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Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in
December 2019 as a novel respiratory pathogen and is the causative agent of Corona
Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that
SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was
also found in other tissues, including the vasculature. Individuals with underlying pre-
existing co-morbidities like diabetes and hypertension have been more prone to develop
severe illness and fatal outcomes during COVID-19. In addition, critical clinical
observations made in COVID-19 patients include hypercoagulation, cardiomyopathy,
heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of
the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of
SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic)
vascular inflammation. We provide a general overview of SARS-CoV-2, its entry
determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-
CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and
cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical
findings on endothelial changes during COVID-19 are reviewed in detail and recent
evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2
infection is discussed. We conclude with current notions on the contribution of
cardiovascular events to long term consequences of COVID-19, also known as “Long-
COVID-syndrome”. Altogether, our review provides a detailed overview of the current
perspectives of COVID-19 and its influence on the vasculature.

Keywords: SARS-CoV-2, COVID-19, long COVID-19 syndrome, endothelium, heart

Edited by:
Jonatan Barrera-Chimal,

Universidad Nacional Autónoma de
México, Mexico

Reviewed by:
ZhaoHui Tang,

Huazhong University of Science and
Technology, China
Abdullah Shaito,

Qatar University, Qatar

*Correspondence:
Nadia Mercader

nadia.mercader@ana.unibe.ch
Britta Engelhardt

britta.engelhardt@tki.unibe.ch
Robert Rieben

robert.rieben@dbmr.unibe.ch
Yvonne Döring

yvonne.doering@insel.ch

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Signaling,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 29 November 2021
Accepted: 20 January 2022

Published: 15 February 2022

Citation:
Martínez-Salazar B, Holwerda M,
Stüdle C, Piragyte I, Mercader N,

Engelhardt B, Rieben R and Döring Y
(2022) COVID-19 and the Vasculature:

Current Aspects and Long-
Term Consequences.

Front. Cell Dev. Biol. 10:824851.
doi: 10.3389/fcell.2022.824851

Abbreviations: + , positive; − , negative; IF, Immunofluorescence; IHC, Immunohistochemistry; ALT, Alanine transaminase;
AST, Aspartate transaminase; GGT, Gamma-glutamyl transferase.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8248511

REVIEW
published: 15 February 2022

doi: 10.3389/fcell.2022.824851

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.824851&domain=pdf&date_stamp=2022-02-15
https://www.frontiersin.org/articles/10.3389/fcell.2022.824851/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.824851/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.824851/full
http://creativecommons.org/licenses/by/4.0/
mailto:nadia.mercader@ana.unibe.ch
mailto:britta.engelhardt@tki.unibe.ch
mailto:robert.rieben@dbmr.unibe.ch
mailto:yvonne.doering@insel.ch
https://doi.org/10.3389/fcell.2022.824851
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.824851


1 INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
belongs to the Betacoronavirus family and was identified in
December 2019/January 2020 in lung tissue of patients with
symptoms resembling severe pneumonia, including acute
respiratory distress syndrome (ARDS). This new disease was
named Corona Virus disease 2019 (COVID-19) (Zhu N. et al.,
2020). SARS-CoV-2 shares 79% similarity with SARS-CoV,
another Coronavirus responsible for the SARS outbreak in
2002–2004 (Drosten et al., 2003; Kuiken et al., 2003; Lu et al.,
2020). The single-stranded positive-sense viral RNA genome of
SARS-CoV-2 encodes around 29 proteins from which 4 are
structural proteins: spike (S), envelope (E), membrane-
associated (M), and nucleocapsid (N) protein (Yao H. et al.,
2020). The S protein is most important for the virus to enter the
cell via its interaction with Angiotensin Converting Enzyme II
(ACE2) and the transmembrane serine protease 2 (TMPRSS2)
that cleaves the viral S protein facilitating its entrance into the cell
(Hoffmann et al., 2020). Both N and M proteins are responsible
for binding and packing the viral genome (Lu et al., 2021). The N
protein further induces a strong immune response fostering the
production of specific antibodies (IgA, IgG, and IgM) which are
also useful for diagnostic testing of COVID-19 (Zeng et al., 2020;
Barlev-Gross et al., 2021; De Marco Verissimo et al., 2021).

Approximately half of the patients with COVID-19 are
asymptomatic or mildly symptomatic, but 3–10% of patients
with COVID-19 require hospitalization, of which up to 20% may
suffer from severe disease leading to a high mortality rate (Berlin
et al., 2020). Patients with severe to critical illness display
hypoxemia and dyspnea, which may develop into ARDS
(Berlin et al., 2020). This stage of the disease is characterized
by high circulating levels of pro-inflammatory cytokines, such as
interleukin-6 (IL-6), IL-1β, and IL-18 referred to as “cytokine
storm” (Mehta et al., 2020), and the development of a
prothrombotic state (Iba et al., 2020). Within the group of
patients with severe COVID-19, there are significantly more
individuals with pre-existing comorbidities of the
cardiovascular system like elevated cholesterol levels, high
blood pressure or a history of myocardial infarction
(Figure 1). Endothelial dysfunction is generally present in
infections caused by highly pathogenic Coronaviruses and has
been shown to be particularly pronounced in SARS-CoV-2
infections resulting in damage of the pulmonary and other
vascular endothelium (Teuwen et al., 2020). This suggests a
synergistic activation of vascular inflammatory pathways that
are associated with both severe COVID-19 and cardiometabolic
diseases (Kadosh et al., 2020). In addition to alveolar damage in
COVID-19 patients, vascular wall edema, hyaline thrombi,
microhemorrhages, and diffuse thrombosis of peripheral small
vessels contribute to disease severity (Carsana et al., 2020; Fox
et al., 2020). One reason for vascular cell damage may be the high
concentration of circulating proinflammatory cytokines and
ferritin in severe COVID-19 patients (Carubbi et al., 2021;
Gao et al., 2021). The latter is also reflected by high
concentrations of circulating soluble P-selectin in COVID-19
patients who were admitted to intensive care units (ICU)

compared to patients who did not require intensive care
(Goshua et al., 2020). In addition, elevated levels of
thrombomodulin (a membrane-bound regulator of
coagulation, which is released during endothelial cell injury)
were also associated with an increased risk of mortality in
COVID-19 patients (Goshua et al., 2020). Similarly, increase
of circulating endothelial cells in patients with COVID-19
correlated with a higher number of platelets and lymphocytes
and the inflammatory endothelial marker soluble vascular cell
adhesion molecule 1 (sVCAM1) (Guervilly et al., 2020).

Taken together, severe COVID-19 may present as a
hyperinflammatory prothrombotic disease with multiorgan
involvement affecting the entire vasculature. The presence of
pre-existing cardiovascular disease (CVD) is associated with an
increased risk for a more severe disease course and higher
mortality. Moreover, long-term consequences of SARS-CoV-2
infection, now referred to as “Long COVID-19 syndrome (LCS)”
(Venkatesan, 2021), negatively impact the heart and the vascular
system, however, these effects are poorly understood (Figure 2).
Hence, in this review, we will focus on the impact of SARS-CoV-2

FIGURE 1 | Overview of comorbidities of severe COVID-19 and CVD.
Percentages indicate the frequency of certain comorbidities and COVID-19
(This figure was made with biorender.com).
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infection on the vascular system and detail how this pathogen
promotes chronic inflammation and vascular damage, whichmay
contribute to the development of LCS.

We will first discuss SARS-CoV-2 and its entry route, followed
by a summary of what has been described about COVID-19 and
CVD. Thereafter, the impact of SARS-CoV-2 on vascular cells
will be debated based on what has been reported in vivo and
in vitro (Figure 3). Finally, LCS and its potential impact on
cardiovascular health will be summarized.

2 SARS-COV-2

2.1 Viral Replication, S (Spike) Protein and
Angiotensin-Converting Enzyme 2 (ACE2)
The replication cycle of SARS-CoV-2 is initiated when the S
protein binds the entry receptor ACE2 and is subsequently
cleaved by a host protease such as TMPRSS2 at the plasma
membrane, or endosomal cathepsins, allowing for either direct
fusion with the plasma membrane or the endosome (Hoffmann
et al., 2020; V’kovski et al., 2021b). Inside the infected cell
structural proteins of the virus such as the S and N protein,
are generated and, together with the newly formed genomic RNA,
assembled (V’kovski et al., 2021b) and released from the infected
cell via exocytosis. These newly formed virus particles are ready to
infect new cells in the next round of viral infection.

The S protein is a type I transmembrane glycoprotein sharing
around 73% sequence identity with SARS-CoV (Lu et al., 2020).

Further, it is a trimer composed of subunit 1 (S1), which contains the
receptor binding domain (RBD), and the subunit 2, which is linked
to S1 through a junction region that is susceptible to cleavage by
furin. Cleavage of S2 by TMPRSS2 leads to the exposure of the fusion
peptide allowing for fusion of the viral-host membranes facilitating
the entrance of the virus into the cell (Hoffmann et al., 2020; Jaimes
et al., 2020; Walls et al., 2020; Papa et al., 2021).

Thus, S protein initiates the entrance of the virus to the host
cell through direct binding of the RBD with the peptidase domain
of ACE2, which is described as the main entry receptor for SARS-
CoV-2 (Hoffmann et al., 2020; Yan et al., 2020).

