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Abstract 

Background:  The prevalence of type 2 diabetes has dramatically increased in the past years. Increasing evidence 
supports that blood DNA methylation, the best studied epigenetic mark, is related to diabetes risk. Few prospective 
studies, however, are available. We studied the association of blood DNA methylation with diabetes in the Strong 
Heart Study. We used limma, Iterative Sure Independence Screening and Cox regression to study the association of 
blood DNA methylation with fasting glucose, HOMA-IR and incident type 2 diabetes among 1312 American Indians 
from the Strong Heart Study. DNA methylation was measured using Illumina’s MethylationEPIC beadchip. We also 
assessed the biological relevance of our findings using bioinformatics analyses.

Results:  Among the 358 differentially methylated positions (DMPs) that were cross-sectionally associated either 
with fasting glucose or HOMA-IR, 49 were prospectively associated with incident type 2 diabetes, although no DMPs 
remained significant after multiple comparisons correction. Multiple of the top DMPs were annotated to genes with 
relevant functions for diabetes including SREBF1, associated with obesity, type 2 diabetes and insulin sensitivity; 
ABCG1, involved in cholesterol and phospholipids transport; and HDAC1, of the HDAC family. (HDAC inhibitors have 
been proposed as an emerging treatment for diabetes and its complications.)

Conclusions:  Our results suggest that differences in peripheral blood DNA methylation are related to cross-sectional 
markers of glucose metabolism and insulin activity. While some of these DMPs were modestly associated with pro‑
spective incident type 2 diabetes, they did not survive multiple testing. Common DMPs with diabetes epigenome-
wide association studies from other populations suggest a partially common epigenomic signature of glucose and 
insulin activity.
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Introduction
The burden of diabetes has dramatically increased world-
wide over the past decades, leading to excessive health, 
social and economic costs [1, 2]. Diabetes is one of the 
main risk factors for cardiovascular disease [3] and other 
complications such as kidney disease, blindness, cancer 
and liver disease [1]. Most of the Genome-Wide Associa-
tion Studies (GWAS) of diabetes have been conducted in 
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European populations [4]. The loci identified as associ-
ated with T2D were validated in other ethnicities such as 
Mexican Americans [5]. However, the identified loci only 
explain about 20% of the heritability of T2D in Europe-
ans [6]. Environmental factors, including diet, physical 
activity, obesogenic chemicals and their impact in excess 
adiposity, are major determinants of diabetes [7]. These 
environmental factors, together with genetics, are in turn 
major regulators of epigenetic marks [8], supporting that 
epigenetics provides a framework to advance our under-
standing of relevant pathways for diabetes and diabetes-
related outcomes.

DNA methylation refers to the covalent attachment of 
a methyl group to the DNA molecule [9]. Several stud-
ies have highlighted the association between blood DNA 
methylation and diabetes [10–13]; however, the tem-
porality between DNA methylation dysregulations and 
diabetes is unclear and those dysregulations might also 
be a consequence of metabolic processes induced by 
subclinical diabetes. In addition, DNA methylation dys-
regulations associated with diabetes have also been found 
in other relevant tissues such as liver, adipose tissue and 
pancreatic islets [14]. As the prediabetes period is long 
and the diabetes diagnostic criteria are established in 
advanced phases, DNA methylation dysregulations might 
be a powerful biomarker for early detection [15], which 
might help with early treatment and to reduce healthcare 
costs. In addition, DNA methylation has been suggested 
to have a higher predictive ability than genetics for type 2 
diabetes in high-risk subjects [16].

Native Americans suffer a disproportionate burden of 
diabetes compared to other race/ethnic groups in the 
USA [17]. American Indian and Alaska Native adults are 
almost three times more likely than non-Hispanic white 
adults to be diagnosed with diabetes [18]. The Strong 
Heart Study [19] is the largest prospective cohort study 
of cardiovascular disease and its risk factors in American 
Indian communities and provides an opportunity to eval-
uate the association of DNA methylation with diabetes in 
a population with a high burden of metabolic disease.

