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A B S T R A C T   

Hepatic steatosis is a common condition found in the liver of hepatitis C virus (HCV)-infected patients, 
contributing to more severe forms of liver disease. In addition, the human immunodeficiency virus (HIV) may 
accelerate this process. Alternatively, several immune checkpoint proteins have been reported to be upregulated 
and correlated with disease progression during HCV and HIV infections. In steatosis, a detrimental immune 
system activation has been established; however, the role of the immune checkpoints has not been addressed so 
far. Thus, this study aimed to evaluate the association between plasma immune checkpoint proteins at baseline 
(before antiviral therapy) with hepatic steatosis index (HSI) increase at the end of follow-up (~ five years after 
sustained virologic response (SVR)). We performed a multicenter retrospective study in 62 patients coinfected 
with HIV/HCV who started antiviral therapy. Immune checkpoint proteins were analyzed at baseline using a 
Luminex 200TM analyzer. The statistical association analysis was carried out using Generalized Linear Models 
(GLM) and Partial Least Squares Discriminant Analysis (PLS-DA). Fifty-three percent of the patients showed HSI 
increase from baseline to the end of follow-up. Higher immune checkpoint protein levels of BTLA, CD137 
(4–1BB), CD80, GITR, LAG-3, and PD-L1 before HCV therapy were associated with a long-term increase in HSI 
after successful HCV therapy, suggesting a potential predictive role for early detection of progression towards 
steatosis in HIV/HCV-coinfected patients.   
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1. Introduction 

Globally, an estimated 57 million people have hepatitis C virus 
(HCV) infection [1]. Without antiviral therapy, around 70% of 
HCV-infected people will develop chronic hepatitis C. Of these, 15–30% 
will develop cirrhosis over a 20–25 year period, resulting in a significant 
risk of end-stage liver disease (ESLD), hepatocellular carcinoma (HCC), 
and death [2]. Coinfection with human immunodeficiency virus (HIV) 
may accelerate this process, leading to more rapid HCV-associated liver 
disease progression than HCV-monoinfected patients [3,4]. Alterna-
tively, hepatic steatosis is a common condition found in the liver of 
HCV-infected patients [5], contributing to more severe forms of liver 
disease [6,7]. In addition, people with HIV (PWH) gather a number of 
factors related to chronic inflammation that increase their risk of having 
steatosis, including HIV itself, viral coinfections, antiretroviral therapy 
(ART), or metabolic syndrome, among others [8]. The Hepatic Steatosis 
Index (HSI) is a simple index that can be very useful in screening hepatic 
steatosis [9,10]. This non-invasive index has been validated in PWH 
[11] and has been related to liver inflammation in this population [12]. 

Among anti-HCV treated PWH, HCV cure reduces liver and non-liver 
complications [13,14]. However, a significant risk of liver disease pro-
gression persists, particularly in HIV/HCV-coinfected patients [15,16]. 
In this sense, persistent molecular changes caused by chronic hepatitis C 
and associated with the risk of severe liver disease could explain that 
HCV cure only partially reduces this risk [17,18]. Metabolic dysfunction 
and nonalcoholic fatty liver disease (NAFLD), hallmarks of chronic 
hepatitis C, are related to liver inflammation, which may persist after 
direct-acting antiviral (DAA) treatment and further drive steatosis, 
NAFLD, and progression of liver disease after hepatitis C is cleared [19]. 