Despite RNA viruses being prone for mutations or adaptations
in their viral genome, the evolutionary changes of SARS-CoV-2
have been limited until now (Korber et al., 2020). Most
adaptations have been observed in the S protein, with the first
report being the single amino acid change D614G (Glycine (G)
substitutes Aspartic acid (D) in the amino acid position 614),
becoming the first predominant strain circulating in Europe.
Compared with the original strain isolated from patients in
Wuhan, D614G was able to enhance the spread of the virus
including an increased infectivity which resulted in higher viral
titers in infected patients and more severe disease outcome
(Korber et al., 2020; Onder et al., 2020).

The variants alpha, beta, gamma, delta, and omicron have
important mutations in the S protein leading to an increased
transmission and/or hospitalization rate, respectively (Li M. et al.,
2021; Cameroni et al., 2021; Kumar et al., 2021). Most variations
occurred in the RBD resulting in a higher affinity for the receptor

FIGURE 2 | Overview of cardiovascular complications in acute and long-term COVID-19. The acute phase of COVID-19 induces pulmonary, cardiac, and
peripheral thrombotic events and can trigger arrythmia and myocardial injury. Persistent inflammation and accompanying vascular dysfunction foster cardiac
complications such as palpitations and myocarditis. Ongoing (chronic) vascular inflammation increases vascular stiffness and reduces micro- and macrovascular
dilatation (This figure was made with biorender.com).
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ACE2 and in supporting escape from antibody neutralization,
this includes for example variants B.1.1.7, B.1.526 and B.1.429 of
the alpha lineage (Wang P. et al., 2021; Liu et al., 2021; West et al.,
2021). The beta variant B.1.351 was the one responsible for the
high transmission rate in South Africa with the highest frequency
of mutations located in the S protein, namely 77% (Wang P. et al.,
2021). The delta variant B.1.617.2 first described during the
second wave of COVID-19 in India, gained particular
attention as it demonstrated an increased infectivity allowing a
faster virus spreading and enhanced immune evasion due to a
reduced susceptibility to antibodies elicited by earlier SARS-CoV-2
variants or the respectively designed vaccines (Augusto et al., 2021;
Planas et al., 2021). Omicron (B.1.1.529), now taking over, was first
detected in November 2021 and is substantially mutated compared
to any previously described SARS-CoV-2 variant, including 37 S
protein residue substitutions in the predominant haplotype. This

high mutation rate suggests that omicron might escape infection-
and vaccine-elicited antibody treatment (HoffmannM. et al., 2021;
Cameroni et al., 2021). Altogether, multiple studies have
demonstrated the importance of the S protein in the infectivity
and pathogenicity of the SARS-CoV-2. Mutations of the S protein
are a key factor determining stability/strength of the S protein and
ACE2 interaction thus consequently also spreading and immune
evasion.

ACE2, the most important entry receptor of SARS-CoV-2, is a
homologue of ACE and is a key anti-inflammatory component of
the Renin Aldosterone Angiotensin System (RAAS), an
important regulator of blood pressure as well as renal, vascular
and myocardial function and physiology (Donoghue et al., 2000;
Crackower et al., 2002; Paul et al., 2006; Santos et al., 2018;
Beyerstedt et al., 2021; Kuriakose et al., 2021) ACE2 is an anti-
inflammatory regulator by converting Ang II into Ang (1–7) and

FIGURE 3 | Effects of SARS-CoV-2 infection on the endothelium as observed in patients and different experimental models. (A) In endothelial cells in various organs
(such as depicted in the middle of the figure) from COVID-19 patients, SARS-CoV-2 RNA or protein has been inconsistently detected. The ACE2 expression is rather
found in pericytes than endothelial cells. Infection of vascular cells can happen from the abluminal side at primary sites of infection in the respiratory tract or from the
luminal side in case of hematogenous SARS-CoV-2 dissemination to distal organs. To what extent infection of endothelial cells and/or pericytes occurs and
contributes to COVID-19 pathology is unclear. (B) Endothelial dysfunction is not only observed in the pulmonary vasculature, but throughout the body as a hallmark of
severe COVID-19 and may be one of the main contributors to increased frequency of thrombotic events. Elevated levels of markers of endothelial activation and injury
including von Willebrand factor (vWF), angiopoietin-2 (Ang-2), soluble forms of several cell adhesion molecules and glycocalyx degradation products, and increased
numbers of detached endothelial cells are found in COVID-19 patients’ blood. Postmortem analysis of multiple organs has revealed perivascular immune cell infiltrates,
decreased endothelial barrier properties as visualized by fibrinogen leakage and endothelial apoptosis in some of the COVID-19 patients. (C) Besides direct infection of
vascular cells, immune-mediated mechanisms such as excessive pro-inflammatory cytokine production or complement-hyperactivation can play a major role in causing
endothelial dysfunction. (D) Macro- and microvascular endothelial cells isolated from different anatomical locations (such as depicted in the middle of the figure) in
conventional monolayer culture were not permissive to infection by SARS-CoV-2. (E) When ACE2 was introduced into endothelial cells by lentiviral transduction
productive infection occurred. ACE2 expression in endothelial cells might also be induced by shear stress or certain interferons. (F) In co-culture models such as hiPSC-
derived vessel organoids consisting of endothelial cells and pericytes, productive infection occurred, (G)whereas in lung-on-a-chip-models infection of the lung epithelial
compartment can lead to infection and cytopathogenic effects of the adjacent endothelial cells (This figure was made with biorender.com).
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Ang (1–9) (Donoghue et al., 2000; Kuriakose et al., 2021). ACE2
exists in two forms, a transmembrane (tACE2) and a soluble
(sACE2) form. The ACE2 ectodomain contains a proteolytic
cleavage site for ADAM-17, a disintegrin and metalloprotease
that releases sACE2 into the circulation (Kuriakose et al., 2021).
sACE2 preserves the N-terminal peptidase domain and is
therefore able to interact with the S protein of SARS-CoV-2,
resulting in the formation of a complex that can enter the cell
through endocytosis via the Angiotensin-II-receptor type 1
(Yeung et al., 2021). This mechanism has also been addressed
in a therapeutic manner by increasing the concentration of
recombinant sACE2 (rsACE2) in the human circulation to
prevent infection. Both sACE2 and rsACE2 scavenge SARS-
CoV-2, reducing infectivity in cell culture assays (Cocozza
et al., 2020; Glasgow et al., 2020) and in a human vascular
organoid model in vitro (Monteil et al., 2020). Nevertheless, at
the beginning of the COVID-19 pandemic, ACE2 inhibitors or
angiotensin receptor blockers, already used for treatment of
hypertension, were discussed to have negative effects in
COVID-19 patients (Fang et al., 2020; Hammoud et al., 2021),
as the treatment leads to an increase in ACE2 expression levels
(Hoffmann et al., 2020). Yet, recent clinical data indicate that
COVID-19 patients with ongoing hypertension therapy have
improved clinical outcomes (Yang G. et al., 2020; Bean et al.,
2020; Meng et al., 2020; Safizadeh et al., 2021).

ACE2 is highly expressed together with the TMPRSS2 protease
in type II pneumocytes in the lung, in absorptive enterocytes in
the intestine, and secretory goblet cells in the nasal epithelium
(Lukassen et al., 2020; Ziegler et al., 2020). Both molecules were
also shown to be present in heart, cornea, and kidney. These
observations might explain why COVID-19 is a systemic disease
with multiple tissues involved in the progression and clinical
outcome (Hikmet et al., 2020; Sungak et al.,2020).

2.2 Virus Detection in Pulmonary and
Extrapulmonary Tissue
SARS-CoV-2 is a respiratory pathogen that mainly transmits via
aerosols and targets epithelial cells located in the respiratory tract,
which represent the main entry port and primary replication site
inside the human body (Jonsdottir and Dijkman, 2016). The
respiratory tract can be divided into two distinct compartments,
namely the upper (from the nasal cavity to the larynx) and lower
(from the trachea to the bronchi) respiratory tract, known for
their different ambient temperatures of approximately 33 and
37 °C, respectively (Mcfadden et al., 1985). Both compartments
are lined with multiple types of epithelial cells including ciliated,
mucus-secreting goblet, columnar and basal cells in a
pseudostratified manner (Zepp and Morrisey, 2019). The
cellular tropism of the SARS-CoV-2 is described to be ciliated
(Hou et al., 2020; Ahn et al., 2021; Ravindra et al., 2021; Robinot
et al., 2021) or non-ciliated cells (V’kovski et al., 2021a). Infection
with SARS-CoV-2 leads to transcriptional alterations in ciliated
and non-ciliated cells, which eventually cause activation of the
innate immune response and subsequent cytokine release (Chen
et al., 2021). In addition, the different temperatures of the upper
and lower respiratory tract can have a distinct effect on the

replication kinetics. In vitro, SARS-CoV-2 infection leads to ±10-
fold higher viral titers in well-differentiated airway epithelial cells
incubated at 33°C compared to 37°C (V’kovski et al., 2021a). In
vivo, the higher viral loads might also be linked to an altered
innate immune response or to varying cellular host factors that
facilitate viral infection (Hoffmann H.-H. et al., 2021; Yan et al.,
2021). However, despite its preference for the respiratory tract,
SARS-CoV-2 is also observed in other tissues of COVID-19
patients. Similarly, the blood vessels supplying these organs
are also prone to damage by SARS-CoV-2-mediated
inflammation. Therefore, the following paragraphs will provide
a short overview of important organs which may also be targeted
by SARS-CoV-2.

