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Abstract
DNA	methylation	 (DNAm)	has	been	 reported	 to	be	associated	with	many	diseases	
and	with	mortality.	We	hypothesized	that	the	integration	of	DNAm	with	clinical	risk	
factors	would	improve	mortality	prediction.	We	performed	an	epigenome-	wide	asso-
ciation	study	of	whole	blood	DNAm	in	relation	to	mortality	in	15	cohorts	(n =	15,013).	
During	a	mean	follow-	up	of	10	years,	there	were	4314	deaths	from	all	causes	including	
1235	cardiovascular	disease	(CVD)	deaths	and	868	cancer	deaths.	Ancestry-	stratified	
meta-	analysis	of	all-	cause	mortality	 identified	163	CpGs	 in	European	ancestry	 (EA)	
and	17	 in	African	ancestry	 (AA)	participants	at	p < 1 × 10−7,	of	which	41	 (EA)	and	
16	(AA)	were	also	associated	with	CVD	death,	and	15	(EA)	and	9	 (AA)	with	cancer	
death.	We	built	DNAm-	based	prediction	models	for	all-	cause	mortality	that	predicted	
mortality	risk	after	adjusting	for	clinical	risk	factors.	The	mortality	prediction	model	
trained	 by	 integrating	DNAm	with	 clinical	 risk	 factors	 showed	 an	 improvement	 in	
prediction	of	cancer	death	with	5%	 increase	 in	 the	C-	index	 in	a	 replication	cohort,	
compared	with	the	model	including	clinical	risk	factors	alone.	Mendelian	randomiza-
tion	identified	15	putatively	causal	CpGs	in	relation	to	longevity,	CVD,	or	cancer	risk.	
For	example,	 cg06885782	 (in	KCNQ4)	was	positively	associated	with	 risk	 for	pros-
tate	 cancer	 (Beta	= 1.2, PMR =	 4.1	× 10−4)	 and	negatively	 associated	with	 longev-
ity	(Beta	=	−1.9,	PMR =	0.02).	Pathway	analysis	revealed	that	genes	associated	with	
mortality-	related	CpGs	are	enriched	for	 immune-		and	cancer-	related	pathways.	We	
identified	replicable	DNAm	signatures	of	mortality	and	demonstrated	the	potential	
utility	of	CpGs	as	informative	biomarkers	for	prediction	of	mortality	risk.
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1  |  INTRODUC TION

Despite	substantial	evidence	of	heritability	of	human	longevity	(h2 = 
10–	30%),	 genome-	wide	 association	 studies	 (GWAS)	 have	 reported	
few	loci	associated	with	human	longevity	(Deelen	et	al.,	2019; Pilling 
et al., 2017; Timmers et al., 2019; van den Berg et al., 2017).	DNA	
methylation	(DNAm),	the	covalent	binding	of	a	methyl	group	to	the	5′	
carbon	of	cytosine-		phosphate-	guanine	(CpG)	dinucleotide	sequences,	
reflects a wide range of environmental exposures and genetic influ-
ences	at	 the	molecular	 level	and	altered	DNAm	has	been	shown	to	
regulate	gene	expression	(Jones	&	Takai,	2001).	Recent	studies	have	re-
ported	DNAm	patterns	associated	with	age	in	humans	(Hannum	et	al.,	
2013; Horvath, 2013; Levine et al., 2018; Lu et al., 2019).	Estimates	
of	biological	age	based	on	DNAm	referred	to	as	 "epigenetic	age"	or	
"DNAm	age"	have	been	validated	in	numerous	studies,	although	the	
functions	of	these	age-	associated	CpGs	are	largely	unknown	(Horvath	
et al., 2015; Lu et al., 2019;	Marioni	et	al.,	2015;	Marioni	et	al.,	2015).	
DNAm	age	also	has	been	shown	to	be	predictive	of	many	age-	related	
diseases	and	of	 all-	cause	mortality	 (Chen	et	 al.,	2016; Dugué et al., 
2018; Levine et al., 2018; Lu et al., 2019;	Marioni	et	al.,	2015).

