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driven clonal hematopoiesis (CH).7,8 Several definitions 
have been used to describe CH and related hematological 
conditions, but the one that has achieved greater impact, 
particularly in the cardiology field, is that of CHIP or 
‘Clonal Hematopoiesis of Indeterminate Potential’. CHIP 
is specifically defined as the presence of somatic mutations 
in myeloid malignancy-associated genes in the blood or 
bone marrow (BM) that are present at ≥2% variant allele 
frequency (i.e., 4% mutant cells, if monoallelic mutations) 
in individuals without a diagnosed hematologic disorder.9 
CH is strongly linked to aging. Although CH-related 
mutations can be acquired randomly at any point in life, 
the likelihood of having acquired a driver mutation evi-
dently increases as an individual ages. In this regard, CH 
can be estimated to be present in >20% of cancer-free 
individuals >60 years old,10–15 although reported rates of 
CH depend on sequencing sensitivity, and it is expected 
that this number will increase as more sensitive sequencing 
strategies are used to study this phenomenon.

CH is strongly associated with increased risk of hemato-
logical malignancies and all-cause death.10,11 Despite this, 
most individuals carrying a single somatic mutation capa-
ble of driving CH will never develop blood cancer, which 
typically arises as a result of the serial acquisition of mul-
tiple driver mutations in a HSC clone over time. In con-
trast, individuals with CH, most frequently with a single 

D espite the efficacy of drugs that target traditional 
cardiovascular risk factors (e.g., cholesterol-low-
ering drugs), increasing evidence shows that a sub-

stantial risk of atherosclerotic cardiovascular disease 
(ASCVD) remains, even in individuals who achieve mas-
sive reductions in blood cholesterol and are apparently at 
low cardiovascular risk.1–3 These observations have led to 
an increasing interest in the identification of new ASCVD 
risk factors, and mechanisms of atherosclerosis that are 
independent of conventional risk factors and susceptible to 
be targeted for improvements in the prediction, prevention 
and treatment of ASCVD. In this context, recent evidence 
supports an important role of acquired mutations in the 
hematopoietic system, typically associated with the devel-
opment of leukemia, in atherosclerosis and related CVD.

Clonal Hematopoiesis:  
A Novel Risk Factor for ASCVD

Hematopoietic stem cells (HSC) are known to acquire 
random mutations constantly as an individual ages.4–6 
Although most of these mutations are neutral “passenger” 
mutations, a few of them affect a “driver” gene, providing 
a selective advantage to the mutant HSC that leads to the 
progressive expansion of the mutant cell over the years, a 
phenomenon that can be referred to as somatic mutation-
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Hence, CH is emerging as an important driver of inflam-
mation in atherosclerosis.

Although human sequencing data strongly suggest that 
CH is a new risk factor for ASCVD and a direct contribu-
tor to inflammation and atherosclerosis, these data need to 
be interpreted cautiously, as they do not allow cause-effect 
relationships to be established. The CH/ASCVD association 
could simply reflect shared consequences of the normal 
aging process or be secondary to confounding factors. 
Furthermore, these sequencing studies provide limited 
information on directionality. In this context, a variety of 
experimental approaches are currently being used to expand 
our understanding of the connection between CH and 
ASCVD.

CH and Atherosclerosis: Insights From 
Experimental Studies in Mouse Models

The availability of mouse strains carrying mutations in 
orthologs of some of the most commonly mutated genes in 
CH has enabled the testing of causation in the CH/ASCVD 
association. Although much work lies ahead, TET2 and 
JAK2, 2 of the most important CH driver genes, have 
already been thoroughly studied in the context of experi-
mental atherosclerosis.