Gastrointestinal Tract: Viral transcripts could be observed in
stool and rectal swabs during later stages of viral infection,
suggesting that the oral route is another pathway for viral
entry (Parasa et al., 2020; Xiao et al., 2020). Indeed, staining
for SARS-CoV-2 N protein in different anatomical regions of the
gastrointestinal tract of COVID-19 patients revealed positive
signals in the glandular epithelium of the stomach, duodenum,
and rectum, but not in the esophagus, which correlated with
ACE2 expression of the respective tissue (Xiao et al., 2020).

Liver: Immunohistology analysis of liver biopsies taken from
COVID-19 patients post-mortem showed that viral RNA can be
visualized using in situ hybridization in blood clots and in the
endothelium of the liver (Sonzogni et al., 2020). Hepatocytes
might be susceptible to direct viral infection since syncytium
formation and apoptotic cells have been observed in COVID-19
patients, which could also explain the hepatic impairment (Wang
Y. et al., 2020).

Central Nervous System (CNS): A broad range of neurological
symptoms observed in patients with mild to severe disease such as
ageusia, anosmia, headache, fatigue, deficits in cognitive and
memory function, delirium or altered mood suggests that
SARS-CoV-2 also affects the CNS (Ellul et al., 2020; Pajo
et al., 2021; Rogers et al., 2021). Viral RNA and/or protein in
various brain regions post-mortem has been infrequently and
inconsistently detected (Meinhardt et al., 2021; Pajo et al., 2021;
Song et al., 2021) and viral RNA has been rarely detected in
cerebrospinal fluid of SARS-CoV-2 infected patients (Lewis et al.,
2021). Inoculation of human pluripotent stem cell (hPSC)-
derived brain organoids with SARS-CoV-2 revealed absent or
mostly abortive infection of neurons and/or astrocytes, pointing
towards the notion of limited neurotropism and replication in the
CNS of SARS-CoV-2 (Ramani et al., 2021). The frequent loss of
smell and the high viral load in the olfactory epithelium of
COVID-19 patients (Meinhardt et al., 2021) brought the CNS
entry route via axons of the olfactory receptor cells into focus, but
this has not been confirmed (Khan et al., 2021).

Other potential targets of SARS-COV-2 in the CNS are the
choroid plexus epithelial cells (Jacob et al., 2020; Pellegrini et al.,
2020; Yang A. C. et al., 2021; Fuchs et al., 2021) brain
microvascular endothelial cells (Bhatnagar et al., 2021;
Meinhardt et al., 2021; Nuovo et al., 2021; Schwabenland
et al., 2021; Song et al., 2021) and pericytes (Bocci et al., 2021).

Pancreas: In post-mortem material of COVID-19 patients, the
viral N protein was detected in β-cells located in islets of the
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pancreas, which have been proposed as potential site of viral
replication (Müller et al., 2021; Qadir et al., 2021). This resulted in
an impaired production of insulin upon stimulation with glucose
in vitro and could be the reason for the hyperglycemia observed in
COVID-19 patients (Zhu L. et al., 2020; Affinati et al., 2021;
Montefusco et al., 2021; Müller et al., 2021).

Kidney: Acute kidney injury has been observed in COVID-19
patients including collapsing glomerulopathy, heavy proteinuria
and podocytopathy (Braun et al., 2020; Cheng et al., 2020; Shetty
et al., 2021). Viral transcripts have been detected in all
compartments of the kidney with the highest levels found in
the glomeruli (Puelles et al., 2020).

To conclude, infection of SARS-CoV-2 is not limited to the
respiratory tract. An overview of the different sites of viral
infection is provided in the Table 1. Putative direct infections
of heart and vasculature will be detailed in Section 3 and
Section 4.

3 COVID-19 and Cardiovascular
Disease (CVD)
CVD is a class of diseases affecting the heart and blood vessels.
CVD includes for example coronary and cerebral artery diseases
as well as peripheral artery disease, thromboembolic disease, and
venous thrombosis. The most abundant pathophysiology
underlying CVD is atherosclerosis, describing a disease of the
arterial intima caused by modified lipids and infiltrating
inflammatory immune cells mediating endothelial dysfunction.
The inflamed intima grows and forms a plaque, which may
progress and calcify. Luminal extension of the intimal lesion
may lead to vasoconstriction or occlusion while unstable plaques
may rupture and cause arterial thrombosis (Soehnlein and Libby,
2021). Causal mechanisms vary but the underlying risk factors for
CVD are high blood pressure, smoking, diabetes mellitus, lack of
exercise, obesity, and high blood cholesterol - among others.
Moreover, age and sex co-determine the individual CVD risk
(Stark and Massberg, 2021).

3.1 Clinical Observations
CVD manifestations in COVID-19 patients are observed
regularly in hospitalized cases. Several types of complications
have been identified and their etiology is truly diverse (Chung
et al., 2021). Combination of CVD and SARS-CoV-2 infection
closely correlates with the severity of COVID-19 progression and
mortality (Chung et al., 2021) (Figure 1). These observations
were also made with SARS-CoV, which showed similar
tendencies (Booth et al., 2003; Chan et al., 2003).
Retrospective analysis of COVID-19 patients revealed CVD in
8% to approximately 62% of all hospitalized cases (Zhou P. et al.,
2020; Giustino et al., 2020; Sandoval et al., 2020). About one third
of all COVID-19 related deaths had underlying CVD (Guo et al.,
2020; Onder et al., 2020). The latter suggests a synergistic
activation of cardiovascular inflammatory pathways that are
associated with both COVID-19 and cardiometabolic disorders
(Kadosh et al., 2020). For example, cells of the cardiovascular
system, in addition to the respiratory tract, may also represent a
direct target for infection with SARS-CoV-2 due to the expression

of ACE2 (Groß et al., 2020). ACE2 is also known to be
overexpressed in diabetic patients which may facilitate
COVID-19 in this population (Cummings et al., 2020;
Richardson et al., 2020). Out of 5,700 COVID-19 patients in a
cohort from New York, 34% had pre-existing diabetes
(Cummings et al., 2020). Further, hypertension and obesity are
frequent among Northern Americans (Chobufo et al., 2020), and
both comorbidities correlated with a higher mortality of COVID-
19 patients (Woolf et al., 2020). Early on in China, the case fatality
rate for people with hypertension was about 6 and 10.5% for
people with pre-existing CVD (Wu and Mcgoogan, 2020). In a
global meta-analysis of 45 studies with a total of 18,300 patients,
diabetes was identified as the second common comorbidity after
hypertension, and those patients were prompted to a higher risk
of in-hospital death independently of age and sex (Silverio et al.,
2021). Also Italy reported that patients with comorbidities such as
hypertension, hypercholesterolemia, diabetes, and heart disease
have an increased risk of mortality (Grasselli et al., 2020; Huang
et al., 2020).

3.2 Specific Factors of COVID-19 and CVD
Coagulopathies: Coagulopathies have also been associated with
SARS-CoV-2 infection, independently of pre-existing CVD. In
fact, D-dimer levels (a fibrin degradation product used to
determine the activation of the coagulation cascade), are
enhanced in acute COVID-19 cases (Zhou F. et al., 2020;
Berger et al., 2020). Different reports have found a correlation
between the increase of D-dimer levels and COVID-19 severity
with an about 7-fold increase in critically ill patients, associated
with an increased mortality risk (Zhou F. et al., 2020; Yao Y. et al.,
2020). In addition, neutrophils and monocytes are strongly
contributing to the development of ARDS and thrombosis by
inducing hyperinflammation. Neutrophil Extracellular Traps
(NETs) are extracellular decondensed chromatin structures
mixed with antimicrobial proteins and released in response to
infections. Biomarkers of NET formation were increased in the
circulation of patients with severe COVID-19 and related to
thrombotic events as for example high levels of neutrophil-
platelet aggregations were detected (Middleton et al., 2020;
Nicolai et al., 2020; Dennison et al., 2021).

Atherosclerosis: Ill-alliance of atherosclerotic endothelial
dysfunction and SARS-CoV-2-triggered acute inflammatory
responses may accelerate atherosclerotic lesion growth and
plaque rupture. This notion is supported by reports from cases
of acute myocardial infarction with spontaneous dissection of
coronary arteries in patients affected by severe manifestations of
COVID-19 (Courand et al., 2020; Long et al., 2020; Romiti et al.,
2020). Moreover, statin treatment, which is the gold standard
therapy to lower cholesterol levels in CVD patients to limit
hyperlipidemia, was shown to reduce in-hospital mortality in
patients with diabetes mellitus and COVID-19 (Saeed et al., 2020)
and its use was also independently associated with lower intensive
care unit admission (Tan et al., 2020). Most likely benefits of
statin treatment in this context are rather due to its anti-
inflammatory and not to its lipid-lowering function. In
addition, it seems that lesion composition does impact on the
risk for CVD-associated complications in COVID-19 since
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higher calcification was correlated with a higher risk of severe
COVID-19 (Dillinger et al., 2020). To shed more light on the
impact of atherosclerosis for COVID-19 Das and Podder
retrieved data of differentially expressed genes for both,
atherosclerosis, and COVID-19, from publicly available
microarray and RNAseq datasets and performed a protein-
protein interaction network analysis. Further functional
enrichment revealed inflammatory response genes to be more
abundant, particularly MyD88 was identified as a crucial linker of
atherosclerosis and COVID-19 (Das and Podder, 2021).