Despite	 the	 association	 of	 DNAm	 age	 with	 a	 variety	 of	 age-	
associated	outcomes,	age-	related	CpGs	are	different	from	those	that	
are	 most	 strongly	 associated	 with	 mortality.	 Relatively	 few	 DNAm	
studies	have	focused	on	mortality	as	 the	primary	outcome	 (Colicino	

et al., 2020; Svane et al., 2018;	Zhang	et	al.,	2017).	Moreover,	due	to	
sample	size	limitations,	most	DNAm	mortality	studies	have	not	typi-
cally	investigated	cause-	specific	mortality	such	as	death	due	to	cardio-
vascular	disease	(CVD)	and	cancer.	Additionally,	little	is	known	about	
the	 prediction	 performance	 of	 DNAm-	based	 mortality	 models	 and	
whether or not such approaches improve mortality prediction above 
and	beyond	established	clinical	risk	factors.

We	hypothesized	that	inter-	individual	variation	in	DNAm	is	asso-
ciated	with	all-	cause	mortality	risk	and	with	cause-	specific	mortality,	
and that we could build models incorporating CpGs that would im-
prove	mortality	prediction	beyond	established	clinical	risk	factors.	In	
this	study,	we	report	the	results	of	a	meta-	analysis	of	epigenome-	wide	
association	studies	 (EWAS)	of	all-	cause	mortality	and	cause-	specific	
mortality including death from CVD and cancer in up to 15,013 in-
dividuals	 from	 15	 prospective	 cohort	 studies	 in	 which	 DNAm	was	
measured	in	whole	blood.	We	built	all-	cause	mortality	risk	prediction	
models using penalized regression and machine learning methods and 
integrated	DNAm	and	 established	mortality	 clinical	 risk	 factors	 and	
validated	 the	 models’	 performance.	 Additionally,	 using	 Mendelian	
randomization, we identified putatively causal CpGs for mortality. 
Last, we investigated the downstream gene expression and pathway 
changes	 of	 the	 mortality-	related	 CpGs	 by	 testing	 associations	 be-
tween	DNAm	and	gene	expression.	Figure 1	 summarizes	 the	multi-	
step study design.
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2  |  RESULTS

2.1  |  Study population

Table 1 presents the major clinical characteristics of the 15,013 study 
participants	 including	 11,684	European	 ancestry	 (EA,	mean	 age	65,	
55%	 women)	 and	 3329	 African	 ancestry	 (AA,	 mean	 age	 59,	 70%	
women)	participants	from	15	cohorts	(Table	S1 summarizes additional 
clinical	characteristics).	Most	studies	had	fewer	than	15	years	of	mean	
follow-	up	(mean	values	ranged	from	6.4	to	13.7	years),	except	ARIC	
(mean	follow-	up	of	20.0	years	in	ARIC	EA	and	18.6	in	ARIC	AA	par-
ticipants,	respectively).	During	follow-	up	of	EA	participants,	2907	died	
of	any	cause,	688	of	CVD,	and	546	of	cancer;	among	AA	participants,	
1407	died	of	any	cause,	547	of	CVD,	and	322	of	cancer.

2.2  |  Ancestry- stratified epigenome- wide meta- 
analysis of all- cause mortality