Several immune checkpoints have been reported to be upregulated 
during chronic hepatitis C [20,21]. Complete restoration may not be 
achieved after viral clearance, indicating that long-term antigenic 
stimulation drives an irreversible change in the immune system [22]. In 
HCV infection, immune checkpoints have been correlated with disease 
progression [23]. Signaling via these proteins can drive effector immune 
T cells into a state known as “exhaustion”, contributing to the reduction 
of effector function. Sustained expression of immune checkpoint mole-
cules reduces the immune clearance of pathogens, favoring escape from 
immune control and disease progression [24]. Similarly, immune 
checkpoints are also observed to be upregulated in HIV infection on both 
CD4+ and CD8+ T cells, and correlated with disease progression as re-
flected in decreased T cell function, decreased CD4+ T cell counts, 
increased viral RNA replication, and HIV reservoir enrichment [25]. In 
particular, in steatosis and progression to NAFLD, as well as in more 
severe liver disease, a detrimental role for CD8+ and immune system 
activation has been established, so attention to immune checkpoint 
proteins has been given, especially to the PD-1/PD-L1 signaling 
pathway, which negatively regulates lymphocyte cytotoxic action [26]. 
However, there are no previous studies describing the role of immune 
checkpoints in the long-term disease evolution after successful HCV 
therapy in HIV/HCV-coinfected patients. In this regard, steatosis has 
been shown as a strong predictor of liver disease progression and 
severity, and patients achieving sustained virologic response (SVR) have 
demonstrated a different tendency towards steatosis [27–30]. Hence, 
identification of biomarkers to predict progression toward steatosis is 
highly desirable to identify patients who could benefit from closer 
monitoring. 

1.1. Objective 

This study evaluated the association between plasma immune 
checkpoint proteins at baseline (before antiviral therapy) with HSI in-
crease at the end of follow-up (~ five years after SVR) in patients 
coinfected with HIV/HCV. 

2. Material and methods 

2.1. Study subjects 

We performed a multicenter retrospective study in 62 HIV/HCV- 
coinfected patients on ART from 10 centers in Spain (see Appendix A). 
These patients had advanced fibrosis or cirrhosis and started interferon 
(IFN)-based therapy (peg-IFN-α/ribavirin or peg-IFN-α/ribavirin/DAAs) 
or IFN-free DAAs therapy between February 2012 and August 2016, 
achieving SVR (undetectable HCV-RNA load 12–24 weeks – depending 
on regimen – after the finalization of anti-HCV treatment). All patients 
had available clinical data and samples of frozen plasma at the start of 
HCV treatment (baseline). The end of follow-up (~ five years after SVR) 
was between January 2019 and May 2021. Patients with hepatitis B 
virus (HBV) coinfection, acute hepatitis C, or hepatic decompensation 
were excluded. 

The study was approved by the Research Ethics Committee of the 
Institute of Health Carlos III (CEI PI 72_2021) and was conducted 
following the Declaration of Helsinki. All participants signed a written 
consent to participate in the study. 

2.2. Clinical data and samples 

Epidemiological, clinical, and virological characteristics were pro-
spectively collected from patient’s medical records using an online form, 
which met all confidentiality requirements. This information was 
monitored. 

Peripheral blood was collected in ethylenediaminetetraacetic acid 
tubes by venipuncture. On the same day of the extraction, samples were 
sent to the HIV HGM BioBank (http://hivhgmbiobank.com/?lang=en), 
where they were processed within 24 h post-extraction. Plasma was 
stored at − 80ºC until use. 

2.3. Outcome variable 

The HSI was calculated using the following formula: HSI = 8 x 
(alanine aminotransferase (ALT)/aspartate aminotransferase (AST) 
ratio)+ body mass index (BMI) (+2, if female; +2, if diabetes mellitus) 
[10]. The outcome variable was the change in HSI values from baseline 
to ~ five years after SVR (end of follow-up), coding this variable 
dichotomously: HSI increase (ΔHSI >0) versus HSI decrease (ΔHSI <0). 

2.4. Multiplex immunoassays 

Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex™ Panel 
1 (Invitrogen™) was used to measure several plasma-soluble proteins 
using a Luminex 200™ analyzer (Luminex Corporation, Austin, TX, 
United States). 

The plasma proteins measured were immune checkpoints that play a 
crucial role in the regulation of T cells, leading to either T cell exhaus-
tion [B and T lymphocyte attenuator (BTLA), cluster of differentiation 
80 (CD80), CD152(CTLA4), indoleamine 2,3-dioxygenase (IDO), 
lymphocyte activation gene-3 (LAG-3), programmed cell death protein 1 
(PD-1), programmed death-ligand 1 (PD-L1), programmed death-ligand 
2 (PD-L2), and T-cell immunoglobulin and mucin-domain containing-3 
(TIM-3)] or stimulation [CD27, CD28, CD137(4–1BB), glucocorticoid- 
induced TNFR-related (GITR), and herpesvirus entry mediator 
(HVEM)]. The measured raw fluorescence intensity (FI) values (arbi-
trary units, a.u.) were used. 