Most of the previous epigenome-wide association 
studies (EWAS) of diabetes have been cross-sectional, 
have evaluated associations of DNA methylation with 
prevalence rather than incidence, have been conducted 
among individuals with clinically diagnosed diabetes or 
lack a time-to-event framework [10–13, 20]. Compar-
ing epigenetic signatures associated cross-sectionally 
with subclinical markers of diabetes and those associ-
ated prospectively with diabetes incidence can contrib-
ute to better understand the natural history of diabetes 
development. We first examined the cross-sectional 
association between markers of glucose and insulin 
sensitivity (fasting glucose and HOMA-IR) and blood 

DNA methylation measured at almost 800,000 genomic 
loci. Second, we determined whether those epigenetic 
variations were also associated with incident diabetes 
in participants of the Strong Heart Study that were free 
of diabetes at baseline.

Methods
Study population
The SHS is the largest and longest prospective cohort 
study of American Indians. It was funded to study 
cardiovascular diseases and risk factors in American 
Indian adults [19]. In 1989–1991 (visit 1), 4549 men 
and women between 45 and 75 years old belonging to 
13 tribes from Arizona, Oklahoma and North Dakota 
and South Dakota agreed to participate. In 2016, a 
Tribal Nation from Arizona declined further participa-
tion, leaving 3517 potential participants for this study. 
Eligibility for blood DNA methylation analysis has been 
described in a previous publication [21], leaving 2325 
participants for epigenetic research. For this study, 
967 participants with prevalent diabetes (assessed by 
whether participants took diabetes medication, by 
measurements of fasting glucose and by the HbA1c 
test) and 46 participants with missing diabetes informa-
tion at exam 2 (1993–1995) and exam 3 (1998–1999) or 
missing values in fasting glucose or HOMA-IR at base-
line were excluded, leaving a total of 1312 participants 
(Additional file  1: Figure S1). The Strong Heart Study 
protocol was approved by institutional review boards, 
participating tribal communities and the respective 
area Indian Health Service IRBs in each tribal commu-
nity, and all participants provided informed consent.

Participant characteristics
Data on sociodemographic factors, medical history, 
smoking status and alcohol consumption were collected 
in a personal interview. Participants who reported smok-
ing < 100 cigarettes in their lifetime were considered 
never smokers. Participants who reported smoking ≥ 100 
cigarettes in their lifetime and smoking at the time of 
the interview were considered current smokers. Partici-
pants who reported smoking ≥ 100 cigarettes in their life-
time but currently not smoking were classified as former 
smokers. Current alcohol consumption was defined as 
self-report of any alcohol consumption within the past 
year. Former alcohol consumption was defined as no con-
sumption of any alcohol during the last year but previous 
consumption of > 12 drinks of alcohol in a single year. The 
physical examination included anthropometric measures 
(height and weight) and collected fasting blood and spot 
urine samples.
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Fasting glucose, insulin resistance and incident diabetes
Participants fasted for 12 h or more before the physical 
examination. An oral glucose tolerance test was con-
ducted, which included 75-g oral glucose and blood col-
lection at 2 h [22]. The MedStar Health Research Institute 
laboratory [22, 23] analyzed plasma glucose and insu-
lin using a hexokinase method and radioimmunoassay 
(Linco, St. Louis, Missouri), respectively. The analysis of 
hemoglobin A1c (HbA1c) in blood was conducted at the 
National Institute of Diabetes and Digestive and Kidney 
Diseases Epidemiology and Clinical Research Branch, 
Phoenix, Arizona using high-performance liquid chro-
matography [24].

We defined diabetes as having one of the following: 
fasting glucose greater or equal than 126  mg/dL, 2-h 
post-load plasma glucose greater or equal than 200 mg/
dL, HbA1c greater or equal than 6.5%, using insulin or 
an oral hypoglycemic agent [25]. We used the equation 
[fasting plasma insulin (mU/L) × fasting plasma glucose 
(mmol/L)]/22.5 to calculate HOMA-IR [26]. Individuals 
having prevalent diabetes were excluded, and incident 
diabetes was assessed in two follow-up visits (1993–1995 
and 1998–1999) (Additional file 1: Figure S1).