At	Bonferroni-	corrected	p < 1 × 10−7	(~0.05/400,000),	we	identified	
163 CpGs whose differential methylation in whole blood was asso-
ciated	with	 all-	cause	mortality	 in	 EA	participants,	 and	17	CpGs	 in	
AA	participants,	after	adjustment	of	age,	sex,	lifestyle	factors,	clini-
cal	risk	factors,	white	blood	cell	types,	and	technical	covariates	(e.g.,	
batch).	Tables	S2–	S3 present the results for all CpGs at p < 1 × 10−5. 
Overall	genomic	inflation	in	meta-	analysis	(λ)	was	estimated	at	1.15	
or	less,	indicating	low	inflation	and	low	risk	of	false-	positive	findings.	
Even	though	cohort-	specific	analysis	showed	slightly	higher	genomic	
inflation	 in	some	cohorts	 (λ > 1.5 in two cohorts, Table S4),	 forest	
plots show that the results were not driven by results from one or 
several	cohorts	(Fig.	S1).	Sensitivity	analysis	results	including	meta-	
analysis after correcting for λ	 in	 each	 cohort,	 meta-	analysis	 after	
excluding results from two cohorts with λ >	1.5,	and	meta-	analysis	
after excluding RS cohort are included in Tables S5 and S6. Results 
of the sensitivity analysis remained consistent with the main results 
in	terms	of	direction	and	effect	estimates	with	Pearson's	correlation	
r =	0.99	(in	EA,	corrected	for	λ	in	each	cohorts),	r =	1.00	(in	EA,	after	
removing two cohorts with λ >	1.5),	r =	1.00	(in	EA,	after	removing	
RS)	and	r =	1.00	(in	AA,	corrected	for	λ	in	each	cohorts).

Among	 the	 177	 all-	cause	mortality-	related	CpGs	 (union	 set	 of	
EA	and	AA	results	at	p < 1 × 10−7),	the	vast	majority	of	significant	
CpGs	(151,	85%)	were	inversely	associated	with	mortality,	with	haz-
ards	ratios	(HRs)	<1	(range	0.72	to	0.89	per	standard	deviation	[SD]).	
Methylation	at	the	remaining	26	(15%)	CpGs	was	positively	associ-
ated with mortality, with HRs >1	(range	1.13	to	1.32).	The	177	CpGs	
are	annotated	to	121	genes	and	43	intergenic	regions.

2.3  |  Transethnic replication and 
sensitivity analysis

Of	the	163	all-	cause	mortality-	related	CpGs	in	EA	participants,	18	
(11%)	had	p <	0.0003	(0.05/163)	in	AA	participants;	of	the	17	CpGs	

in	AA	participants,	12	(71%)	had	p <	0.004	(0.05/17)	in	EA	partici-
pants. Table 2 displays the transethnic replicated CpGs including 27 
unique	CpGs.	The	top	3	transethnic	replicated	CpGs	in	EA	partici-
pants	remained	the	top	3	in	AA	participants,	including	cg16743273	
for MOBKL2A, cg18181703 for SOCS3, and cg21393163 at an inter-
genic	region	(Chr.1:	12217629).

Because	ARIC	had	 longer	 follow-	up	 than	 the	other	 cohorts,	 in	
sensitivity	analysis,	we	 truncated	ARIC	 follow-	up	at	15	years.	The	
HRs	for	the	significant	CpGs	(at	p < 1 × 10−5)	remained	consistent	
with the main results in terms of direction and effect estimates with 
Pearson's	correlation	r = 1.00 and r =	0.99	in	EA	and	AA	participants,	
respectively	(Tables	S2–	S3 and Fig. S2).

2.4  |  Associations of DNAm with CVD death and 
cancer death

In	comparison	with	results	for	all-	cause	mortality,	fewer	CpGs	were	as-
sociated	with	CVD	death	(at	p < 1 × 10−7, n =	4	in	EA,	and	n =	15	in	AA)	
and	cancer	death	(n =	0	in	EA,	and	n =	1	in	AA);	Tables	S7–	S8 report 
the corresponding results at p < 1 × 10−5.	Among	the	163	all-	cause	
mortality-	related	CpGs	identified	 in	EA	participants	at	p < 1 × 10−7, 
41	CpGs	were	associated	with	CVD	death,	16	with	cancer	death	and	
5	with	both	(at	p < 0.05/163, Table S2).	Among	the	17	CpGs	identi-
fied	in	AA	participants	at	p < 1 × 10−7, 15 were associated with CVD 
death,	 9	with	 cancer	 death	 and	 8	with	 both	 (at	p < 0.05/17, Table 
S3).	Figure 2 shows the effect sizes and direction of effect for the top 
CpGs	associated	with	all-	cause	mortality,	and	their	consistency	with	
the results of analyses of CVD death and cancer death. If a CpG was 
positively	correlated	with	all-	cause	mortality,	it	also	was	positively	cor-
related with CVD death and cancer death, and vice versa.