2.5. Statistical analysis 

For the descriptive study, quantitative variables (clinical and 
epidemiological variables) were expressed as median (interquartile 
range, IQR), and categorical variables were shown as absolute count 
(percentage). Independent groups were compared using the Mann- 
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Whitney U and Chi-square tests for quantitative and categorical vari-
ables, respectively. The Wilcoxon signed range test was used to compare 
continuous dependent variables. Generalized Linear Models (GLM) with 
gamma distribution (log-link) were used to analyze the association be-
tween plasma immune checkpoint proteins at baseline and the change in 
HSI values (HSI increase vs. HSI decrease). This test provides the 
arithmetic mean ratio (AMR), the 95% of confidence interval (95% CI), 
and its level of significance. Also, GLM models were adjusted for the 
main available epidemiological and clinical characteristics (age, gender, 
HSI at baseline, liver stiffness measurement (LSM), HCV treatment (IFN- 
based therapy or DAAs), and time from baseline to follow-up time). 
These covariates were previously selected by a stepwise method (for-
ward), where at each step, the covariates were considered to enter ac-
cording to the lowest AKAike information criteria (AIC) for that specific 
model. BMI and AST were not considered as covariates because they 
were used to calculate the HSI. All p-values were corrected for multiple 
testing by using the Benjamini and Hochberg procedure. The level of 
significance was defined as p-value < 0.05 (two-tailed) and q-value <
0.1. The statistical analysis was done with R statistical package (R 
version 4.2.0. R Foundation for Statistical Computing, Vienna, Austria). 

Finally, a supervised multivariate analysis using a Partial Least 
Squares Discriminant Analysis (PLS-DA) was performed with all signif-
icant plasma immune checkpoint proteins resulting from adjusted GLM 
models and the main epidemiological and clinical characteristics 
mentioned above. All variables were normalized by auto-scaled (mean- 
centered and then divided by the standard deviation of the variable). 
Permutation was carried out by separation distance (B/W) with a per-
mutation number of 1000 to confirm the model’s validity. The PLS-DA 
provides the variable importance in the projection (VIP) for each 
feature. The VIP score was used to classify and identify the most relevant 
variables, considering as relevant those VIP ≥ 1. The PLS-DA analysis 
was carried out with MetaboAnalyst 5.0 software (http://www.metab-
oanalyst.ca/). 

3. Results 

3.1. Patient characteristics 

Characteristics of 62 HIV/HCV-coinfected patients are shown in  
Table 1. Overall, 48 (77.4%) were male, 40 (64.5%) were current 
smokers, and 25 (40.3%) and 49 (79.0%) had a prior history of alcohol 
intake and injection drug use, respectively. The median age was 50, and 
BMI was 24.5 kg/m2. Regarding virological aspects, 70.7% were infec-
ted with HCV genotype 1, and the CD4+ T cell count was 503 cells/mm3. 

We found almost half of the patients had an HSI decrease, while the 
other half had an HSI increase at the end of follow-up (~ five years after 
SVR), finding similar characteristics between both groups of patients, 
except for LSM (p-value = 0.014; Table 1). HSI changes from baseline to 
the end of follow-up were statistically significant for both groups (p- 
values < 0.001; Fig. 1). Besides, significant differences in HSI values 
between groups were found at the end of the follow-up (p-value = 0.011; 
Fig. 1). 

3.2. Association analysis 

Unadjusted GLM models showed significant direct associations (q- 
value < 0.1) between plasma levels of BTLA, CD137(4–1BB), CD152 
(CTLA4), CD28, CD80, GITR, LAG-3, PD-1, PD-L1, and PD-L2 at baseline 
and HSI increase at the end of follow-up (~ five years after SVR) 
(Supplementary Table 1). In adjusted GLM models, we only found 
relevant direct associations (q-value < 0.1) for six immune checkpoint 
proteins (Fig. 2): BTLA (aAMR = 1.75; q-value= 0.022), CD137(4–1BB) 
(aAMR = 1.69; q-value= 0.032), CD80 (aAMR = 1.81; q-value= 0.057), 
GITR (aAMR = 2.30; q-value= 0.032), LAG-3 (aAMR = 1.32; q-value=
0.081), and PD-L1 (aAMR = 1.34; q-value= 0.022). 