Non-modifiable risk factors: Moreover, and similar to CVD,
age and sex are risk factors for severe COVID-19 (Fernandez-
Martinez et al., 2021; Wehbe et al., 2021). Italy, hit hardly by the
first wave in early 2020, reported that patients older than 64 years
had an increased mortality risk compared to younger individuals

(Grasselli et al., 2020) and people with more than 70 years of age
even displayed a case fatality rate of 22.7% (Onder et al., 2020). In
addition, available data points towards an increased risk of
mortality for male patients with COVID-19 worldwide (Perez-
Lopez et al., 2020). An overview of shared comorbidities of CVD
and COVID-19 is provided in Figure 1.

3.3 COVID-19 and the Heart
According to literature, human cardiomyocytes express only
relatively low amounts of ACE2 compared to other heart
residing cells such as pericytes or fibroblasts (Chen et al.,
2020; Hikmet et al., 2020; Litviňuková et al., 2020; Nicin et al.,
2020). Yet, individuals with dilated cardiomyopathy have almost
two-fold higher expression of ACE2 in the left ventricle (Bristow
et al., 2020). Cardiomyocytes may be directly infected by SARS-

TABLE 1 | Overview of various organs susceptible to viral infection with SARS-CoV-2 and their clinical symptoms in COVID-19 patients.

Organ/tract Cellular tropism Viral
transcripts
detected

Viral immune-
staining

in material
of COVID-19
patients (IF
or IHC)

Clinical symptoms
in COVID-19

patients

References

Respiratory tract (Non-) ciliated cells + + Acute respiratory distress syndrome (ARDS) (Hou et al., 2020
Ahn et al., 2021;
Ravindra et al., 2021
Robinot et al., 2021
V’kovski et al. 2021a)

Gastrointestinal
tract

Glandular epithelium,
enterocytes

+ + Diarrhea, nausea, and vomiting (Parasa et al., 2020
Xiao et al., 2020)

Liver Hepatocytes,
Cholangiocytes

+ + Elevated levels of metabolic enzymes (ALT, AST, GGT),
steatosis, fibrosis and cirrhosis, thrombosis

(Lagana et al., 2020
Sonzogni et al., 2020
Lopez-Mendez et al.,
2021)

Heart Cardiomyocytes + + Heart injury, arrythmias, myocarditis (Huang et al., 2020
Rey et al., 2020
Coromilas et al., 2021
Pellegrini et al., 2021)

Pancreas β-cells + + Pancreatitis, onset type 1 Diabetes Mellitus, ketoacidosis (Akarsu et al., 2020
Hadi et al., 2020
Wang et al., 2020a
Pandanaboyana et al.,
2021)

Kidney Proximal tubular
epithelium, glomeruli

+ + Glomerulopathy, heavy proteinuria and podocytopathy (Braun et al., 2020
Cheng et al., 2020
Puelles et al., 2020
Shetty et al., 2021)

Reproductive
system

Not determined ? ? Hypospermatogenesis (Yang et al., 2020b
Ma et al., 2021b)

Central nervous
system

Not clear +/− +/− Cognitive deficits, headaches (Meinhardt et al., 2021
Pajo et al., 2021
Song et al., 2021)

Vasculature Endothelial cells;
pericytes

— + Endothelial dysfunction (He et al., 2020
Teuwen et al., 2020
Varga et al., 2020
Maccio et al., 2021)
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CoV-2 or harmed in an indirect manner through the
inflammatory response induced by the virus (Yang L. et al.,
2021). Human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) were shown to be susceptible to
viral infection (Bojkova et al., 2020; Sharma et al., 2020; Wong
et al., 2020; Yang L. et al., 2021; Marchiano et al., 2021) and
mimicked cytopathic features of COVID-19 patients’ hearts
(Bermejo-Martin et al., 2020; Marchiano et al., 2021). A recent
study using an in vivo hamster model for SARS-CoV-2 infection
showed direct infection of mature cardiomyocytes and revealed
that the same mechanism of monocyte recruitment via the
chemokine CCL2 occurs in vivo, as observed in hiPSC-CMs or
in samples from mature cardiomyocytes (Yang L. et al., 2021).
Furthermore, active viral replication was reported in infected
hiPSC-CMs with a significant increase in the mRNA expression
of inflammatory cytokines like IL-6, TNF-α and IL-8 (Wong
et al., 2020). Similarly, these cytokines are elevated in COVID-19
patients with co-morbidities such as chronic kidney disease,
diabetes, and hypertension (Del Valle et al., 2020). Elevated
levels of TNF-α were also measured in patients with
congestive heart failure and were shown to contribute to organ
damage (Del Valle et al., 2020). SARS-CoV-2 infection also
affected the electrical and mechanical function of hiPSC-CMs
in the form of a reduced contractile function, lower
depolarization of the spike amplitude and lower electrical
conduction velocity due to the absence of the Ca2+ flux into
the cells (Yang L. et al., 2021; Marchiano et al., 2021).

Initially it was thought that vascular complications in COVID-
19 patients, such as small vessel endothelitis and endothelial
dysfunction in the heart (Maccio et al., 2021), were caused by
direct viral infection of the endothelial cells (discussed in more
depth in Section 4). Nevertheless, accumulating evidence now
suggests that damage of the vascular system is rather mediated by
an augmented inflammatory response (Garnier-Crussard et al.,
2020). Indeed, up to 31% of COVID-19 patients in ICU units
showed thromboembolic events (Klok et al., 2020), which
contributes to the rate of cardiac injuries in the most severely
ill COVID-19 patients (Roberts et al., 2020). Other acute cardiac
symptoms associated with COVID-19 diagnosis were arrythmias,
myocardial injury, and acute heart failure (Rey et al., 2020).
Arrythmia was one of the main cardiac symptoms, with 23%
of patients who presented with atrial fibrillation (81,8%), followed
by bradyarrhythmia (22,6%), and ventricular arrythmia (20,7%)
(Rey et al., 2020; Coromilas et al., 2021). Myocardial injuries were
reported in 17% of the hospitalized COVID-19 patients and
echocardiograms of this group also revealed pericardial
effusion and right ventricular myopericarditis (Rauch S. et al.,
2020). Echocardiographic analysis elucidated that 13% of patients
without a pre-existing CVD condition developed severe cardiac
disease, and out of this group 3% progressed to myocardial
infarction or myocarditis (Dweck et al., 2020).

Another group of patients prone to get severe COVID-19 are
patients with congenital heart disease (CHD) (Lewis et al., 2020;
Zareef et al., 2020; Haiduc et al., 2021; Strah et al., 2021). CHD
represents one of the most common developmental defects,
affecting nearly 1 in 100 newborns and 90% of these patients
present with isolated cardiac defects. Notably, although

complicated COVID-19 courses are more common in CHD
patients, the mortality risk seems not to be significantly affected
in adults with CHD andCOVID-19 (Strah et al., 2021). In pediatric
patients, Down syndrome with common atrioventricular canal is
the most described CHD correlating with more severe COVID-19.
However, mortality appears to be only increased in patients with
aortic stenosis and complex CHD-like hypoplastic left heart
syndrome (Strah et al., 2021). In general, larger cohort studies
and more in-depth careful evaluations are required to better define
subgroups within CHD patients carrying a higher risk of COVID-
19 associated mortality.

In conclusion, CVD and COVID-19 form an ill-alliance
promoting severe cases (Figure 2). In particular, hypertension and
diabetes in the elderly and pre-existing CHD increase the risk for
severe disease courses with cardiac involvement. Nevertheless, while
hyperinflammation certainly fosters cardiac disease in COVID-19,
further studies still need to clarify to which extent mature human
cardiomyocyte are susceptible to direct infection with SARS-CoV-2
or whether the observed cardiac effects are mostly due to damage
caused by an augmented general inflammatory response.