Blood DNA methylation determinations
Details of the DNA methylation analysis from white 
blood cells using Illumina’s MethylationEPIC BeadChip 
(850 K) have been published [27]. Buffy coats from fast-
ing blood samples were collected in 1989–1991. Biologi-
cal specimens were stored at − 70  °C. DNA from white 
blood cells was extracted and stored at the Penn Medi-
cal Laboratory, MedStar Health Research Institute under 
a strict quality-control system. In 2015, blood DNA was 
shipped to the analytical laboratory at the Texas Bio-
medical Research Institute for DNAm analysis. DNA 
was bisulfite-converted with the EZ DNAm kit (Zymo 
Research) according to the manufacturer’s instructions. 
Bisulfite-converted DNA was measured using the Illu-
mina MethylationEPIC BeadChip (850  K). CpGs with a 
p-detection value greater than 0.01 in more than 5% of 
the individuals (6159 CpGs) were removed. Single sam-
ple normalization for background correction [28] and 
Regression on Correlated Probes normalization for 
probe type bias [29] were applied. We excluded cross-
hybridizing DNA methylation sites, sex chromosomes 
DNA methylation sites and single nucleotide polymor-
phisms with minor allele frequency > 0.05 [30]. We cal-
culated blood cell proportions (CD8T, CD4T, NK cells, 
B cells, monocytes and neutrophils) using the Houseman 
method as implemented by the R package FlowSorted.
Blood.EPIC. We used those data to adjust all models for 
blood cell type proportions. The final sample size after 

these corrections was of 1312 participants. The total 
number of CpG sites available was 788,368 CpG sites.

Statistical analysis
Cross‑sectional association: one marker at a time
We conducted an epigenome-wide association study to 
evaluate the association of each CpG site separately with 
both fasting glucose and HOMA-IR (in separate mod-
els). We used linear regression models as implemented 
by the limma R package, together with an empirical 
Bayes method that shrinks standard errors to a com-
mon value in order to borrow information from all the 
genes. We used methylation M values (logit2 transforma-
tion of methylation proportions) as the outcome. Models 
were adjusted for age, sex, study center, smoking status 
(never, former, current), alcohol consumption (never, 
former, current), education level (no high school, some 
high school, completed high school), BMI, estimated cell 
proportions (CD8T, CD4T, NK, B cells and monocytes) 
and five genetic principal components (PCs). P-values 
were corrected for multiple comparisons using the FDR 
method.

Cross‑sectional association: all markers at a time
We used Iterative Sure Independence Screening coupled 
with Adaptive Elastic-Net (ISIS-AENET) to analyze the 
association of the 788,368 CpGs simultaneously with 
fasting glucose or HOMA-IR. ISIS-AENET uses data-
driven weights to improve effect estimation while allow-
ing to analyze highly correlated predictors, similar to 
elastic-net models [31, 32]. The combination of ISIS and 
regularization methods has shown to be a highly effective 
variable selection method relative to other approaches 
in ultra-high-dimensional settings [31, 33, 34]. A com-
bination of the R packages SIS [35] and gcdnet [36] was 
used to perform this analysis. To remove the variability 
in methylation due to differences in cell type propor-
tions, methylation data were regressed on cell type pro-
portions (CD8 T cells, CD4 T cells, NK cells, B cells and 
monocytes) and five genetic principal components (PCs) 
and the residuals of those models were used as predic-
tors in ISIS-AENET models. In addition, the two out-
comes (fasting glucose and HOMA-IR) were separately 
regressed on relevant baseline covariates (age, sex, study 
center, smoking status (never, former, current), alcohol 
consumption (never, former, current), education level (no 
high school, some high school or completed high school) 
and BMI, and the residuals of those models were used as 
outcomes in the ISIS-AENET model.

Prospective association with incident diabetes
The beta values (DNA methylation proportions) of the 
differentially methylated CpG positions (DMPs) selected 
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by the ISIS-AENET model as associated with either 
fasting glucose or HOMA-IR were evaluated for pro-
spective association with incident diabetes using Cox 
proportional hazards models of one CpG at a time. We 
used diabetes status at visits 2 and 3 to determine the 
time to event, with age as time scale and individual entry 
times (age at baseline) treated as staggered entries. Mod-
els were adjusted for sex, smoking status, study center, 
alcohol consumption, education level, cell counts and 
five genetic PCs. We conducted two sensitivity analy-
ses additionally adjusting the models for fasting glucose 
and for HOMA-IR. As a secondary analysis, we assessed 
the association between DNA methylation and incident 
impaired glucose tolerance (IFG) on the CpG sites asso-
ciated with incident type 2 diabetes. IFG was defined as 
two-hour glucose levels of 140 to 199 mg/dL on the 75-g 
oral glucose tolerance test. We used IFG status at vis-
its 2 and 3 to determine the time to event, with age as 
time scale and individual entry times treated as staggered 
entries. Models were adjusted for the same covariates as 
diabetes models.