Table 1 
Clinical, epidemiological, and virological characteristics of HIV/HCV-coinfected 
patients according to values of hepatic steatosis index (HSI).   

All patients Patients with 
HSI increase 

Patients with 
HSI decrease 

p 

No. 62 33 (53.2%) 29 (46.8%)   
Age (years) 50 (47–53) 50 (46–54) 51 (47–53)  0.989 
Gender (male) 48 (77.4%) 24 (72.7%) 24 (82.8%)  0.523 
BMI (kg/m2) 24.5 

(21.9–28.8) 
24.6 
(22.7–29.3) 

23.6 
(21.4–26.6)  

0.125 

Smoker     0.281  
Never 4 (6.5%) 3 (9.1%) 1 (3.4%)    
Previous (>6 

months) 
18 (29.0%) 7 (21.2%) 11 (37.9%)    

Current 40 (64.5%) 23 (69.7%) 17 (58.6%)   
Alcohol intake 

(>50 g/day)     
0.890  

Never 34 (54.8%) 18 (54.5%) 16 (55.2%)    
Previous (>6 

months) 
25 (40.3%) 13 (39.4%) 12 (41.4%)    

Current 3 (4.8%) 2 (6.1%) 1 (3.4%)   
Intravenous drug 

user     
0.375  

Never 13 (21.0%) 5 (15.4%) 8 (27.6%)    
Previous (>6 

months) 
49 (79.0%) 28 (84.8%) 21 (72.4%)    

Current 0 (0%)     
Previous HCV 

therapy 
38 (61.3%) 21 (63.6%) 17 (58.6%)  0.886 

Diabetes mellitus 5 (8.1%) 2 (6.1%) 3 (10.3%)  0.880 
Liver markers       
HSI 33.9 

(29.1–37.2) 
33.2 
(28.8–37.2) 

34.5 
(31.0–37.2)  

0.128  

LSM (kPa) 17.9 
(13.3–27.5) 

24.8 
(14.5–35.0) 

14.3 
(11.9–26.0)  

0.014  

AST (IU/L) 69.0 
(45.5–103.8) 

77.0 
(57.0–123.0) 

57.0 
(40.0–87.0)  

0.092  

ALT(IU/L) 72.0 
(42.3–99.8) 

69.0 
(47.0–103.0) 

62.0 
(45.0–111.0)  

0.933 

Diabetes mellitus 5 (8.1%) 2 (6.1%) 3 (10.3%)  0.880 
HCV markers       
HCV genotype (n =

58)     
0.302  

1 41 (70.7%) 23 (71.9%) 18 (69.2%)    
3 11 (19.0%) 7 (21.9%) 4 (15.4%)    
4 5 (8.6%) 1 (3.1%) 4 (15.4%)    
Others 1 (1.7%) 1 (3.1%) 0 (0.0%)    
Log10 HCV-RNA 

(IU/mL)  
(n = 61) 

6.2 (5.8–6.7) 6.1 (5.8–6.5) 6.3 (6.0–6.7)  0.225  

HCV-RNA >
850.000 IU/mL 
(n = 61) 

44 (71.0%) 22 (66.7%) 22 (75.9%)  0.606  

HCV therapy     0.102  
IFN-based 44 (71.0%) 20 (60.6%) 24 (82.8%)    
DAAs 18 (29.0%) 13 (39.4%) 5 (17.2%)   

HIV markers       
Previous AIDS 2 (3.2%) 0 (0.0%) 2 (6.9%)  0.416  
Nadir CD4 + /mm3 

(n = 61) 
162 (83–245) 130 (83–245) 174 (88–240)  0.879  

Nadir < 200 CD4 +
/mm3 

(n = 61) 