In 2017, we reported experiments in atherosclerosis-prone 
Ldlr−/− mice, an animal model of hypercholesterolemia-driven 
atherosclerosis, that support the causal contribution of 
TET2-mutant CH to atherosclerosis development.23 TET2 
encodes for an epigenetic regulator of gene transcription 
that is able to catalyze the oxidation of 5-methylcytosine 
(5 mC) to 5-hydroxymethylcytosine (5 hmC), a process that 
facilitates subsequent DNA demethylation and transcrip-
tional activation.24–26 Conversely, TET2 can also mediate 
transcriptional repression through noncatalytic actions, 
for instance by recruiting histone deacetylases to gene pro-
moters.27 Human sequencing studies have found that inac-
tivating TET2 mutations are the second most common 
driver of CH10,11,13–15 and frequent in myeloid malignan-
cies.28,29 Mouse studies have shown that TET2 loss of func-
tion results in increased HSC self-renewal and, in some 
settings, a bias towards differentiation into the myeloid 
lineage.30–33 In our study,23 competitive BM transplanta-
tion strategies with Tet2−/− and Ldlr−/− mice were used to 
mimic the human scenario of expansion of a small number 
of TET2-mutant HSCs. In brief, Ldlr–/– recipients were 

driver mutation, have an increased ASCVD risk that far 
exceeds their risk of developing hematological disease. An 
analysis of archived whole-exome sequencing data from 
thousands of individuals demonstrated that CH is associ-
ated with a >2-fold increase in the incident risk of athero-
sclerotic conditions, such as coronary artery disease and 
ischemic stroke, independent of conventional CVD risk 
factors.11 Candidate CH driver mutations in that study and 
most other CH-related sequencing efforts10,13–15 occur pri-
marily in genes that are commonly mutated in myeloid 
cancers, such as DNMT3A, TET2, ASXL1, TP53 and 
JAK2 (Table). In those with CH in that study,11 the average 
size of the identified mutant clones was ~20% of peripheral 
blood cells. Subsequent studies based on similar analyses 
of whole-exome/genome sequencing datasets have further 
validated the strong association between CH and incident 
risk of developing ASCVD.16–19 Furthermore, a gene-
specific analysis strongly suggested associations between 
increased risk of ASCVD and CH driven by acquired 
mutations in DNMT3A, TET2, ASXL1 and JAK2.16 
Additional studies with large cohorts will be required to 
corroborate these single gene associations and to examine 
whether mutations in other less frequently mutated genes 
are also associated with atherosclerotic conditions.

With the exception of some specific mutations with a 
strong hematological phenotype (e.g., JAK2V617F, discussed 
below), CH is not typically associated with major altera-
tions in blood cell counts, suggesting that the CH/ASCVD 
association may be related to “qualitative” changes in BM-
derived cell phenotypes rather than to changes in cell quan-
tity. Importantly, in a scenario of CH, the expansion of the 
mutant clone in the HSC pool has a reflection in its prog-
eny, leading to a substantial fraction of immune cells that 
carry the CH mutation. Therefore, CH has the potential to 
affect inflammatory responses, which might account for its 
connection to accelerated atherosclerosis. Supporting this 
possibility, carriers of acquired mutations in some CH 
driver genes have been reported to exhibit heightened lev-
els of specific circulating cytokines.15,20 Furthermore, sin-
gle-cell transcriptomics analyses have further corroborated 
increased inflammatory gene expression in blood cells of 
individuals carrying somatic mutations in DNMT3A and 
TET2,21,22 and, importantly, inherited genetic variants that 
reduce pro-inflammatory interleukin (IL)-6 signaling have 
been reported to attenuate the increased ASCVD risk asso-
ciated with CH driven by mutations in these genes.17 

Table. Most Frequently Mutated Genes Identified as Candidate Drivers of Clonal Hematopoiesis

Driver gene Description

DNMT3A Epigenetic regulator of gene transcription that catalyzes de novo DNA methylation

TET2 Epigenetic regulator of gene transcription that modulates DNA methylation through catalytic 
(methylcytosine oxidation) and noncatalytic actions