2.5  |  Mortality prediction model

To	investigate	whether	DNAm	can	be	used	to	predict	mortality	risk,	we	
constructed	 prediction	 models	 for	 all-	cause	 mortality	 and	 evaluated	
their	prediction	of	all-	cause	mortality,	CVD	death,	and	cancer	death.	To	
ensure	unbiased	validation,	we	split	 the	EA	cohorts	 into	separate	dis-
covery	and	replication	sets	(Figure 1	shows	the	analysis	flowchart).	The	
discovery	cohorts	consisted	of	8288	participants	(including	2173	deaths	
from	all	causes)	from	10	cohorts,	excluding	FHS	(n =	2427)	and	ARIC	
(n =	969),	which	were	used	as	 replication	cohorts.	The	meta-	analysis	
of	the	discovery	set	identified	74	CpGs	at	p < 1 × 10−7, 158 CpGs at 
p < 1 × 10−6, 357 CpGs at p < 1 × 10−5, 931 CpGs at p < 1 × 10−4, 2717 
CpGs at p < 1 × 10−3, and 28,323 CpGs at p <	0.05.	We	evaluated	three	
types	of	input	features:	(a)	clinical	risk	factors	only	(i.e.,	clinical	risk	factor	
models);	 (b)	CpGs	 identified	 in	 the	meta-	analysis	of	 the	discovery	 set	
(i.e.,	CpG	models);	and	(c)	the	 input	features	 including	both	CpGs	and	
clinical	risk	factors	(i.e.,	integrative	models).	We	also	compared	four	pre-
diction	methods	including	Elastic	net-	Cox	proportional	hazards	(Elastic-	
coxph; Friedman et al., 2010),	Random	survival	forest	 (RSF)	 (Ishwaran	
et al., 2008),	Cox-	nnet	(Ching	et	al.,	2018),	and	DeepSurv	(Katzman	et	al.,	
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6 of 22  |     HUAN et Al.

2018)	(see	Methods	for	details).	In	general,	the	four	prediction	methods	
did not show major differences in predicting mortality outcomes as as-
sessed	by	multiple	evaluation	metrics	(Table	S9 lists the evaluation met-
rics	across	all	four	methods).	To	simplify	the	presentation	of	results,	we	
focused	on	the	Elastic-	coxph	method	(Figure 3).

2.5.1  |  Clinical	risk	factors	strongly	predict	all-	cause	
mortality and CVD death

The	C-	index	of	the	clinical	risk	factor	models	(age,	sex,	and	12	clini-
cal	risk	factors)	was	0.80	for	all-	cause	mortality,	0.81	for	CVD	death	

F I G U R E  1 Overall	analytic	workflow
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and	0.77	for	cancer	death	in	FHS	(reflecting	the	average	values	of	10-	
fold	cross-	validation).	We	considered	12	clinical	risk	factors	including	
BMI,	smoking,	alcohol	consumption,	physical	activity,	educational	at-
tainment, and prevalent diseases including hypertension, CHD, heart 
failure,	stroke,	type	2	diabetes,	and	cancer.	Among	the	12	clinical	risk	
factors, prevalent cancer status was the major contributor to predict-
ing	 cancer	 death.	After	 excluding	 individuals	with	 prevalent	 cancer	
at	the	time	of	blood	draw	for	DNAm	measurements	(i.e.,	the	start	of	
follow-	up),	the	C-	index	of	the	clinical	risk	factor	model	was	0.57	for	
cancer	death.	Finally,	two	clinical	risk	models	were	built	using	the	opti-
mum	parameters	selecting	by	cross-	validation	(see	Methods).	The	first	