4 COVID-19 AND VASCULAR CELLS

4.1 General Aspects of Vascular Biology
Endothelial cells line the inner wall of arteries, capillaries, and
veins. Although endothelial cells share common properties, they
exhibit large phenotypic variability to fulfill their organotypic
functions. Their phenotypic heterogeneity arises not only from
their position along the vascular tree, but more prominently from
their tissue of origin (Aird, 2012; Kalucka et al., 2020; Paik et al.,
2020). The endothelium functions as a selective and adaptive
barrier to control the exchange of nutrients, metabolites, proteins
and cells between the blood and the neighboring tissue.
Endothelial cells govern vascular tone and flow through
constant production of vasodilating nitric oxide (Humphrey
and Schwartz, 2021), and maintain blood fluidity through
production of a plethora of anticoagulant and antithrombotic
factors (Neubauer and Zieger, 2021). The luminal side of all
endothelial cells is covered by the glycocalyx, a non-uniform and
complex layer composed of proteoglycans and glycoproteins, that
is critically involved in regulation of all endothelial functions
(Villalba et al., 2021). On the abluminal side of endothelial cells,
perivascular fibroblasts, macrophages, adventitial and mural cells
contribute to organotypic functional and structural integrity of
vessels (Holm et al., 2018). While large arteries are surrounded by
several layers of vascular smooth muscle cells (VSMCs) and
perivascular adipose tissue, smaller vessels possess less layers.
Venules and veins are incompletely covered with VSMCs, and
capillaries and post-capillary venules contain pericytes as the only
mural cell type, which are embedded in the same extracellular
matrix as the endothelial cells (Van Dijk et al., 2015; Holm et al.,
2018). Inadequate control of any of the above-mentioned
endothelial cell functions is regarded as endothelial
dysfunction and is proposed to be a major contributor to
COVID-19 pathology including hypercoagulation (Teuwen
et al., 2020; Maruhashi and Higashi, 2021; Nicosia et al., 2021).
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4.2 Vascular Pathologies During COVID19
4.2.1 Increased Thrombotic Events
COVID-19 is accompanied by a higher incidence rate of venous
and arterial thrombotic events compared to historical influenza
virus cohorts (Helms et al., 2020; Poissy et al., 2020; Burkhard-
Koren et al., 2021). Meta studies comprising several thousands of
hospitalized COVID-19 patients estimated average incidence
rates of 17% for venous thromboembolic events (VTE) (of
which 12% were deep vein thrombosis (DVT) and 7.1%
pulmonary embolism (PE)) or 18% for VTE (of which 14%
were DVT and 8% PE), respectively (Gratz et al., 2021;
Jiménez et al., 2021). In line with the high incidence of
thrombotic events, elevated D-dimer levels were found in
hospitalized COVID-19 patients (Berger et al., 2020), which
often correlated with COVID-19 severity (Tang et al., 2020;
Thwaites et al., 2021). D-Dimer levels in COVID-19 patients
exceeded the ones found in patients infected with influenza virus
(Mei et al., 2020). Another commonly reported parameter that
infers the procoagulant state of COVID-19 patients is the
imbalance of von Willebrand factor (vWF) and ADAMTS13
(cleaves ultra-large vWF multimers), as evidenced by increased
vWF antigen levels and decreased ADAMTS13 activity in
hospitalized COVID-19 patients’ plasma (Favaloro et al.,
2021). Notably, the increased vWF to ADAMTS13 ratio was
accentuated in COVID-19 patients with a fatal outcome
(Bazzan et al., 2020; Delrue et al., 2021; Mancini et al.,
2021; Rodriguez Rodriguez et al., 2021; Sweeney et al.,
2021). Microthrombi, which arise in situ in the
microvasculature of several organs, have been associated
with multiorgan-injury in COVID-19 and are more frequent
in patients with arterial hypertension or other comorbidities
(Parra-Medina et al., 2021). Several autopsy reports noted the
relatively high occurrence of microvascular thrombi in lungs
(Ackermann et al., 2020; Carsana et al., 2020; Falasca et al.,
2020; Lax et al., 2020; Menter et al., 2020; D’agnillo et al.,
2021), heart (Pellegrini et al., 2021; Sang et al., 2021), liver
(Rapkiewicz et al., 2020; Kondo et al., 2021), kidney
(Rapkiewicz et al., 2020; Akilesh et al., 2021) and the brain
(Bryce et al., 2021; Meinhardt et al., 2021; Pajo et al., 2021;
Thakur et al., 2021). The finding that VTE, arterial thrombosis
and microthrombi co-exist during COVID-19 suggests that
these thrombotic events may be driven by several mechanism
acting in concert (Gu et al., 2021) including altered platelet
function (thrombocytopathy) (Manne et al., 2020; Zaid et al.,
2020), endothelial dysfunction (endotheliopathy) (Maruhashi
and Higashi, 2021), altered complement function (Stenmark
et al., 2021), and features underlying immunothrombosis
i.e., increased NET formation (Nicolai et al., 2020;
Bonaventura et al., 2021). Here, we focus on the
contribution of endothelial cells to COVID-19-associated
vasculopathies including thrombotic events.

4.2.2 Clinical Findings of Endothelial Dysfunction in
COVID-19 Patients
Circulating Biomarkers: Multiple biomarkers indicative of
endothelial activation and dysfunction have been found to be
elevated in COVID-19 patients with a severe disease course

(Lampsas et al., 2021), whereby vascular structural changes
have been observed in autopsied organs (Ackermann et al.,
2020; Varga et al., 2020; Lee et al., 2021). Pulmonary artery
wall thickening due to VSMC hypertrophy, and a decreased
lumen size were observed by post-mortem analysis of lungs
from COVID-19 patients compared to individuals that were
infected with the pandemic A/H1N1/2009 influenza virus
(Suzuki et al., 2021). However, most of the studies so far
suggest that the endothelium participates in the manifestation
and severity of COVID-19. For instance, vWF was significantly
increased in the plasma of hospitalized COVID-19 patients
indicating endothelial activation and a prothrombotic state in
severely ill patients (Fraser et al., 2020; Goshua et al., 2020; Pine
et al., 2020; Cotter et al., 2021; Thwaites et al., 2021). Other
circulating surrogate markers of endothelial activation such as
angiopoetin-2, an autocrine antagonist of Tie-2 receptor
promoting vessel-destabilizing effects, was found to correlate
with COVID-19 severity (Goshua et al., 2020; Pine et al., 2020;
Thwaites et al., 2021) and to be predictive for mortality (Pine
et al., 2020). Soluble forms of cell adhesion molecules E- and
P-selectin also correlated with COVID-19 severity suggesting
type-2 endothelial cell activation in patients with more severe
disease (Goshua et al., 2020; Pine et al., 2020; Oliva et al., 2021;
Thwaites et al., 2021). Several autopsy studies reported vascular
inflammation as seen by perivascular immune cell infiltrates in
the lung (Ackermann et al., 2020; Aid et al., 2020; Matschke et al.,
2020; D’agnillo et al., 2021; Lee et al., 2021; Maccio et al., 2021;
Schwabenland et al., 2021) in some of the COVID-19 patients.
Sustained endothelial activation and inflammation may lead to
endothelial injury during COVID-19 disease course. Along this
line, increased circulating glycocalyx degradation products
including syndecan-1, chondroitin sulfate and hyaluronic acid
were found in COVID-19 patients and were associated with
disease severity (Fraser et al., 2020; Queisser et al., 2021).
Moreover, increased activity of glycocalyx modifying enzymes
such as heparinase and hyaluronidase were measured (Queisser
et al., 2021). In addition, increased numbers of circulating
endothelial cells, which putatively detached from the vessel
wall due to pathological insults, were found to correlate with
COVID-19 severity (Guervilly et al., 2020). Interestingly, elevated
circulating endothelial cell frequency persisted in recovered
convalescent patients suggesting long-term effects of SARS-
CoV-2 infection on vascular function (Chioh et al., 2021).
Endothelial cell detachment and apoptosis lead to exposure of
pro-thrombotic mediators such as basement membrane
proteins,- and abluminally deposited vWF (Neubauer and
Zieger, 2021).

Endothelial Barrier Function: Altered endothelial barrier
properties during SARS-CoV-2 infection were observed by the
presence of perivascular immune cell infiltrates. In line with this
finding, a damaged alveolar capillary barrier was also visualized
by discontinuous immunoreactivity of components of endothelial
tight junctions and endothelial basement membrane constituents
(D’agnillo et al., 2021). Indicative for a compromised blood-brain
barrier, fibrinogen leakage into brain parenchyma was seen in
more than 50% of the assessed brains in three case series of
COVID-19 patients (Bocci et al., 2021; Lee et al., 2021;
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Schwabenland et al., 2021). Further, assessment of cerebrospinal
fluid from COVID-19 patients presenting with neurological
symptoms revealed elevated albumin levels, suggesting that
impaired blood-brain barrier or blood-cerebrospinal fluid
barrier properties may play a role during the COVID-19
disease course (Bernard-Valnet et al., 2021).

Complement System: The complement system is an important
part of the innate immune response to bacterial and viral
pathogens. Its activation by three different pathways (classical,
lectin and alternative) triggers a cascade of enzymatic activation
leading to inflammation, phagocytosis and elimination of the
pathogen and ultimately results in activation of the adaptive
immune response (Merle et al., 2015). Activation of the
complement system can also damage endothelial cells,
especially if those are already dysfunctional and do not
sufficiently express protective, membrane-bound complement
regulators (Stenmark et al., 2021). Upregulation of certain
complement components in circulation and complement
deposition in lung tissue of SARS-CoV-2 infected patients
(Cugno et al., 2020; Holter et al., 2020; Magro et al., 2020;
Macor et al., 2021) and Rhesus macaques (Aid et al., 2020)
were reported. It was shown that SARS-CoV-2 N protein
activates the lectin pathway of complement activation (Flude
et al., 2021), while others reported that N protein does not activate
complement, but S protein activates complement via the
alternative pathway (Yu et al., 2020). Interestingly, Ma et al.
found that compared to hospitalized patients suffering from
influenza virus infection or those with other forms of acute
respiratory failure, hospitalized patients with COVID-19
displayed elevated and distinct markers of complement
activation (Ma L. et al., 2021). Namely activation via the
alternative pathway (as indicated by increased ratio of iC3b:
C3, increased factor B, sC5b and Ba concentrations in plasma)
and that an increased activation of the alternative pathway also
correlated with worse COVID-19 outcome (Ma L. et al., 2021).
These studies suggest that complement activation may contribute
to endothelial dysfunction and disease severity in COVID-19
(Stenmark et al., 2021).

