring during fasting, 
protein phosphorylation could dynamically adjust the activity of 
the d-LD proteome and the intensity of the response to meet the 
cellular demands. These regulatory circuits can be exploited by 
pathogens: virulent Toxoplasma gondii secretes ROP18, a kinase 
that phosphorylates IRGs to inhibit their relocation to the parasi-
tophorous vacuole.118

Beyond stimulating expression of defensive proteins and activa-
tion/inactivation of kinases, IFNs could regulate the d-LD proteome 
through a variety of posttranslational modifications (PTM). For ex-
ample, extent and duration of the defensive IFN-mediated response 
is finely regulated by ubiquitination of the proteins conducting the 
signaling.143 Attached to lysine residues, ubiquitin(s) determines pro-
tein function and proteasomal degradation of a wide range of pro-
teins. Several LD proteins are locally regulated by ubiquitination and 
degraded by the ubiquitin-proteasomal system144–146 (Figure  4C). 
Reflecting the importance of these systems on d-LDs, protein ubiq-
uitination is both an efficient defensive mechanism and a virulence 
strategy exploited by hosts and invaders. Shigella secretes IpaH9.8, 
an E3 ubiquitin ligase that targets GBPs to degradation.116 Viperin, 
through an unknown E3 ubiquitin ligase, restricts flaviviruses rep-
lication by stimulating ubiquitination and proteasomal degradation 
of NS3.95

One PTM getting increasing attention is mediated by the 
Interferon stimulated gene 15 (ISG15).147 ISG15 is a peptide re-
sembling ubiquitin, which is covalently attached to lysine residues 
of a wide range of substrates to modify their stability and function. 
Different E3 ubiquitin ligases mediate the incorporation of ISG15 
to proteins, a process known as ISGylation. The E3 ubiquitin ligase 
RNF213 (mysterin) resides on LDs and mediates ISGylation of a 
variety of proteins that regulate LD dynamics.133,148 RNF213 is re-
sponsive to IFNs and highly enriched on purified d-LDs (Figures 3B 
and 4c).12 After conjugation with ISG15, RNF213 assembles on LDs 
forming oligomers that function as scaffolds for other ISGylated 
proteins to participate in the defense against Listeria monocy-
togenes and Herpes simplex virus type 1.149 When infected with 
Vaccinia virus, macrophages lacking ISG15 exhibit impaired LD for-
mation, an aberrant profile of lipid metabolism enzymes, and mark-
edly shifted towards an increased fatty acid oxidation,133 traits of 
f-LDs. Thus, ISGylation is an IFN-stimulated PTM that may regu-
late the biogenesis, defensive, and metabolic properties of d-LDs. 
Interestingly, RNF213 also mediates ubiquitylation of bacterial LPS 
to restrict proliferation of cytosolic Salmonella by inducing bacte-
rial autophagy,150 providing an additional weapon to the killing ar-
senal of d-LDs.

F I G U R E  4 Programming defensive-­lipid droplets by innate immunity. (A) Schematic representation of LD remodeling by innate immunity 
signaling and IFN. In the left blue box, when stimulated by PAMPs and DAMPs, TLRs and cGAS (orange) transduce the immune signaling by 
activating adaptor proteins (e.g., TRAF and STING) and kinases (e.g., IRAK and TBK1) (yellow). Kinases trigger activation and translocation 
of transcription factors (e.g., NF-KB, AP-1, CREB, and IRF-3, blue) into the nucleus to stimulate the expression of cytokines, antimicrobial 
defense genes and Type I IFN. In the right blue box, Type I and II IFNs signal through the phosphorylation of JAK/STAT proteins leading 
to the transcription of IFN-stimulated genes (ISGs). Subsequently, the relative composition of PLINs on LDs changes (high levels of 
PLIN2 but low levels of PLIN5) and expressed defensive proteins (e.g. viperin, GBPs, IRGs) accumulate on d-LDs. These proteins can be 
posttranslationally modified (PTMs, phosphorylation by kinases, ISGylation by RNF213, ubiquitination by ubiquitin ligase RNF213). In 
addition, d-LDs are physically and functionally disconnected from mitochondria (low PLIN5 and VPS13D) with a concomitant decrease in 
fatty acid oxidation and ketogenesis. In parallel, the low levels of PLIN5 on d-LDs reduces the activity of the PKA/SIRT-1/PPARα/PGC-1α 
axis. The contact of d-LDs with bacteria and viruses increases to facilitate killing and pathogen clearance. (B,C) Inference of two regulatory 
PTM layers that could modulate the recruitment and activity of the d-LD proteome. (B) Relevant kinases predicted to be overrepresented 
among phosphorylation acceptor sites of the LPS-LD proteome. Their enrichment estimation and their potential relationships, displayed as 
a network, was computed using the Kinase Substrate Enrichment open resource KSEA3239 (C) LD core proteins found as responsive to LPS, 
predicted/reported to participate in ISGylation and ubiquitylation of protein substrates.
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7  |  CONCLUDING REMARKS, OPEN 
QUESTIONS, AND FUTURE DIREC TIONS