one	was	trained	using	all	FHS	participants	and	included	10	risk	factors	
selected	by	the	Elastic-	coxph	method	 (to	predict	all-	cause	mortality	
and CVD death, Table S10),	 and	 the	 second	was	 trained	using	FHS	
participants excluding those with prevalent cancer cases and including 
10	risk	factors	(to	predict	cancer	death,	Table	S11).	The	correspond-
ing	 C-	index	 of	 the	 clinical	 risk	 factor	model	was	 0.75	 for	 all-	cause	
mortality	 (HR	=	 2.64	per	SD	 in	 the	 risk	 score,	95%	CI	 [2.21,	3.15],	
p =	4.4	× 10−27),	0.81	for	CVD	death	(HR	=	3.51,	95%	CI	[2.58,	4.79],	
p = 2.1 × 10−15),	and	0.71	for	cancer	death	(excluding	prevalent	cancer	
samples, HR =	2.35,	95%	CI	[1.74,	3.18],	p = 2.3 × 10−8)	in	ARIC	EA	
participants	with	follow-	up	truncated	at	15	years	(Table 3).

TA B L E  2 Transethnic	replicated	all-	cause	mortality-	related	CpGs

CpG Chr Position Gene

Meta- analysis EA cohorts Meta- analysis AA cohorts
Transethnic 
replication

HR (95% CI) p- value HR (95% CI) p- value
Bonferroni- 
corrected P

Discovered	in	EA,	and	then	replicated	in	AA

cg16743273 19 2076833 MOBKL2A 1.15	(1.1–	1.21) 1.57E−09 1.24	(1.15–	1.33) 1.28E−08 2.08E−06

cg18181703 17 76354621 SOCS3 0.83	(0.8–	0.87) 6.15E−16 0.82	(0.77–	0.88) 3.71E−08 6.05E−06

cg21393163 1 12217629 0.84	(0.8–	0.88) 4.15E−12 0.84	(0.79–	0.89) 7.48E−08 1.22E−05

cg15310871 8 20077936 ATP6V1B2 1.18	(1.12–	1.25) 1.42E−08 1.19	(1.11–	1.26) 1.80E−07 2.94E−05

cg25953130 10 63753550 ARID5B 0.87	(0.83–	0.91) 4.67E−10 0.86	(0.81–	0.91) 1.22E−06 1.98E−04

cg05438378 15 67383736 SMAD3 0.88	(0.84–	0.92) 1.52E−08 0.85	(0.79–	0.91) 3.68E−06 6.00E−04

cg26470501 19 45252955 BCL3 0.84	(0.79–	0.88) 8.38E−12 0.81	(0.74–	0.89) 1.48E−05 2.42E−03

cg06126421 6 30720080 0.8	(0.75–	0.86) 2.48E−10 0.84	(0.78–	0.91) 1.69E−05 2.75E−03

cg02003183 14 103415882 CDC42BPB 1.19	(1.13–	1.26) 1.94E−11 1.16	(1.08–	1.24) 2.00E−05 3.26E−03

cg10950251 1 204466432 0.86	(0.82–	0.91) 4.05E−08 0.86	(0.8–	0.92) 2.34E−05 3.81E−03

cg17501210 6 166970252 RPS6KA2 0.86	(0.81–	0.9) 5.84E−09 0.87	(0.82–	0.93) 2.71E−05 4.41E−03

cg23598089 1 203652079 ATP2B4 1.13	(1.08–	1.18) 2.36E−08 1.14	(1.07–	1.22) 4.19E−05 6.84E−03

cg21993290 2 233703120 GIGYF2 0.88	(0.84–	0.92) 6.13E−08 0.87	(0.81–	0.93) 4.94E−05 8.06E−03

cg04987734 14 103415873 CDC42BPB 1.2	(1.15–	1.26) 2.53E−14 1.15	(1.07–	1.23) 5.77E−05 9.41E−03

cg20813374 6 35657180 FKBP5 0.84	(0.78–	0.89) 4.27E−08 0.84	(0.77–	0.91) 7.19E−05 1.17E−02

cg11927233 5 170816542 NPM1 0.84	(0.8–	0.89) 2.43E−09 0.89	(0.84–	0.95) 2.41E−04 3.92E−02

cg24859433 6 30720203 0.85	(0.81–	0.9) 7.15E−10 0.88	(0.82–	0.94) 2.70E−04 4.40E−02

cg01445100 16 88103339 BANP 1.23	(1.15–	1.32) 1.88E−09 1.24	(1.1–	1.39) 2.76E−04 4.49E−02