39 (63.9%) 21 (63.6%) 18 (64.3%)  0.999  

Baseline CD4 + T- 
cells/mm3 

503 
(303–723) 

492 
(280–762) 

515 
(361–706)  

0.999  

Baseline < 500 
CD4 + /mm3 

31 (50.0%) 17 (51.5%) 14 (48.3%)  0.999 

HIV antiretroviral 
therapy       

NRTI + NNRTI 18 (29.0%) 12 (36.4) 6 (20.7%)  0.443  
NRTI + II 24 (38.7%) 12 (36.4) 12 (41.4%)    
NRTI + PI 11 (17.7%) 4 (12.1) 7 (24.1%)    
Others 9 (14.5%) 5 (15.2) 4 (13.8%)   

Statistics: The values are expressed as the absolute number (percentage) and 
median (interquartile range). P-values were calculated by the Chi-square test 
and the Mann-Whitney U test. 
Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; HSI, 
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3.3. Supervised discriminant analysis 

A PLS-DA including relevant immune checkpoint proteins resulting 
from adjusted GLM models (q-value <0.1) and epidemiological and 
clinical characteristics at baseline was performed to predict the change 
in HSI values during the follow-up. PLS-DA was validated by permuta-
tion (p-value = 0.014). All the significant immune checkpoint proteins 
showed a VIP ≥ 1, with values higher than those obtained by epidemi-
ological and clinical characteristics, especially PD-L1 (Fig. 3). 

4. Discussion 

The information available in the literature about the association 
between plasma immune checkpoint proteins and steatosis is limited. 
This study describes for the first time the association between plasma 
levels of six immune checkpoint proteins (BTLA, CD137(4–1BB), CD80, 
GITR, LAG-3, and PD-L1) before HCV therapy and the long-term HSI 
increase (~ five years after SVR) in HIV/HCV-coinfected patients. Be-
sides, the PLS-DA corroborated these findings since all significant im-
mune checkpoint proteins showed a VIP > 1, especially PD-L1, 
suggesting a critical role of these biomarkers in the immunopathology of 
hepatic steatosis. Therefore, since hepatic steatosis progresses in about 
half of the treated patients, these plasma immune checkpoint proteins at 
baseline could serve as biomarkers of steatosis progression despite 
clearance of HCV. 

It is widely known that HCV replication is closely related to the in-
crease in lipid biosynthesis and a decrease in its degradation, favoring 
the accumulation of intracellular lipids (steatosis) [31]. Thus, chronic 
hepatitis C promotes metabolic dysfunction and NAFLD. However, it is 
still unclear how HCV elimination affects the course of these metabolic 
alterations. Some studies have shown a reduction in hepatic steatosis in 
HCV-infected patients who achieved SVR [27,28]. Other authors 
showed a decrease in steatosis only in patients infected with HCV ge-
notype 3, in both HCV monoinfected and HIV/HCV-coinfected patients 
[32,33]. However, other reports have shown a tendency towards 

hepatic steatosis index; BMI, body mass index; HCV, hepatitis C virus; LSM, liver 
stiffness measurement; kPa, kilopascal; IU, international units; pegIFN, pegy-
lated interferon; DAAs, direct-acting antivirals; HCV-RNA, viral load of hepatitis 
C; AIDS, acquired immune deficiency syndrome; NRTI, nucleoside analogue HIV 
reverse transcriptase inhibitor; NNRTI, non-nucleoside analogue HIV reverse 
transcriptase inhibitor; II, HIV integrase inhibitor; PI, HIV protease inhibitor. 

Fig. 1. Evolution of the raw data of hepatic steatosis index (HSI) from baseline 
to the end of follow-up (~ five years after SVR) in HIV/HCV-coinfected pa-
tients, stratifying by HSI evolution throughout the follow-up (HSI ≤0 vs. HSI 
>0). Statistics: Data represent the crude means and 95% confidence interval for 
each group of patients. P-values were calculated by the Mann-Whitney test for 
transversal analysis and the Wilcoxon test for longitudinal analysis between 
paired samples. Abbreviations: HSI, hepatic steatosis index; SVR, sustained 
virological response. 