Protein–protein interaction network
We displayed a protein–protein interaction network for 
the CpGs selected by ISIS-AENET for either fasting glu-
cose or HOMA-IR based on their annotation to the near-
est protein coding gene. We used the STRING database 
v11.0 to identify the interactions between nodes that had 
a confidence score of at least 0.4 [37]. We used Cytoscape 
v3.8.2 to display the network [38].

Enrichment analysis
We performed functional enrichment analysis on the 
genes that were annotated to all CpGs selected via 
the ISIS-AENET models for either fasting glucose or 
HOMA-IR. We used the clusterProfiler R package [39] 
to test for over-representation of GO terms [40] in the 
biological pathways (BP), molecular functions (MF) and 
cellular component (CC) databases, for biological path-
ways in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [41] and Reactome [42] databases, and for hall-
mark gene sets from the Molecular Signatures Database 
(MSigDB) [43]. We present the top 20 enriched pathways 
and gene sets, ranked by p-values from the hypergeomet-
ric test, and use false discovery rate (FDR) < 0.05 to dis-
tinguish significant enrichment.

Results
At baseline, SHS participants who developed incident 
diabetes were younger than those who remained diabe-
tes-free through the follow-up and had higher BMI. They 
were less likely to be current smokers and drink alcohol 
and had higher HOMA-IR (Table 1).

The one-marker-at-a-time approach identified one 
DMP (annotated to the DNAH10 gene) associated with 
fasting glucose after multiple comparisons. In models not 
adjusted by BMI, we found three more DMPs (annotated 
to ABCG1, SREBF1 and DNAH10). For HOMA-IR, no 
DMPs were significant at 0.05 FDR threshold. In mod-
els not adjusted for BMI, six DMPs (annotated to genes 
ABCG1, SREBF1, HSF4 and CPT1A) were significant.

The ISIS-AENET model identified 182 DMPs as asso-
ciated with fasting glucose (Additional file  2: Table  S1) 
and 182 DMPs as associated with HOMA-IR (Additional 
file 2: Table S2), with an overlap of six DMPs annotated 
to the genes MRPS31 (associated with type 1 diabetes in 
previous studies), SH2B1 (associated with severe obesity 
and insulin resistance), ABCG1 (associated with type 2 
diabetes), ABHD11 (involved in weight gain regulation), 
PSMF1 (control of proteasome function) and HMGN1 
(associated with the process of transcriptionally active 
chromatin).

Among the 358 DMPs that were associated either 
with fasting glucose or with HOMA-IR, 49 were associ-
ated with incident diabetes at a nominal p value of 0.05. 
None of them passed the FDR cutoff of 0.05. The 16 
DMPs associated with incident diabetes at a nominal p 
value < 0.01 are shown in Table 2. Adjustment for baseline 
fasting glucose or HOMA-IR in these models attenuated 
the effect estimates. The CpG cg06500161, annotated 
to the gene ABCG1, which was one of the overlapping 
DMPs between fasting glucose and HOMA-IR, was 

Table 1  Participants’ characteristics by diabetes status at 
follow-up

Medians (IQR) or percentages are shown for continuous or categorical variables, 
respectively

IQR interquartile range

Incident 
diabetes 
(N = 348)

Non-diabetes (N = 964)

Age (years), median (IQR) 52.9 (48.4, 60.2) 54.3 (48.7, 61.2)

Sex, % Male 39.7 45.5

Smoking status, %

 Former 34.2 28.8

 Current 36.8 44.2

BMI, median (IQR) 30.4 (27.3, 34.5) 27.8 (24.8, 31.2)

Alcohol consumption, %

 Former 14.9 11.6

 Current 42.8 50.1

Education level, %

 Some high school 22.4 21.6

 High school or more 61.8 63.3

Fasting glucose, mg/dL 104 (97, 111) 99 (93, 106)

HOMA-IR 4.0 (2.5, 6.2) 2.5 (1.5, 4.0)
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in the top five DMPs for incident diabetes, showing a 
strong positive association (Table 2). The other overlap-
ping DMPs for fasting glucose and HOMA-IR did not 
reach statistical significance for incident diabetes. The 
two top signals for incident diabetes, annotated to genes 
SREBF and ABCG1, were also associated with IFG, with 
hazard ratios (95% CI-s) 2.4 (1.2, 5.1) and 1.9 (1.1, 3.6), 
respectively.