Discovered	in	AA,	and	then	replicated	in	EA

cg18181703 17 76354621 SOCS3 0.83	(0.8–	0.87) 6.15E−16 0.82	(0.77–	0.88) 3.71E−08 1.04E−14

cg21393163 1 12217629 0.84	(0.8–	0.88) 4.15E−12 0.84	(0.79–	0.89) 7.48E−08 7.05E−11

cg16743273 19 2076833 MOBKL2A 1.15	(1.1–	1.21) 1.57E−09 1.24	(1.15–	1.33) 1.28E−08 2.67E−08

cg25114611 6 35696870 FKBP5 0.86	(0.81–	0.91) 7.50E−07 0.81	(0.75–	0.87) 1.79E−08 1.28E−05

cg16411857 16 57023191 NLRC5 0.88	(0.84–	0.93) 4.40E−06 0.79	(0.74–	0.85) 2.40E−11 7.47E−05

cg16936953 17 57915665 TMEM49 0.91	(0.87–	0.95) 7.05E−05 0.82	(0.77–	0.88) 1.72E−08 1.20E−03

cg23570810 11 315102 IFITM1 0.86	(0.8–	0.93) 9.75E−05 0.77	(0.72–	0.83) 2.35E−11 1.66E−03

cg12054453 17 57915717 TMEM49 0.92	(0.88–	0.96) 1.57E−04 0.84	(0.79–	0.89) 2.93E−08 2.66E−03

cg18942579 17 57915773 TMEM49 0.91	(0.87–	0.96) 3.53E−04 0.8	(0.74–	0.86) 2.58E−09 6.01E−03

cg01041239 18 13222581 C18orf1 1.1	(1.04–	1.16) 1.29E−03 1.22	(1.14–	1.31) 1.04E−08 2.20E−02

cg03038262 11 315262 IFITM1 0.88	(0.82–	0.96) 1.85E−03 0.72	(0.66–	0.79) 5.14E−13 3.15E−02

cg24408769 6 15506085 JARID2 1.11	(1.04–	1.18) 2.17E−03 1.27	(1.17–	1.37) 1.29E−08 3.68E−02

Abbreviations:	AA,	African	ancestry;	CI,	confidence	interval;	EA,	European	ancestry;	HR,	hazard	ratio	per	standard	deviation.
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    |  9 of 22HUAN et Al.

2.5.2  |  DNAm	predicts	mortality	independently	of	
age	and	clinical	risk	factors

The	models	using	all-	cause	mortality-	related	CpGs	identified	in	the	
discovery	cohorts	as	 the	sole	 input	 feature	 (the	CpG	model)	were	
predictive	 of	 all-	cause	mortality,	 CVD	 death,	 and	 cancer	 death	 in	
the	replication	set.	As	shown	in	Fig.	S3, when more discovery CpGs 
were added to the model, the prediction performance metrics did 
not always improve. In FHS, the models with discovery CpGs at 
p < 1 × 10−3	showed	the	best	predictive	performance	for	all-	cause	
mortality	(C-	index	=	0.77)	and	CVD	death	(C-	index	=	0.82),	but	the	
model with discovery CpGs at p < 1 × 10−5 showed the best pre-
dictive	 performance	 for	 cancer	 death	 (excluding	 prevalent	 cancer	
cases,	 [C-	index	=	 0.65]).	 The	 final	 CpG	models	 that	 were	 trained	