Long perceived as inert cytoplasmic fat inclusions, LDs have been 
traditionally described as ectopic sites of fat accumulation or simply 
as triglycerides.151 Therefore, it is not surprising that the long-known 
accumulation of fat occurring in infected cells was attributed to nu-
tritional strategies driven by pathogens.6–8 Only three decades ago, 
pioneering studies identifying the first regulatory proteins on LDs, 
oleosins in maize and PLIN-1 in adipocytes,152,153 started to change 
such a simplistic view.151,154 Today, LDs are recognized as complex 
organelles and much is known about their key role in overseeing a 
variety of intracellular and environmental stresses, far beyond their 
main contribution to nutrient administration.4,21,155 The use of novel 
systematic molecular profiling approaches, capable of revealing 
within the LD proteome non-intuitive systems-level relationships, 
decisively shifted the paradigm.41 Although the presence of anti-
viral and antibacterial proteins on LDs was described long ago,9,11 
recent work from a number of different groups, including some high-
throughput analyses, has illuminated the complex and bidirectional 
relationship between LDs and invaders.12,42,79,149,156 The hypothesis 
that LDs are strategic chokepoints organizing a first defensive line of 
innate immunity has increasing support.3,13,68,85

Although there is a great deal of uncertainty surrounding this 
novel research field, the profound remodeling of the LD proteome 
in cells sensing danger signals suggests that LDs are armed with a 
plethora of agents required for immune defense. Indeed, our studies 
point to the possibility that innate immunity has developed a sophis-
ticated defense program functioning around d-LDs and potentially 
involving regulation of hundreds of proteins.12 Downregulated pro-
teins likely switch-off the metabolic functions of LDs to generate the 
metabolic environment conducive for defense.12 Upregulated pro-
teins could mediate killing but also signaling and inflammation.12,42,79 
The increasing list of identified virulence factors specifically target-
ing LD proteins, including d-LD immune proteins (Figure 1E), illumi-
nates an active conflict and indicates that d-LDs are opponents to be 
defeated by pathogens.

It is interesting to speculate about the fate of d-LDs after the 
resolution of infection. In the absence of danger signals, the met-
abolic signals regulating LD formation may take over, and LDs 
may return to their basic function, lipid reservoirs and suppliers. 
However, LDs accumulating in pathological conditions such as obe-
sity, cancer, or aging are, like d-LDs, associated with inflammation 
and cell damage.157,158 For example, we have recently observed 
that after brain ischemia LDs accumulate in microglia, a population 
of immune cells residing in the brain.159 These LDs resemble d-LDs 
and contain ISGs such as viperin, ISG15, RNF213, IFI47, TGTP1, 
IIGP1, and GBP6. After a stroke in elderly patients, the accumula-
tion of d-LDs is exacerbated with a concomitantly aggravated type I 
IFN immune response that worsened the neurological outcome.159 
Hence, the equilibrium between f- and d-LDs could be disrupted 
and promote disease.

In conclusion, many questions arise from the early discov-
eries summarized here. How are d-LDs directed to the vacuole-
containing bacteria? What are the killing mechanisms adopted by 
d-LDs once they encounter bacteria? What lipids within d-LDs 
have a role in antimicrobial defense? How is the equilibrium be-
tween f-LDs and d-LDs regulated? How can bacteria avoid the 
d-LDs? Whether the findings detailed here, only tested for some 
pathogens in particular experimental conditions and particular cell 
types, could be generic branches of innate immunity deserve fur-
ther investigation. We anticipate that the evolutionary race be-
tween hosts and microbes will lead to distinct scenarios, with LDs 
defeating the invader sometimes but pathogens surpassing the 
defenses in others. Whichever the case, characterizing the role of 
LDs in innate immunity by answering these questions will illumi-
nate strategic chokepoints to be potentiated or corrected in future 
therapeutic interventions.
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