In the protein–protein interaction network using the 
358 CpGs that were selected by the ISIS-AENET model, 
a network with 203 nodes and 360 connections was 
obtained. The hub node was HDAC1 (differentially meth-
ylated for fasting glucose), with 23 interactions, followed 
by ELOB and UBE2N nodes (both of them differentially 
methylated for HOMA-IR), with 14 interactions each 
(Fig. 1).

The 358 CpGs that were selected by the ISIS-AENET 
models for fasting glucose or HOMA-IR were annotated 
to 303 genes with Entrez Gene identifiers. We highlight 
the top 15 GO terms (Fig. 2A–C), KEGG and Reactome 
pathways (Fig.  2D, E) and hallmark gene sets (Fig.  2F) 
that were over-represented among these 303 genes. The 

pathways and gene sets that were significantly enriched 
with FDR < 0.05 (Table 3) tended to represent DNA and 
RNA biosynthesis and maintenance, telomerase activity, 
autophagy, transcriptional regulation and upregulated 
genes in response to transforming growth factor beta 1 
(TGFB1).

Discussion
In this EWAS of blood DNA methylation, we identi-
fied several DMPs prospectively associated with type 2 
diabetes in an American Indian population across the 
Southwest and the Northern Plains of the USA. Using 
statistical methods that allow the joint evaluation of high-
dimensional and highly correlated epigenetic markers, 
we found 182 DMPs associated with fasting glucose and 
182 DMPs associated with HOMA-IR. Of those, 49 were 
associated with incident diabetes at a nominal p-value 
of 0.05. No DMPs remained significant after correction 
for multiple comparisons. The bioinformatics analyses 
pointed to several important regulatory biological path-
ways for type 2 diabetes, such as autophagy.

Table 2  CpGs prospectively associated with incident diabetes in a Cox proportional hazards model at a nominal p value < 0.01

Model adjusted for age, smoking status (never, former, current), alcohol consumption (never, former, current), sex, education level (less than high school, some high 
school, high school or more), Houseman cell proportions (CD8T, CD4T, NK, B cells and monocytes), five genetic PCs and study center (Arizona, Oklahoma or Dakota)

CpG Chr Gene Function Adjusted for 
covariatesa

Adjusted for 
covariates + fasting 
glucose

Adjusted for 
covariates + HOMA-IR

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

cg11024682 17 SREBF1 Obesity, type 2 diabetes and insulin 
sensitivity

1.92 (1.35, 2.74) 0.0003 1.66 (1.16, 2.37) 0.005 1.66 (1.17, 2.35) 0.005

cg07750706 6 PLAGL1 Transient neonatal diabetes mellitus 0.63 (0.47, 0.83) 0.0009 0.67 (0.51, 0.89) 0.005 0.66 (0.5, 0.87) 0.003

cg23053438 3 HEG1 Regulator of heart and vessel forma‑
tion

0.64 (0.49, 0.83) 0.001 0.66 (0.51, 0.87) 0.003 0.67 (0.51, 0.88) 0.004

cg01885480 15 OAZ2 Polyamine biosynthesis, type 2 
diabetes

0.64 (0.49, 0.84) 0.001 0.67 (0.51, 0.88) 0.003 0.69 (0.53, 0.9) 0.007

cg06500161 21 ABCG1 Cholesterol and phospholipids 
transport

1.54 (1.16, 2.03) 0.003 1.38 (1.03, 1.84) 0.03 1.27 (0.95, 1.69) 0.11

cg22710955 7 POP7 Ribosome biogenesis 0.66 (0.5, 0.87) 0.003 0.70 (0.53, 0.92) 0.01 0.69 (0.52, 0.91) 0.009

cg20463945 6 C6orf136 Uncharacterized function 0.70 (0.54, 0.9) 0.006 0.75 (0.58, 0.97) 0.03 0.69 (0.54, 0.9) 0.006

cg15269194 7 FAM3C Type 2 diabetes and non-alcoholic 
fatty liver disease

0.70 (0.54, 0.9) 0.006 0.75 (0.59, 0.97) 0.03 0.69 (0.53, 0.9) 0.006

cg27089547 16 ZNF747 Uncharacterized function 0.69 (0.52, 0.9) 0.006 0.72 (0.55, 0.94) 0.02 0.70 (0.54, 0.92) 0.01