ASXL1 Chromatin-binding protein and epigenetic regulator of gene expression

PPM1D Protein phosphatase and negative regulator of the DNA damage response

JAK2 Nonreceptor tyrosine kinase and mediator of JAK/STAT signaling

SF3B1 RNA splicing factor

SRSF2 RNA splicing factor

TP53 Regulator of gene transcription and mediator of the DNA damage response

GNAS Guanine nucleotide-binding protein, signaling regulator

GNB1 Guanine nucleotide-binding protein, signaling regulator

The relative frequency of mutations may vary across studies depending on sequencing sensitivity and age range.
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is, however, dependent on IL-1 signaling. Although not 
changing overall plaque size, IL-1 antagonism with anakinra 
or IL-1β inhibition with a neutralization antibody reduced 
the JAK2V617F macrophage burden and proliferation in 
atherosclerotic plaques.44

Beyond TET2 and JAK2, ongoing studies are address-
ing whether mutations in other known CH driver genes 
affect experimental atherosclerosis development. The eval-
uation of the effects of DNMT3A mutations is particularly 
relevant, given that this gene is the most frequently 
mutated CH driver identified to date. DNMT3A encodes 
an enzyme that carries out de novo DNA methylation, 
although emerging evidence suggests that it can also facili-
tate DNA demethylation in some settings.46 Most 
DNMT3A mutations associated with CH are predicted to 
cause loss of function. Yet, the effect of DNMT3A inacti-
vation on atherosclerosis development is unclear and its 
effects on the function of mature immune cells are complex 
and poorly understood. In T cells, DNMT3A inactivation 
can increase the expression of the proatherogenic cytokine 
interferon-γ (IFNγ),47,48 but also that of atheroprotective 
IL-13.49 In macrophages, DNMT3A haploinsufficiency 
affects the expression of hundreds of genes; while it results 
in increased expression of some pro-atherogenic genes, 
such as several CXCL family members, it also decreases 
the expression of central drivers of plaque inflammation, 
such as TLR4.46 Experimental studies with mouse models 
of DNMT3A-mutant CH will be required to examine 
whether somatic mutations in this gene affect atherosclero-
sis development and related CVD.

Mutations in DNA damage response genes are also 
common in individuals who exhibit CH, particularly muta-
tions that affect the transcriptional regulator p53 and the 
p53-inhibitory phosphatase PPM1D/Wip1. Although 
mutations in these genes can be found in cancer-free indi-
viduals,10,13–15 they are more frequent in individuals with a 
history of cancer and treatment with radiation or cytotoxic 
drugs.50,51 Consistent with this observation, experimental 
studies in mice support that cytotoxic cancer therapies facil-
itate the clonal expansion of pre-existing mutant hemato-
poietic clones harboring mutations in these genes,52–55 which 
has given rise to the concept of cancer therapy-related CH. 
This phenomenon may be relevant in the context of CVD, 
as cancer survivors exhibit a high risk of adverse CVD 
outcomes. Although a number of experimental studies in 
mice have evaluated the role of p53, Ppm1d and other 
DNA damage response genes in atherosclerosis,56–63 whether 
carrying a fraction of cells that bear mutations in these 
genes is sufficient to affect atherosclerosis development 
remains unclear and warrants investigation.

Beyond Atherosclerosis, CH in Other 
Cardiometabolic Conditions

As discussed, mechanistic studies suggest that some CH 
mutations amplify pro-inflammatory pathways that are at 
the center of a variety of age-related conditions. Hence, it 
is likely that CH, at least when driven by certain mutations, 
is connected to other diseases of aging beyond cancer and 
ASCVD (Figure 1). In this context, a substantial burden of 
evidence links CH to accelerated progression of heart failure 
(HF), a major cause of morbidity and mortality in elderly 
individuals. Sequencing studies have found that CH is 
common among HF patients, affecting more than one-third 
of individuals who suffer this condition.64–66 Importantly, 