Dermal Microvasculature: Higher incidence rates of cutaneous
manifestations such as pernio (chilblain)-like acral lesions
compared to pre-pandemic times were associated with mild
COVID-19 (Agnihothri and Fox, 2021). Pernio-like acral
lesions in COVID-19 patients mostly occur on the toes, are
characterized by pink papule that develop into violaceous
purpuric lesions and are linked to changes in dermal
microvasculature resulting in edema and lymphocyte
infiltration (Agnihothri and Fox, 2021). These lesions are not
to be confused with skin manifestations observed in severe
patients with acral livedoid eruptions and retiform purpura,
which arise due to a systemic hypercoagulant state
(Agnihothri and Fox, 2021; Do et al., 2021).

Together these studies highlight that vascular cell dysfunction
is not only limited to the lung, but the complete COVID-19
pathogenesis shows that the vasculature of multiple other organs
are affected as well (Figure 3). However, the specific mechanisms
inducing aberrant endothelial function at the different tissue sites
only begin to be elucidated. Whether cytopathogenic effects

driven by direct endothelial infection with SARS-CoV-2 play a
role and which immune-mediated mechanisms are primarily
inducing endothelial pathology during COVID-19 is a matter
of current investigations. Moreover, whether infection of other
vascular cells such as pericytes, VSMC or vascular fibroblasts
occurs and contributes to endotheliopathy during COVID-19 is
still unclear and needs to be further investigated.

4.3 ACE2 Expression in Vascular Cells in
Situ
The current consensus is that the cell surface expression of ACE2
(and the host protease TMPRSS2) is the main determinant for the
cellular tropism of SARS-CoV-2, although additional co-
receptors and a number of alternative entry receptors have
been proposed (Baggen et al., 2021). Meta-analysis of various
recent single-cell RNAseq datasets of mouse brain, heart and lung
identified pericytes and certain VSMC populations as the only
vascular cell types expressing ACE2, which was corroborated by
immunofluorescent analyses, however this data is still
preliminary (He et al., 2020). Notably, TMPRSS2 was not
detected in the ACE2-positive mural cell types (He et al.,
2020). Other investigators also found, by single-cell RNAseq of
mouse brain and high-resolution microscopy of cerebral
microvessels, that pericytes are the predominant vascular cell
type expressing ACE2 (Wenzel et al., 2021). Similarly, in human
heart single-cell and single-nucleus RNAseq data sets, pericytes
expressed ACE2, while endothelial cells did not (Chen et al.,
2020). A meta-analysis of a big number of single-cell and single-
nucleus RNAseq data sets from various human tissues revealed
that neither endothelial cells nor pericyte and VSMC co-express
ACE2 and TMPRSS2 (Muus et al., 2021). Strikingly, endothelial
cells showing ACE2 expression also expressed markers of
pericytes, suggesting technical difficulties in the separation of
endothelial cells from pericytes for transcriptomic analyses and
insufficient separation could introduce false-positive ACE2-
expression in endothelial cells (Mccracken et al., 2021). While
results from RNAseq studies rather point to an absence of ACE2-
expression in endothelial cells, several histology-based studies in
human post-mortem samples demonstrated scattered expression
of ACE2 in presumably endothelial cells. For instance, positive
ACE2-immunoreactivity was observed in pulmonary
microvascular endothelial cells (Wong et al., 2021) and
increasingly with smaller vessel size in the heart (Maccio et al.,
2021). ACE2-positive brain microvascular endothelial cells were
found in the basal ganglia of COVID-19 and control patients
(Kirschenbaum et al., 2021), in the Medulla Oblongata
(Meinhardt et al., 2021) and in the frontal cortex
predominantly in patients that suffered from dementia or
hypertension (Buzhdygan et al., 2020). None of these studies
unequivocally showed that vascular ACE2-immunoreactivity
indeed stems from endothelial cells, instead the signal could
also be pericyte derived. In line, in islet and exocrine
capillaries of the human pancreas, ACE2-expression was
detected in pericytes (Coate et al., 2020). Another very recent
report showed that ACE2 immunolabelling in microvessels of the
human frontal cortex coincided with the pericyte marker
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PDGFR-β and not endothelial CD31 (Bocci et al., 2021).
Altogether, expression of ACE2 by endothelial cells is still a
matter of debate and whether ACE2 expression in endothelial
cells and pericytes differs in various vascular beds, position along
the vascular tree or certain (pathological) conditions needs to be
investigated in more detail (Figure 3).

4.4 Are Endothelial Cells Directly Infected by
SARS-CoV-2 in Vivo?
In primary sites of infection such as the alveoli, SARS-CoV-2 can
reach the lung capillaries at the air-blood barrier from the abluminal
side in case of disruption of the alveolar epithelial cell layer. In distant
organs endothelial cells can only be targeted by viral infection from
the luminal side in case of hematogenous virus spread. Viral RNA in
blood (serum or plasma) in COVID-19 patients has been detected
most prominently in more severely ill patients (Bermejo-Martin
et al., 2020) and blood RNA levels could act as predictor for disease
outcome (Li Y. et al., 2021; Hogan et al., 2021; Jacobs et al., 2021;
Rodríguez-Serrano et al., 2021). However, it has not been confirmed
that viral RNA found in blood also stems from active virions or
rather from RNA fragments (Andersson et al., 2020).

Early post-mortem studies suggested that endothelial cell
dysfunction in the lung and kidney is directly caused by
endothelial cell infection with SARS-CoV-2 (Ackermann et al.,
2020; Varga et al., 2020). S protein positivity in CD34 + cells lining
pulmonary vessels, in presumably endothelial cells of the renal
glomeruli and the seminiferous tubules was reported (Yao et al.,
2021). Co-expression of ACE2 and SARS-CoV-2 spike mRNA
was observed by in situ hybridization in microvascular cells in the
lung of some COVID-19 patients (Wong et al., 2021).
Interestingly (D’agnillo et al., 2021), reported infrequent
N-protein immunoreactivity in endothelial cells and pericytes
of small and medium sized pulmonary vessels exclusively in
COVID-19 patients with high viral load and a short time
interval between symptom onset and death (D’agnillo et al.,
2021). A study employing imaging mass spectrometry of lung
sections from COVID-19 deceased patients found S protein
positive VSCMs (Rendeiro et al., 2021) indicating that VSMCs
could also be a cellular target of SARS-CoV-2. In contrast, other
studies reported no detection of SARS-CoV-2 proteins/RNA in
pulmonary vessels (Schaefer et al., 2020; Massoth et al., 2021),
neither were SARS-CoV-2 proteins detected at any time point in
pulmonary vasculature of infected Syrian gold hamsters (Allnoch
et al., 2021). In the heart of COVID-19 patients, independent of
the occurrence of microthrombi, infected endothelial cells could
not be observed, but low numbers of infected myocytes were
found (Pellegrini et al., 2021). In contrast, another study that
detected clinically relevant SARS-CoV-2 transcripts in 41/95
autopsied hearts, reported the more frequent detection of N
protein in ICAM-1+ endothelial cells than in alpha-actinin+

cardiomyocytes (Brauninger et al., 2021). In brain autopsy
case series of COVID-19 deceased patients, detection of viral
protein or RNA in brain capillaries in various brain regions such
as the brain stem and the olfactory bulb were found in a very low
number of patients (Bhatnagar et al., 2021; Meinhardt et al., 2021;
Nuovo et al., 2021; Schwabenland et al., 2021; Song et al., 2021).

In summary, viral entry into endothelial cells of (micro)vessels
in multiple organs is not a widely observed phenomenon. Since
some of the mentioned studies do not use multicolor staining, it is
unclear, whether identified viral proteins or RNA are really
located in endothelial cells or rather in mural cells, as shown
in Figure 3. Another confounding factor is the specificity of
antibodies used to detect viral proteins, namely several groups
have reported inconclusive results due to positive staining in
control tissues (Yang A. C. et al., 2021; Meinhardt et al., 2021;
Wong et al., 2021).

4.5 In Vitro Infection of Endothelial Cells
With SARS-CoV-2
4.5.1 Static Cell Cultures
Observations in the vasculature of COVID-19 patients triggered
research on endothelial cells in vitro to shed light on the
possibility of direct viral infection of endothelial cells by
SARS-CoV-2. Most of these studies have applied static
monolayer cultures of primary human endothelial cells derived
from different anatomical locations of the human body using
inoculums to initiate the viral infection. For instance, endothelial
cell types such as umbilical vein endothelial cells (HUVECs),
blood outgrowth and aortic endothelial cells, as well as lung-,
brain-, cardiac- and glomerular microvascular endothelial cells,
were subjected to viral infection, however, none of these cell were
susceptible to direct infection by SARS-CoV-2 (Nascimento
Conde et al., 2020; Ahmetaj-Shala et al., 2020). Others showed
marginal viral replication in coronary artery endothelial cells after
5 days of infection (Wagner et al., 2021). Moreover, in an
established human blood-brain barrier model where CD34 +

umbilical cord blood-derived endothelial cells were grown on
filter inserts in co-culture with bovine pericytes, no productive
infection of endothelial cells was detected. Also, no impairment of
their barrier function was observed, and an inflammatory
response remained absent, indicating that these brain-like
endothelial cells were not affected by infection with SARS-
CoV-2 (Constant et al., 2021). In contrast, although active
viral replication remained absent in primary lung endothelial
cells, an inflammatory response was induced during SARS-CoV-2
infection, indicating that there is an interaction between primary
lung endothelial cells and the virus (Caccuri et al., 2021).