cg20595300 9 UHRF2 Cell-cycle regulation, tumorigenesis 0.70 (0.54, 0.91) 0.007 0.75 (0.58, 0.97) 0.03 0.74 (0.57, 0.95) 0.02

cg19048496 16 TCEB2 Transcription elongation and cellular 
senescence

0.69 (0.53, 0.9) 0.007 0.70 (0.53, 0.91) 0.007 0.73 (0.56, 0.96) 0.02

cg08728520 20 COMMD7 NF-kappa-B complex activity 0.68 (0.51, 0.9) 0.007 0.70 (0.53, 0.93) 0.01 0.69 (0.51, 0.91) 0.009

cg06935581 16 DECR2 Lipid metabolism 0.68 (0.51, 0.9) 0.007 0.70 (0.53, 0.93) 0.01 0.70 (0.52, 0.92) 0.01

cg00291981 3 BSN Spatial organization of synaptic 
vesicle cluster

0.69 (0.53, 0.91) 0.007 0.72 (0.55, 0.94) 0.02 0.70 (0.54, 0.92) 0.009

cg25944898 11 PRDX5 Cellular protection against oxidative 
stress

0.69 (0.52, 0.91) 0.008 0.71 (0.54, 0.93) 0.01 0.71 (0.54, 0.94) 0.02

cg27555392 1 FBXO42 Protein-ubiquitin ligases 0.69 (0.53, 0.91) 0.009 0.72 (0.55, 0.95) 0.02 0.71 (0.54, 0.94) 0.02
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Many of the genes annotated to the top DMPs in our 
EWAS in both the one marker at a time and the mul-
tiple markers at a time approaches have biological 
functions related to type 2 diabetes. The SREBF1 gene 
is associated with obesity, type 2 diabetes and insulin 
sensitivity, and the gene ABCG1 is involved in choles-
terol and phospholipids transport. Importantly, these 
two genes have been identified in other diabetes EWAS 
conducted in Indian Asian [44], Mexican American 
[10] and European [45] populations and have been pro-
posed as potential valuable markers for personalized 

type 2 diabetes risk prediction [46]. The fact that these 
two genes were among the top DMPs identified in our 
study provides evidence in favor of a common epig-
enomic signature of type 2 diabetes across populations.

However, to our knowledge, this is the first study that 
investigates the association between blood DNA meth-
ylation with type 2 diabetes prospectively. According to 
the meta-analysis conducted by Raciti et  al. [16], which 
was published by the end of 2021, all the previous stud-
ies in blood DNA methylation were either cross-sectional 
[10, 44, 47–50], focused on targeted genes rather than 

Fig. 1  Protein–protein interaction network for fasting glucose and HOMA-IR
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epigenome-wide [46, 51, 52], or focused on global DNA 
methylation, rather than site-specific methylation [53]. 
Although an EWAS conducted in a European population 
[45] evaluated incident diabetes, they did not account 
for time to event in the EWAS models, which were con-
ducted using a logistic regression (with a dichotomous 
outcome) rather than survival analysis.

Several genes annotated to top DMPs in our study also 
with known diabetes-related functions have not been 
identified in previous blood EWAS, which suggests that 
some of the epigenetic markers that are related to diabe-
tes might be population-specific or the high burden of 
diabetes in our study population enabled the identifica-
tion of those signals. For example, the gene PLAGL1 is 

associated with neonatal diabetes mellitus [54]; FAM3C 
is a therapeutical target for type 2 diabetes and non-
alcoholic fatty liver disease [55]; OAZ2 is differentially 
methylated in children exposed to maternal diabetes in 
utero versus unexposed [56]; HEG1 is a regulator of heart 
and vessel formation [57]; and DECR2 is involved in lipid 
metabolism [58], which might also be related to diabe-
tes [59]. Overall, many of the genes annotated to the top 
DMPs identified in our study have biological functions 
related to diabetes, which suggests that DNA methylation 
might be involved in or be informative about the patho-
genesis of diabetes.