transplanted with suspensions of BM cells containing 10% 
Tet2−/− cells, and then fed a high cholesterol diet to induce 
hypercholesterolemia and atherosclerosis. The TET2-defi-
cient cells expanded markedly in the BM, spleen and blood 
in this experimental setting, and this expansion led to 
accelerated atherosclerosis, with a ~60% increase in plaque 
size.23 Furthermore, a similar, albeit milder effect was 
observed in transplantation experiments with Tet2+/− cells, 
which mimic the human scenario of CH better, given that 
somatic TET2 mutations are likely to be monoallelic in 
most individuals. An independent study also reported that 
TET2 inactivation in the entire hematopoietic system 
increases atherosclerotic plaque size in Ldlr−/− mice.16 No 
quantitative differences in peripheral white blood cell 
counts were observed in these studies,16,23 arguing against 
the possibility that leukocytosis is an important driver of 
accelerated atherosclerosis in TET2-mutant CH. Instead, 
mechanistic studies with myeloid-specific TET2-knockout 
mice and primary macrophages suggested that this acceler-
ated atherosclerosis is mostly due to the pro-inflammatory 
properties of TET2-deficient macrophages,16,23 predomi-
nantly to the overproduction of the pro-inflammatory 
cytokine IL-1β.23,34,35 These studies identified TET2 as a 
novel regulator of IL-1β transcription and NLRP3 inflam-
masome-mediated IL-1β secretion.23 Consistent with these 
findings, treatment with a pharmacological inhibitor of the 
NLRP3 inflammasome, which mediates IL-1β post-trans-
lational processing and secretion in atherosclerosis,36 sup-
pressed accelerated atherogenesis in mice carrying 
TET2-deficient hematopoietic cells.23 Further supporting 
a strong connection between TET2-mutant CH and 
heightened IL-1β expression, human studies have found 
increased circulating levels of IL-1β in carriers of somatic 
TET2 mutations in blood cells, but not in carriers of other 
CH-related mutations.15

The JAK2V617F gain-of-function mutation is another 
important driver of CH, which has been associated with 
myeloproliferative neoplasms37,38 and an increased risk of 
atherothrombotic and vascular disease.16,39 JAK2 is a non-
receptor tyrosine kinase and a central mediator of JAK/
STAT signaling. In marked contrast to somatic variants in 
TET2 and most other known CH driver genes, the JAK2V617F 
mutation is strongly associated with substantial hemato-
logical abnormalities in both mice and humans.37,38,40–42 
Ldlr−/− mice carrying JAK2V617F-expressing hematopoietic 
cells exhibit a complex phenotype, with accelerated athero-
sclerosis development, as well as leukocytosis, erythrocy-
tosis, thrombocytosis, neutrophilia, increased vascular 
inflammation and erythrophagocytosis.43,44 Curiously, this 
acceleration of atherogenesis occurs despite the existence 
of lower blood cholesterol levels in the hematopoietic 
JAK2V617F mutant mice. Humans carrying this mutation 
also exhibit lower circulating cholesterol levels,45 although 
the mechanism underlying this observation remains 
unclear and warrants further investigation. Mice with 
myeloid-restricted expression of the JAK2V617F mutation 
exhibit accelerated atherosclerosis development, in parallel 
with increased macrophage proliferation and expanded 
necrotic cores in atherosclerotic plaques.44 Mechanistically, 
this phenotype appears related to overactivation of the 
double-stranded DNA-sensing inflammasome AIM2. 
Activation of AIM2 results in secretion of IL-1β and IL-18 
and, accordingly, JAK2V617F mice exhibit increased serum 
levels of IL-18,44 which is consistent with observations in 
humans.15 Increased JAK2V617F macrophage proliferation 
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pathogenic role in diabetes, these findings provide experi-
mental evidence supporting that some CH mutations may 
contribute to the development of diabetes. However, eval-
uating this possibility will require additional sequencing 
and mechanistic studies.