Since direct viral infection of endothelial cells in vitro under
static conditions is unlikely, as shown in Figure 3, other
methods have been applied to make endothelial cells
susceptible. One method to infect endothelial cells is to
transduce brain- and pulmonary-derived endothelial cells
with lentiviruses containing the coding sequence of ACE2,
indicating that efficient replication in these cells is possible,
but overexpression of ACE2 is required (Nascimento Conde
et al., 2020) (Figure 3). Another study has shown with non-
physiological inoculums of 10 and 100 multiplicity of infection
(MOI) that pulmonary and cardiac endothelial cells show
minimal viral replication due to low ACE2 expression
(Mccracken et al., 2021). However, infection with these
unnatural high amounts of infectious virus particles raises
the question if one is still investigating normal entry of the
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virus or if this might be enforced by alternative pathways like
macropinocytosis (de Vries et al., 2011).

4.5.2 More Advanced in Vitro and Co-culture Systems
As the infection of static monolayers of endothelial cells was
proven to be inefficient, alternative cell culture methods have
been applied as well. For instance, transwell filter systems allow
for initiation of the viral infection via different compartments,
namely apical and basolateral. The study of Schimmel et al.
(2021) showed that the virus cannot actively replicate in
umbilical cord and microvascular endothelial cells, but SARS-
CoV-2 is able to enter the cell via either the apical or basolateral
side (Schimmel et al., 2021). Moreover, a pro-inflammatory
response of the cells was observed, indicative of an interaction
of the virus with the cells. In addition, the endothelial cells are
exposed to shear stress in vivo, and therefore employing
microfluidic devices is a potentially interesting technique
mimicking the natural vascular environment. Endothelial cells
that were seeded in a polydimethylsiloxane (PDMS) channel
containing a collagen hydrogel were infected under flow, but
also this method did not allow for viral replication of SARS-CoV-2
in the endothelial cells (Schimmel et al., 2021). This is an
interesting finding since it has been described that shear stress
could upregulate ACE2 expression in brain microvascular
endothelial cells, thereby allowing for attachment of the S
protein, as shown in (Kaneko et al., 2021) Figure 3.

Another approach is the human lung-on-a-chip model which
allows for the culturing of cells in different compartments in an
air-liquid interface (ALI, Figure 3). It has been shown for
instance that human type I and II alveolar epithelial cells
could be cultured in the apical compartment under ALI, while
in the basolateral compartment endothelial cells were seeded and
exposed to a pulsatile flow (Thacker et al., 2021). Viral infection of
the alveolar cells had a direct effect on the endothelial cells by
disrupting the confluent cell layer integrity after 3 days of
infection, whereby the S protein could be observed in both cell
types but viral replication remained absent (Thacker et al., 2021).
A different lung-on-a-chip model showed that epithelial cells
elicit an inflammatory response after 28 h of infection, while the
endothelial chamber did not show a positive signal for the
staining of the S protein (Deinhardt-Emmer et al., 2021). Also,
the endothelial cell layer remained intact, indicating that these
cells were not affected by the infected epithelial cells (Deinhardt-
Emmer et al., 2021).

In the vascular wall endothelial cells are accompanied by other
cell types like smooth muscle cells and pericytes. Currently, there is
minimal knowledge if other vascular cell types play a role in the
clinical manifestations in COVID-19-patients, despite their
expression of the ACE2 receptor (Hamming et al., 2004; He
et al., 2020; Nicin et al., 2020). However, one hypothesis is that
the junction leakage of the endothelium is due to the infection of
vascular pericytes, which secrete secondary signals that induce
activation of microvascular endothelial cells (He et al., 2020). It
has been described that iPSC-derived brain pericyte-like cells are
susceptible to infection with SARS-CoV-2 whereby viral replication
is observed over 72 h (Wang L. et al., 2021).Moreover, iPSC-derived
blood vessel organoids containing endothelial cells and pericytes

were infected with SARS-CoV-2 and viral replication could be
observed on a transcriptional level after 3- and 6-days post infection
(Monteil et al., 2020) (Figure 3). Primary human pericytes and
astrocytes were directly infected without exhibiting any successful
viral replication and cytopathogenic effects (Constant et al., 2021).
Altogether, more research should be performed on cells that are
present in the vascular wall and perivascular locations since these
can have an immense effect on the surrounding tissue, including
endothelial cells.

In summary, although the endothelium is severely affected in
vivo in COVID-19 patients, these observations could not be
reenacted in vitro in static cell cultures, and more complex cell
culture systems in the form of microfluidic channels or lung-on-
a-chip models need to be used to detect vascular cell damage or
-activation by SARS-CoV-2. In addition, co-cultures of
endothelial cells with pericytes showed viral replication,
indicating that other cells present in the vascular wall, or the
perivascular environment might be susceptible for viral infection
and that endothelial cells respond to secondary signals secreted
from these infected cells. In this context, the route of infection
necessitates consideration. In a situation in which SARS-CoV-2
reaches the vessel via the blood, infection of vascular wall- and
perivascular cells would require an endothelial barrier deficiency
allowing virus to gain access to these abluminal cell types.

4.5.3 In Vitro Investigations of Indirect Mechanisms
Affecting Endothelial Function
Recent in vivo and in vitro findings suggest that direct infection of
endothelial cells is rather unlikely. Indirect mechanisms because
of epithelial cell infection and exuberated inflammation can play a
more important role in causing endothelial damage in COVID-19
(Figure 3). To this end, plasma-induced cytotoxicity in
pulmonary vascular endothelial cells 1 h after treatment was
assessed and correlated with disease severity and concentration
of circulating markers of endothelial damage and organ
dysfunction (Rauch A. et al., 2020). Another study did not
observe cytotoxicity upon treatment of HUVECs with plasma
from hospitalized COVID-19 patients, but observed increased
glycocalyx shedding. Concomitantly these COVID-19 plasma
samples exhibited elevated heparinase I level (Potje et al.,
2021). Treatment of pulmonary microvascular endothelial cells
for 16 h with plasma from hospitalized COVID-19 patients
induced dysregulated biosynthesis and degradation of
endothelial hyaluronic acid. The resulting shift towards lower
molecular weight hyaluronic acid fragments in the medium
reduced barrier properties of the endothelial cells (Queisser
et al., 2021). In contrast, the permeability of brain-like
endothelial cells was not changed after 48 h treatment with
plasma from COVID-19 patients that developed severe disease
(Constant et al., 2021). In severe COVID-19, platelet
hyperactivation is often observed (Manne et al., 2020; Zaid
et al., 2020), and treatment of endothelial cells with
supernatant of activated platelets induced a strong
upregulation of pro-inflammatory and procoagulant pathways
as assessed by RNAseq. This effect was attributed to the
significantly increased transcription of S100A8/A9 in platelets
of COVID-19 patients and circulating levels of its protein product
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MRP8/14, a known pro-inflammatory heterodimer secreted by
activated platelets and neutrophils, was also found to correlate
with COVID-19 severity (Barrett et al., 2021).

In summary, these studies show that indirect effects of SARS-
CoV-2 infection mediated through plasma can be observed also
in cultured endothelial cells, highlighting the importance of
employing more sophisticated culture system that mimic
certain physiological features.

5 LONG-COVID SYNDROME (LCS) IN CVD

Around 40–45% of SARS-CoV-2 infections in humans remain
symptom free (Oran and Topol, 2020). However, 60–80% of the
patients discharged from the hospital have reported at least one
residual symptom 50 days after testing positive for SARS-CoV-2
(Carfì et al., 2020; Halpin et al., 2021) and 35% of non-hospitalized
individuals reported symptoms 14–21 days after initial diagnosis
(Tenforde et al., 2020). Hence, more attention needs to be paid to the
potential for long-term complications in patients diagnosed with
COVID-19. The term long-Covid Syndrome (LCS) includes a
number of different terms such as “Post-acute COVID-19” and
“Post-COVID-19 syndrome”. The latter are distinguished according
to their duration, into “Post-acute COVID-19″, describing patients
who still have symptoms after 4–12 weeks, while patients with
symptoms after more than 12 weeks are classified under the
“Post-COVID-19 syndrome” (Venkatesan, 2021). The most
described symptoms for LCS are fatigue, headache, attention
deficit, hair loss, and shortness of breath. In addition, chest pain,
palpitations, and tachycardia have also been described, as well as
depression and neurologic impairment and dysfunction
(Nalbandian et al., 2021). According to current knowledge, these
symptoms may persist for months and are also found in patients
with mild disease courses (Lopez-Leon et al., 2021; Venkatesan,
2021). With respect to cardiovascular complications studies in
deceased COVID-19 patients revealed arterial and venous
thromboembolism, strongly suggesting that SARS-CoV-2
negatively affects the vasculature throughout the body with so far
largely unknown long-term consequences.