The enrichment analysis also revealed biological path-
ways relevant for diabetes, such as autophagy [60], which 

Fig. 2  Top 15 GO Terms (A–C), pathways (D–E) and gene sets (F). The x-axis represents the ratio genes from our fasting glucose and HOMA-IR set 
that were also within the gene set listed on the y-axis; the count represents the number of genes in our fasting glucose and HOMA-IR set that were 
within each gene set listed on the y-axis, and the color coding represents the p values from the hypergeometric tests, with red indicating smaller 
and blue indicating larger p-values
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was significantly enriched in both KEGG pathways and 
Reactome pathways analyses. Autophagy is a relevant 
regulatory signaling pathway for type 2 diabetes and is 
closely related to glucose and lipid metabolism, in addi-
tion to secretion of insulin. Autophagic dysfunction has 
been implicated in the pathogenesis of diabetes, and 
some diabetes therapies appear to improve autophagy in 
parallel with β-cell function, although more research is 
needed to clarify the specific mechanisms [61]. Addition-
ally, TGF-β signaling has pleiotropic roles, including the 
development and function of pancreatic islet β cells [62], 
and TGF-β1 is known to play a role in the pathogenesis 
of diabetes nephropathy, a common cause of renal failure 
among persons with diabetes mellitus [63]. Our findings 

suggest that some of these processes that are known to be 
involved in the development and/or consequences of dia-
betes may be reflected in differential DNA methylation of 
peripheral blood immune cells.

Environmental factors such as diet and life-
style are known to be major regulators of epige-
netic marks [64]. Several studies have highlighted 
the association between dietary patterns and DNA 
methylation changes. In particular, a Mendelian Ran-
domization study including five population-based 
cohorts of European, African and Hispanic participants 
revealed potential causal associations of diet-related 
CpGs with type 2 diabetes [65]. In addition, the Make 
Better Choices 2 study found differential patterns of 

Table 3  Significantly over-represented gene sets (FDR < 0.05) among the 303 genes annotated to CpGs associated with fasting 
glucose and HOMA-IR

Database ID Description q val Gene IDs

GO BP GO:0071897 DNA biosynthetic process 0.012 HNRNPU, TELO2, DCP2, PTGES3, NEK7, ARRB2, WRN, RPA1, 
CCT2, TRIM25, SH2B1, GAR1, PARP10

GO BP GO:0007004 Telomere maintenance via telomerase 0.012 HNRNPU, TELO2, DCP2, PTGES3, NEK7, RPA1, CCT2, GAR1

GO BP GO:0006278 RNA-dependent DNA biosynthetic process 0.016 HNRNPU, TELO2, DCP2, PTGES3, NEK7, RPA1, CCT2, GAR1

GO BP GO:0010833 Telomere maintenance via telomere lengthening 0.020 HNRNPU, TELO2, DCP2, PTGES3, NEK7, RPA1, CCT2, GAR1

GO BP GO:0016236 Macroautophagy 0.039 WDR81, PACS2, MLST8, TSC2, SNF8, RB1CC1, YOD1, FEZ2, 
NBR1, UVRAG, EI24, ATP6V1H, VPS4A, CLEC16A, ATG13

GO BP GO:0043161 Proteasome-mediated ubiquitin-dependent protein 
catabolic process

0.039 ANAPC11, MAPK9, ARRB2, CDC20B, PSMF1, TRIM9, 
FBXL19, CUL2, USP19, TRIM25, ANAPC2, TMEM129, YOD1, 
DNAJB12, WWP2, ARIH2, CBFA2T3, NEDD4L

GO MF GO:0003712 Transcription coregulator activity 0.011 JUP, HNRNPU, TRIM27, PSMC3IP, HIPK2, TRIM52, LIMD1, 
FHL2, HDAC1, FBXL19, CCAR1, CBX4, TRIM25, TCF25, RERE, 
DPF1, TP53BP1, MED24, LPXN, PARP10, CBFA2T3

GO MF GO:0051019 Mitogen-activated protein kinase binding 0.024 MAPK7, ARRB2, DUSP4, CDK5RAP3, NBR1

GO MF GO:0003714 Transcription corepressor activity 0.024 HNRNPU, HIPK2, LIMD1, FHL2, HDAC1, CCAR1, CBX4, 
TCF25, RERE, PARP10, CBFA2T3

GO CC GO:0005635 Nuclear envelope 0.001 TRIM27, TNPO3, KPNA4, SLC22A18, WTAP, CHMP7, 
ALG14, CCAR1, P2RX5, CCND2, RB1CC1, EI24, DNAJB12, 
OSBPL6, NRXN1, NUP214, SYNE1, SREBF1, CASC3, SMOX, 
POM121L12