Nonmutational Regulators of CH
Ultrasensitive sequencing techniques that allow for the 
detection of a very small fraction of mutant blood cells 
(e.g., <1/1,000) suggest that the presence of low levels of 
hematopoietic cells with somatic mutations able to drive 
CH is almost ubiquitous by middle age.71 However, in only 
a fraction of individuals the mutant clone undergoes 
marked expansion, reaching the currently most widely 
accepted 2% variant allelic fraction threshold that identifies 
pathophysiologically relevant CH. Indeed, sequencing studies 
of serially collected samples have shown that the dynamics 
of clonal expansion are highly heterogeneous: some indi-
viduals carry clones that remain stable in size for years, 
whereas others show marked growth.11,71 These observa-
tions suggest the existence of additional factors that regu-
late the clonal expansion of mutant HSCs. Because mutant 
clone size is associated with the risk for ASCVD,11,16–18 
understanding the factors that modulate CH dynamics will 
be crucial to developing strategies for the management of 
CVD risk in individuals who carry CH-related mutations.

Inflammation driven by microbial products may be an 
important promoter of CH. In this context, treatment with 
bacterial lipopolysaccharide has been shown to enhance the 
competitive advantage of TET2-deficient HSCs in mice, 
related to hyperactive IL-6 signaling and improved cell 
survival.72 Consistent with these results, dysfunction of the 
small intestinal barrier leading to bacterial translocation 

CH is strongly associated with adverse clinical progression 
in patients with either ischemic64,65,67 or nonischemic etiol-
ogy of HF.64 The observation of a significant association 
regardless of the presence of ischemic heart disease is rel-
evant, because it argues against the possibility that these 
associations simply result from the strong connection 
between CH and atherosclerosis or the effects of cardiac 
ischemia on the hematopoietic system. Further supporting 
a link between CH and HF pathophysiology, studies with 
mice that are genetically engineered to lack TET2 suggest 
an important effect of inactivating mutations in this gene 
on cardiac dysfunction and inflammation.35,68 Mouse stud-
ies also support a link between TET2-mutant CH and 
pulmonary hypertension, as mice with hematopoietic 
TET2 inactivation spontaneously develop evidence of this 
condition.69 Furthermore, human data suggest an associa-
tion between carrying a TET2 mutation, either inherited or 
acquired, and the development of pulmonary hyperten-
sion.69 Additional research is needed to verify the associa-
tion between somatic TET2 mutations that drive CH and 
this condition.

Beyond CVD, some sequencing studies suggest an asso-
ciation between CH and type 2 diabetes.11 Although the 
nature of this connection and the underlying mechanisms 
remain scarcely investigated, experiments in mice show 
that the expansion of TET2-deficient hematopoietic cells 
aggravates age- and obesity-related insulin resistance (IR) 
by promoting IL-1β-driven inflammation in white adipose 
tissue.34 Impaired glucose homeostasis and adipose tissue 
inflammation facilitate the development of CVD70 and, 
therefore, these experimental studies suggest an additional 
mechanism by which TET2-mutant cells may contribute to 
CVD beyond their direct effects on the vascular wall and 
the myocardium. In addition, given that IR plays a key 

Figure 1.  Clonal hematopoiesis (CH): an emerging risk factor for atherosclerotic cardiovascular disease and other age-related 
conditions. Hematopoietic stem cells accumulate mutations over the years and some of these mutations provide a competitive 
advantage to the mutant stem cell by promoting its self-renewal, proliferation or survival. This selective advantage eventually leads 
to the clonal expansion of the mutant stem cell in the bone marrow and, through its cellular progeny, in blood and inflamed tissues 
infiltrated by blood cells, such as atherosclerotic plaque. Sequencing studies in humans and experimental studies in mice suggest 
that certain CH-related mutations contribute to the development of atherosclerosis and other age-related conditions where dys-
functional inflammation plays a central role. (Figure created with BioRender.com.)
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size or expansion rates.17,23,44,79 Hence, further research is 
needed to determine conclusively the directionality of the 
CH/ASCVD association, which is of great clinical rele-
vance, as there are ongoing efforts to develop clinical trials 
for CVD prevention with anti-inflammatory drugs aimed 
at targeting the effects of specific CH mutations.