5.1 Long Term Consequences of COVID-19
on the Heart
In the context of CVD, chest pain is the most described symptom in
patients with prior COVID-19 regardless of severity. Case numbers
vary from 5 to 21% two to six months after disease onset with a
decreasing trend the longer the disease has been diagnosed
(Carvalho-Schneider et al., 2021; Romero-Duarte et al., 2021).
Palpitations are also reported with a frequency of about 10% two
to six months after COVID-19 diagnosis (Huang et al., 2021;
Romero-Duarte et al., 2021) and heartbeat irregularities have
raised the question of a more frequent occurrence of arrhythmias
after COVID-19. Patients who required ICU treatment had an
enhanced average risk of developing acute arrhythmia (Coromilas
et al., 2021), but there have been no conclusive studies as to whether
these arrhythmias persist in the setting of LCS (longer than
3months). Palpitations may also indicate tachycardia, but the

data on LCS are still limited (Blitshteyn and Whitelaw, 2021),
especially since previous studies on e.g., QT interval (time taken
for ventricular depolarization and repolarization) changes were also
performed in patients receiving drugs that affect these intervals (e.g.,
chloroquine) (O’connell et al., 2021). COVID-19 patients were also
associated with a higher risk of myocardial damage andmyocarditis,
as magnetic resonance imaging (MRI) screenings revealed
pathologic changes in both hospitalized patients and those with
mild courses. These changes included increased T1 (spin-lattice
relaxation time) and T2 (spin-spin relaxation time) values
(associated with heart damage) as well as late gadolinium
enhancement (LGE) as retrieved from analysis 30–70 days after
COVID-19 diagnosis (Knight et al., 2020; Puntmann et al., 2020).
The longest follow-up study was performed 189 days after diagnosis
of COVID-19 in 74 patients, but the number of patients with
pathologic MRI was very low at that point and T1, T2 and LGE
were not significantly changed in this group compared to healthy
subjects (Joy et al., 2021). However, the values of affected patients
vary widely, which is certainly due to small study cohorts, among
other factors (Knight et al., 2020; Puntmann et al., 2020; Kotecha
et al., 2021; Pan et al., 2021). Reports with more than 100 patients
and analyses for more than 1month after COVID-19 diagnosis are
rare and almost absent for more than 1,000 patients. Therefore, a
large study with 1,597 athletes 1 month after COVID-19 diagnosis
should be highlighted here. Myocarditis (mostly asymptomatic) was
detected in 2.3% of the patients and no significant change in T
relaxation time-values was reported (Daniels et al., 2021). Athletes
deserve special attention because in this group even a slight decrease
in cardiac function, which would be asymptomatic in normal
individuals, has a significant impact on performance. Another,
population-based analysis, of approximately 35,000 young
Americans of both sexes aged 12–19 years revealed a mean
myocarditis rate of 0.08%. Around 60% of these cases were
diagnosed 19–82 days after infection, however this data is still
preliminary (Singer et al., 2021).

In addition, studies have also shown a correlation of elevated
serum troponin levels and a higher risk of myocardial injury and
substantially higher mortality in COVID-19 patients (Knight et al.,
2020; Shi et al., 2020; Wei et al., 2020; Caro-Codón et al., 2021).
Notably, in a large study with 1,053 patients with COVID-19 in
whom troponin-I, B-type natriuretic peptide, C-reactive protein,
ferritin, and D-dimer were measured, only troponin was identified
as the only independent predictor of 30-days mortality (Manocha
et al., 2021). Nevertheless, earlier studies with a smaller number of
patients did report significant changes in D-dimer after an average
of 80 days post COVID-19 diagnosis and increases seemed to be
more common in hospitalized patients older than 50 years
(Townsend et al., 2021; Von Meijenfeldt et al., 2021).

5.2 Long Term Consequences of COVID-19
on the Vasculature
Data on long term consequences of COVID-19 disease on vascular
function are even more scarce than studies on the heart. Early on
during the pandemic researchers learned that acute COVID-19 is
associated with severe pulmonary and extrapulmonary vascular
inflammation, both on the macro- and microvascular level
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(Ackermann et al., 2020). In addition, pulmonary and
extrapulmonary thromboembolism are common complications,
determining initial and maybe also long-term consequences of
COVID-19 disease (Madjid et al., 2020). Moreover, some cases of
a type 3 hypersensitivity reaction were reported to contribute to
vascular inflammation in COVID-19 patients (Roncati et al., 2020)
and the highly proinflammatory cytokine response initiated by
SARS-CoV-2 is also believed to cause endothelial damage (Cao,
2020). Cytokines like TNF-α and IL-1β are well known for their pro-
inflammatory effects on the endothelium and may play a key role in
vascular dysfunction in COVID-19 (Norooznezhad and Mansouri,
2021). However, only a few studies with small cohort sizes
investigated the long-term impact of COVID-19 on the
vasculature. Sollini et al. (2021) evaluated if 2-deoxy-2-[18F]
fluoro-D-glucose ([18F]FDG) was able to mark persistent
inflammation by examining 10 COVID-19 patients with
persisting symptoms for more than 30 days. Imaging was done
by [18F]FDG positron emission tomography/computed
tomography ([18F]FDG-PET/CT) and showed that the total
vascular score was similar in the two groups. However, the
target-to-blood pool ratio was significantly higher in three
vascular regions (thoracic aorta, right iliac artery, and femoral
arteries) in the recovered cohort compared to the control group,
arguing for a persisting vascular inflammation. The authors further
suggest that the distinct feature (smooth linear pattern) of [18F]FDG
vascular uptake in LCS was similar to that observed in large vessel
vasculitis (Sollini et al., 2021). Analysis of acute phase markers,
endothelial cell activation, NET formation, and thrombin generation
in 50 patients 68 days after confirmed SARS-CoV-2 infection
showed sustained endothelial cell activation up to 10 weeks
following acute SARS-CoV-2 infection (Fogarty et al., 2021).
These data further suggest that endothelial dysfunction occurs
independently of ongoing acute phase response or NET
formation but is associated with enhanced thrombin generation.
The authors further hypothesize that shedding of thrombin from
endothelial cells may play a role in modulating the loss of normal
endothelial cell quiescence (Fogarty et al., 2021). Others investigated
the potential effects of SARS-CoV-2 on the systemic vasculature in
the arms and legs, examining 20 young adults. Using a cross-
sectional design, these two studies assessed vascular function
3–4 weeks after SARS-CoV-2 infection by Doppler ultrasound
measuring flow mediated dilation (FMD) in the arm and single
passive limbmovement in the leg. In addition, carotid-femoral pulse
wave velocity was assessed as a marker of arterial stiffness. Results
demonstrated significantly lower systemic vascular function and
higher arterial stiffness in participants testing positive for SARS-
CoV-2 compared with controls. These studies included male and
female participants but did not see sex specific effects (Ratchford
et al., 2021; Szeghy et al., 2021). In a similar study design but with a
longer follow up (3 months from diagnosis of COVID-19) 16 young
adults were investigated for brachial FMD, cerebral vasodilator
function and arterial stiffness. Out of these 16 participants, eight
were still symptomatic while the others did no longer display signs of
COVID-19. Subsequent analysis revealed that peripheral
macrovascular and microvascular vasodilation was significantly
reduced in young adults still being symptomatic, while
asymptomatic participants had similar vascular function

compared with controls. Cerebral vascular function and central
arterial stiffness were unaffected irrespective of COVID-19
symptoms persisting or not (Nandadeva et al., 2021).

In summary, because of the high rate of clinically significant
cardiovascular events during acute COVID-19, long-term adverse
events are expected (Nalbandian et al., 2021) (Figure 2). However,
these need to be better understood, studied in larger cohorts, and
most importantly, observed over a longer period of time after
infection to better distinguish between effects that resolve after
3–12months or truly result in chronic disease.

6 SUMMARY AND CONCLUSION

Taken together, clinical manifestations of SARS-CoV-2 infection
have been detected in several vascular beds (e.g., those of the lungs,
heart, and kidneys) and are not restricted to the pulmonary system.
According to current research, direct viral infection of
cardiomyocytes and pericytes together with dysfunctional
endothelium foster vascular dysfunction in COVID-19 patients.
Endothelial cells, putatively not prone to direct viral infection
through SARS-CoV-2, probably get indirectly activated via the
inflammatory immune response (“cytokine storm”) mediated by
the virus. In addition, pre-existing CVD renders COVID-19 patients
particularly vulnerable for downstream vascular complications and
COVID-19-associated mortality. Altogether, chronic inflammation
and vascular damage contribute to the acute pathophysiology of
COVID-19 but may also cause development of LCS.

Currently, significant efforts are being made to decipher both
the direct and indirect impact of SARS-CoV-2 on the vasculature.
In vitro studies, for example of endothelial cells, pericytes and
cardiomyocytes have already shed some light on how SARS-CoV-
2 directly affects vascular cells and explored which downstream
signaling events are involved. Yet, only limited conclusions on the
contribution of immune cells to vascular dysfunction during
SARS-CoV-2 infection can be drawn. More complex cell
culture/organoid systems to better exploit and resemble the
complex nature of cell-cell interactions need to be established
in vitro. To complement these in vitro studies and allow for
exploration of long-term consequences of dysfunctional
vasculature in COVID-19 well-defined in vivo models need to
be investigated. Hence, combined efforts are required to
comprehend the varied responses to SARS-CoV-2 infection to
pave the way for new treatment strategies, including those for the
long-term cardiovascular effects of COVID-19.
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