Fig. 2. Association of plasma immune checkpoint proteins at baseline with 
increased hepatic steatosis index (HSI>0) at the end of follow-up (~five years 
after SVR) in HIV/HCV-coinfected patients. Statistics: Data were calculated by 
Generalized Linear Models (GLM) with a gamma distribution (log-link) adjusted 
by age, gender, HSI at baseline, liver stiffness measurement, HCV therapy (IFN- 
based therapy or DAAs), and time from baseline to follow-up time, previously 
selected by a stepwise method (see Results Section). The q-values represent p- 
values corrected for multiple testing using the False Discovery Rate (FDR). 
Significant differences are shown in bold. Abbreviations: AMR, arithmetic mean 
ratio; aAMR, adjusted AMR; 95%CI, 95% of confidence interval; p, level of 
significance; BTLA, B, and T lymphocyte attenuator; CD, cluster of differenti-
ation; GITR, glucocorticoid-induced TNFR-related; HVEM, herpesvirus entry 
mediator; IDO, indoleamine 2,3-dioxygenase; LAG-3, lymphocyte activation 
gene-3; PD-1, programmed cell death protein 1; PD-L1, programmed death- 
ligand 1; PD-L2, programmed death-ligand 2; TIM-3, T-cell immunoglobulin 
and mucin-domain containing-3. 

Fig. 3. Multivariate analysis by Partial least squares discriminant analysis (PLS- 
DA) for HSI increase. Variable importance in projection (VIP) of the main 
clinical variables and significant checkpoint biomarkers for predicting increase 
in HSI in HIV/HCV-coinfected patients. The VIP score measures the variablés 
importance and allows them to be ranked according to their importance. Ab-
breviations: BTLA, B, and T lymphocyte attenuator; CD, cluster of differentia-
tion; GITR, glucocorticoid-induced TNFR-related; LAG-3, lymphocyte activation 
gene-3; PD-L1, programmed death-ligand 1; HCV, hepatitis C virus; LSM, liver 
stiffness measurement; HSI, hepatic steatosis index. 
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increased steatosis after SVR [29,30,34,35]. This is a critical issue since 
steatosis predicts poor outcomes in patients who achieve SVR [36,37]. 
Therefore, identifying biomarkers that predict progression toward 
steatosis could permit identifying patients who could benefit from closer 
monitoring after HCV eradication. 

Chronic HIV and HCV infection promote T cell exhaustion, charac-
terized by impaired immune function and increased expression of im-
mune checkpoint proteins, which may decrease after viral control or 
elimination [22,38]. However, many studies show that only partial 
restoration of immune function is achieved after HCV clearance with 
DAAs, indicating some irreversible changes due to excessive long-term 
antigenic stimulation [22]. Likewise, immune checkpoint proteins are 
upregulated in HIV infection on T cells [39–41], which decline after 
ART, but remain elevated compared to healthy people [41]. Our findings 
suggest that the combined effect of excessive long-term antigenic stim-
ulation by HCV and HIV infection could have promoted the over-
expression of immune checkpoint proteins (BTLA, CD137(4–1BB), 
CD80, GITR, LAG-3, and PD-L1), in an attempt to normalize immune 
function. 

PD-L1 is mainly expressed on immune cells upon stimulation with 
proinflammatory cytokines or bacterial products [42]. Thus, HCV in-
duces strong PD-L1 upregulation in immune cells [22,43]. PD-L1 has 
also been detected in the liver of patients with hepatitis C, which directly 
correlates with the degree of liver inflammation, and impairs antiviral 
host immunity [42]. Moreover, PD-L1 is involved in obesity pathogen-
esis since its expression in adipose tissues is positively associated with 
visceral fat accumulation [44]. Patients with NAFLD show increased 
levels of PD-L1 [26]. Soluble PD-L1 is generated by proteolytic cleavage 
of membrane-bound PD-L1 [45], finding PD-L1 overexpressed in the 
plasma of patients with chronic hepatitis C [46]. The biological activity 
of soluble PD-L1 remains unclear [45]. Still, regardless of its mechanism 
of action, elevated soluble PD-L1 seems to be a marker of an immune 
system pathway that tries to control its inhibition/activation. 