Concluding Remarks and Future Directions
Collectively, sequencing studies in humans and experimental 
studies in mice have provided strong evidence supporting 
that somatic mutation-driven CH represents a previously 
unrecognized major risk factor for ASCVD and, poten-
tially, other age-related conditions. However, many relevant 
questions related to the effects of CH on atherosclerosis 
remain unanswered and are the object of intensive research 
efforts (Figure 2). The pathophysiological and biological 
significance of CH will likely depend on the specific driver 
mutation. Although some CH-related genes, such as TET2 
and JAK2, have been thoroughly investigated in both 
humans and mouse models of atherosclerosis, further 
research is needed to understand the role of other common 
drivers of CH in this condition. In addition, it will be criti-
cal to investigate the factors that modulate CH dynamics 
and determine whether a mutant hematopoietic clone 
remains indolent or expands to dominate hematopoiesis 
and affect atherosclerosis development. Although recent 
studies have suggested several potential regulators of 
mutant HSC expansion, including atherosclerosis itself, 
their relevance in human CH remains speculative in most 
cases. Ultimately, dissecting the regulation of CH dynam-
ics will only be achieved through the combination of care-
fully designed experimental studies in animal models of 

into the blood and increased IL-6 production have been 
reported to accelerate the development of hematological 
phenotypes in TET2-deficient mice.73 Evidence is also 
emerging that supports a role for infections and pro-
inflammatory cytokines in DNMT3A-mutant CH. In mice, 
chronic mycobacterial infection accelerates the expansion 
of DNMT3A-deficient HSCs, which better retain their self-
renewal capacity when exposed to chronic IFNγ-induced 
inflammatory stress.74

Beyond infections, metabolic stress-induced inflamma-
tion may also contribute to mutant cell expansion in some 
settings, because both hyperglycemia and obesity affect 
HSC biology.75,76 In this context, hyperglycemic stress has 
been shown to exacerbate hematological phenotypes asso-
ciated with TET2 inactivation in mice.77 Furthermore, 
mathematical modeling supported by human and mouse 
data suggests that the atherosclerosis trait complex (i.e., 
the interplay of chronic inflammation, hyperlipidemia, and 
arterial plaque formation) may accelerate CH by increas-
ing HSC proliferation.78 This possibility has important 
implications because it suggests the existence of a perni-
cious cycle in which atherosclerosis enhances CH which, in 
turn, accelerates atherosclerosis development. In addition, 
this mathematical modeling raises the possibility of the 
existence of reverse causation in the CH/ASCVD associa-
tion; that is, this association may reflect the effects of ath-
erosclerosis on CH dynamics, rather than the effects of CH 
on atherosclerosis. Although this is an intriguing hypoth-
esis, it is inconsistent with the results of experimental stud-
ies in mice and sequencing studies in humans that show 
that pharmacologic or genetic inhibition of specific inflam-
matory pathways blunts the effects of some CH-related 
mutations on atherosclerosis, without affecting mutant clone 

Figure 2.  Relevant knowledge gaps in the connection between clonal hematopoiesis (CH) and atherosclerosis. Addressing these 
gaps in knowledge will require experimental studies in innovative animal models, longitudinal, highly sensitive sequencing studies 
in human cohorts deeply phenotyped at the cardiovascular level, and, ultimately, clinical trials that enroll carriers of CH-related 
mutations. CVD, cardiovascular disease.
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CH, and longitudinal deep sequencing studies in deeply 
phenotyped human cohorts that allow the tracking of 
mutant clones over years. Such studies might provide the 
basis for the development of novel strategies for the man-
agement of CVD risk in CH mutation carriers.
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