using all FHS participants are provided in Table S12 including 76 
CpGs	to	predict	all-	cause	mortality	and	CVD	death,	and	in	Table	S13 
including	56	CpGs	to	predict	cancer	death	(excluding	prevalent	can-
cer	cases).	The	C-	index	of	the	CpG	models	with	the	best	predictive	
performance	in	ARIC	were	0.72	for	all-	cause	mortality	(HR	= 2.21, 
95%	CI	[1.86,	2.62],	P = 2.0 × 10−20),	0.77	for	CVD	death	(HR	= 2.62, 
95%	CI	[1.96,	3.51],	p = 9.9 × 10−11),	and	0.73	for	cancer	death	(HR	= 
2.22,	95%	CI	[1.67,	2.95],	p = 3.2 × 10−8, Table 3).	The	association	of	
the	mortality	risk	scores	calculated	by	the	CpG	models	with	mortal-
ity outcomes remained significant after adjusting for age, sex, and 
clinical	risk	factors;	for	all-	cause	mortality	(HR	=	1.68,	95%	CI	[1.37,	
2.07],	p = 9.8 × 10−7),	CVD	death	(HR	=	1.81,	95%	CI	[1.24,	2.64],	
p =	0.002),	and	cancer	death	(HR	=	2.04,	95%	CI	[1.46,	2.86],	P = 
3.0 × 10−5).

F I G U R E  2 Effect	sizes	(log	hazards	ratios)	and	95%	confidence	intervals	of	CpGs	related	to	mortality	identified	by	meta-	analysis,	
comparing	the	results	for	all-	cause	mortality,	CVD	death,	and	cancer	death.	(a)	Results	of	meta-	analysis	of	European	ancestry	(EA);	(b)	
Results	of	meta-	analysis	of	African	ancestry	(AA).	These	figures	showed	the	CpGs	associated	with	all-	cause	mortality	identified	by	the	meta-	
analysis,	which	were	also	associated	with	either	CVD	death	or	cancer	death	passing	Bonferroni-	corrected	threshold.	Figure 1a shows 51 
CpGs	in	EA,	including	41	CpGs	associated	with	CVD	death,	16	with	cancer	death,	and	5	with	both.	Figure 1b	shows	16	CpGs	in	AA,	including	
15 CpGs associated with CVD death, 8 with cancer death, and 7 with both
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10 of 22  |     HUAN et Al.

2.5.3  |  The	integrative	model	(trained	by	
CpGs	and	clinical	risk	factors)	moderately	improved	
upon	the	clinical	risk	factor	model	for	all-	cause	
mortality and CVD death, and substantially 
improved the prediction of cancer death

As	shown	in	Table 3, the integrative models demonstrated robustness 
for	predicting	mortality	outcomes,	with	a	good	C-	index,	HR,	and	low	

brier error rate. The final integrative models trained using data from all 
FHS participants are provided in Table S14	including	nine	clinical	risk	
factors	 and	36	CpGs	 to	 predict	 all-	cause	mortality	 and	CVD	death,	
and in Table S15	including	seven	clinical	risk	factors	and	42	CpGs	to	
predict	cancer	death	(excluding	prevalent	cancer	cases).	The	C-	index	
values	of	the	integrative	models	were	0.80	(FHS,	reflecting	the	aver-
age	values	of	10-	fold	cross-	validation)	and	0.77	 (ARIC)	 for	all-	cause	
mortality;	0.83	(FHS)	and	0.80	(ARIC)	for	CVD	death;	and	0.69	(FHS)	

F I G U R E  3 Kaplan–	Meier	estimates	of	mortality	risk	scores	with	respect	to	mortality	outcomes	in	ARIC	study.	(a)	Survival	curves	with	
respect	to	all-	cause	mortality;	(b)	survival	curves	with	respect	to	CVD	death;	(c)	survival	curves	with	respect	to	cancer	death.	The	results	
were	obtained	from	ARIC	European	ancestry	participants	with	follow-	up	truncated	at	15	years.	For	cancer	death,	we	excluded	samples	who	
had	any	type	of	cancer	before	blood	drawn	for	DNA	methylation	measurements.	The	mortality	risk	scores	for	(a)	and	(b)	were	computed	by	
the	model	(Table	S10),	and	for	(c)	was	computed	by	the	model	(Table	S11)

(a)

(c)