GO CC GO:0031965 Nuclear membrane 0.019 TRIM27, KPNA4, WTAP, ALG14, P2RX5, CCND2, RB1CC1, 
EI24, DNAJB12, OSBPL6, NRXN1, SYNE1, CASC3, SMOX

GO CC GO:0005770 Late endosome 0.023 WDR81, CHMP7, CTNS, SNF8, CD63, LAMP3, NBR1, UVRAG, 
TMEM59, VPS4A, ARL8B, CLEC16A, NEDD4L

GO CC GO:0000152 Nuclear ubiquitin ligase complex 0.030 ANAPC11, CDC20B, CBX4, ANAPC2, PCGF1

GO CC GO:0030176 Integral component of endoplasmic reticulum 
membrane

0.030 TECR, FICD, SEC61A1, PIGK, PIGT, CANX, SGMS2, ELOVL6, 
DNAJB12

GO CC GO:0005774 Vacuolar membrane 0.030 WDR81, VASN, SLC44A2, WDR59, DAGLB, CTNS, SPAG9, 
CD63, RB1CC1, LAMP3, UVRAG, TMEM59, ATP6V1H, VPS4A, 
ARL8B, CLEC16A

GO CC GO:0031932 TORC2 complex 0.030 TELO2, MLST8, PRR5

GO CC GO:0031227 Intrinsic component of endoplasmic reticulum 
membrane

0.030 TECR, FICD, SEC61A1, PIGK, PIGT, CANX, SGMS2, ELOVL6, 
DNAJB12

GO CC GO:1990023 Mitotic spindle midzone 0.039 HNRNPU, RCC2, NUMA1

GO CC GO:0038201 TOR complex 0.043 TELO2, MLST8, PRR5

Hallmark TGF Beta Signaling TGF Beta Signaling 0.024 HIPK2, SPTBN1, THBS1, HDAC1, FURIN, FNTA
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DNA methylation following a healthy diet and physi-
cal activity intervention [66]. While the clinical impli-
cations of these findings are still unclear, future studies 
can investigate whether interventions addressing life-
styles (e.g., healthy diet, increase physical activity) 
modify DNA methylation changes on type 2 diabetes in 
populations. Beyond understanding the role of DNAm 
in the development of diabetes, additional work is still 
needed (such as longitudinal epigenetic assessments) to 
improve prediction of diabetes risk.

This work has some limitations. First, diabetes inci-
dence could not be assessed with exact diagnosis dates, 
which is typical of prospective cohort studies that iden-
tify diabetes through examination visits. Although we 
know that all participants were free of diabetes diagno-
sis at the time of DNA methylation data collection, sub-
clinical metabolic disorders that are related to diabetes 
risk were likely present in many participants, as reflected 
in the common signals related to baseline glucose and 
HOMA-IR and incident diabetes. Our study evaluated 
participants 45–74  years of age in a population with a 
high burden of diabetes, likely resulting in an evaluation 
late in the natural history of the disease, as reflected by 
the fact that increasing age was not associated with dia-
betes risk, which has already been described in the SHS 
[67]. Long prospective studies in younger populations 
with diabetes incidence follow-up are needed to confirm 
if our findings are relevant only for older populations 
with a high burden of diabetes or also for younger popu-
lations and populations with lower diabetes risk. In addi-
tion, future studies should assess diabetes-related DNA 
methylation changes over time. Of note, no DMPs were 
significant after multiple comparisons. However, the fact 
that some of the top identified genes were shared among 
the one marker at a time and the multiple markers at a 
time approaches supports the biological meaningfulness 
of those signals.

Strengths of this study include the high-quality DNA 
methylation data, measured with one of the largest 
microarrays available with nowadays technology, the 
detailed data on potential confounders and the innova-
tive statistical methods. This is, to our knowledge, the 
first study that uses the ISIS-AENET tool with both con-
tinuous and dichotomous health outcomes applied to 
real data.

In conclusion, DNA methylation dysregulations were 
associated with fasting blood glucose levels and HOMA-
IR, some of which were also associated with incident dia-
betes in the Strong Heart Study population, although no 
DMPs reached the significance threshold after correction 
for multiple comparisons. The biological functions of the 
genes found in the differential methylation analysis and 
in the bioinformatic analyses support a biological link 

between DNA methylation profiles, metabolic processes 
and diabetes risk. Further prospective and experimental 
studies are needed to assess the potential role of DNA 
methylation in diabetes.
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