BTLA binds to HVEM to provide inhibitory signals in activated B and 
T cells, decreasing cell activation, cytokine production, and proliferation 
[47]. BTLA is overexpressed on T-cells after activation [48,49]. The 
activity of soluble BTLA remains unclear, but it may be a means of 
controlling T-cell inhibition. Soluble BTLA is significantly elevated in 
the plasma of septic patients with a high risk of disease progression and 
death [50], so it could be a marker of an activated immune system 
pathway. 

Patients with chronic HCV and HIV infection show a higher expres-
sion of LAG-3 on T-cells and NK cells [51]. LAG-3 is expressed in acti-
vated immune cells and interacts with its canonical ligand, major 
histocompatibility complex (MHC) class II expressed on the surface of 
antigen-presenting cells (APCs), negatively modulating T cell function 
[52]. However, other binding partners such as liver and lymph node 
sinusoidal endothelial cell C-type lectin (LSECtin; also known as 
CLEC4G), galectin3 (Gal-3), and fibrinogen-like protein 1 (FGL1) have 
been proposed [52], molecules expressed in the liver and related to 
developing steatosis and metabolic disorders [53–55]. Therefore, the 
involvement of soluble LAG-3 in the pathophysiology of steatosis cannot 
be ruled out. 

CD80, expressed mainly on APCs, binds CD28 (stimulatory signal) 
and CTLA-4 (inhibitory signal) on T cells modulating the immune 
response. CD80 is relevant in regulating obesity-related inflammatory 
reactions in adipose tissue and liver and, therefore, participates in the 
development and progression of steatosis and NAFLD [56]. Soluble 
CD80, generated by alternative splicing, engages in a complex regula-
tory network of the immune system since it shows stimulatory and 
inhibitory effects similar to those of membrane CD80 [57]. 

CD137 (4–1BB) is expressed on the activated leukocytes’ surface and 
CD137 ligand (CD137L) on antigen-presenting cells (APCs). Interaction 
between CD137 and CD137L activates APCs and leukocytes, enhancing 
immune response. Soluble CD137 inhibits the interaction between 
CD137 and CD137L, downregulates CD137L on APCs, and suppresses T- 

cell activation [58]. In HCV-infected patients, serum CD137 was 
increased in cirrhotic patients, was associated with inflammation, and 
positively correlated with serum tumor necrosis factor (TNF) after SVR 
[59], possibly as an attempt to control the activation of the immune 
system. Moreover, high soluble CD137 levels are associated with in-
flammatory and metabolic parameters and are increased in the subcu-
taneous adipose tissues of obese patients [60], which could be related to 
the development of steatosis and NAFLD. 

Another agonist molecule for the immune system is GITR, expressed 
on various types of immune cells, which binds to its ligand (GITRL) 
expressed on APCs, promoting effector T-cell function and inhibiting 
Treg function [61]. Besides, soluble GITR can also upregulate the 
proinflammatory response. 

4.1. Study limitations 

Our study is limited by the small size that could have restricted the 
detection of positive associations with other immune checkpoint pro-
teins. Another limitation is the retrospective study design that may have 
introduced biases, such as different HCV therapy for treating patients 
(IFN and DAA-based treatment). However, we controlled for these var-
iables by including them as covariates in the GLM model. Finally, liver 
biopsy, the gold standard for the diagnosis of NAFLD was not available 
since this technique has been avoided in clinical practice for a long time. 
Instead, the non-invasive HSI was used, which has shown excellent 
diagnostic performance in previous studies. 

5. Conclusions 

Higher plasma levels of different immune checkpoint proteins before 
HCV therapy were associated with a long-term increase in HSI after 
successful HCV therapy, suggesting a possible role in the pathophysi-
ology of steatosis in patients coinfected with HIV/HCV. Further studies 
are needed to evaluate the utility of these plasma protein profiles for 
identifying HIV/HCV-coinfected patients who need closer monitoring 
after HCV eradication. 
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