(b)
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and	0.76	(ARIC)	for	cancer	death.	Kaplan–	Meier	survival	curves	for	the	
mortality	risk	scores	(split	into	high-	,	middle-	,	and	low-	risk	groups)	in	
the	ARIC	EA	cohort	(computed	by	the	integrative	models	using	clini-
cal	risk	factors	and	CpGs	at	discovery	p < 1 × 10−6, Tables S14–	S15)	
illustrate	the	higher	death	rate	for	those	with	a	higher	mortality	risk	
score	(log-	rank	p < 1 × 10−6, Figure 4).	In	comparison	with	the	clinical	
risk	factor	models,	the	integrative	models	slightly	improved	prediction	
of	all-	cause	mortality	(0.7%	increase	in	C-	index	with	addition	of	CpGs	
in	FHS	and	2%	increase	in	ARIC),	and	of	CVD	death	(2%	increase	in	
C-	index	in	FHS,	but	no	increase	in	ARIC).	We	speculate	that	the	reason	
for	this	minor	increase	is	because	the	mortality-	related	CpGs	capture	
the	 contributions	 of	 clinical	 risk	 factors	 for	 CVD	 death.	 For	 cancer	
death,	however,	the	C-	index	of	the	integrative	model	revealed	an	11%	
increase	in	FHS	above	and	beyond	the	clinical	risk	factor	model	and	a	
corresponding	5%	increase	in	ARIC	(C-	index	for	the	clinical	risk	factor	
model	is	0.71	[0.67,	0.75],	and	for	the	integrative	model	is	0.76	[0.72,	
0.80],	one-	tailed	t-	test	p =	0.036).

We	 also	 tested	 the	 mortality	 prediction	 models’	 performance	
using	the	entire	ARIC	EA	data	(without	truncation,	Table	S16).	Due	to	
the	long	follow-	up	time	in	this	older	cohort	(mean	age	59.8	at	base-
line, with 20 ±	5.5	years	follow-	up),	the	integrative	model	exhibits	
very similar performance features as the model using age and sex as 
the	sole	 input	 features	 for	predicting	all-	cause	mortality	and	CVD	
death. The integrative model improved prediction of cancer death 
with	2%	increase	in	the	C-	index	versus	the	clinical	risk	factor	model.

We	further	 tested	all-	cause	mortality	prediction	models	 in	 the	
CARDIA	study	(baseline	age	45	±	3	years).	The	CARDIA	study	has	
12	years	of	follow-	up,	during	which	there	were	27	deaths	from	all	
causes	in	905	participants	with	DNA	methylation.	As	shown	in	Table	
S17,	the	clinical	risk	factor	model,	the	CpG	model,	and	the	integrative	
model	 each	 predicted	 all-	cause	mortality,	 and	 each	 outperformed	
the	DNAm	age	models.

2.6  |  Comparing the mortality prediction model 
with DNAm age

We	compared	 four	DNAm	age	models	 (i.e.,	 PhenoAge	 (Levine	et	 al.,	
2018),	 Horvath	 Age	 (Horvath,	 2013),	 Hannum	 Age	 (Hannum	 et	 al.,	
2013),	 and	 GrimAge	 (Lu	 et	 al.,	 2019))	 with	 our	 mortality	 prediction	
models	 (CpG	 only	 models	 and	 integrative	 CpG	 plus	 12	 risk	 factor	
models)	for	all-	cause	mortality,	CVD	death,	and	cancer	death	in	ARIC	
participants.	 The	 associations	 of	 mortality	 risk	 scores	 calculated	 by	
mortality prediction models with mortality outcomes were statistically 
significant, and the associations remained significant after adjusting for 
age	and	sex,	and	after	additionally	adjusting	for	the	clinical	risk	factors.	
The	four	DNAm	age	models	were	significantly	associated	with	mortal-
ity	outcomes.	After	adjusting	for	age,	sex,	and	clinical	risk	factors,	how-
ever,	only	GrimAge	remained	associated	with	all-	cause	mortality,	CVD	
death,	and	cancer	death.	None	of	the	other	three	DNAm	age	predictors	

TA B L E  3 Performance	robustness	comparison	of	mortality	predictors	in	FHS	and	ARIC	cohorts

Model

FHSa ARICb

HR C- index IBS HR (95% CI) C- index IBS

All-	cause	mortality

Clinical	risk	factor	model 3.37 0.80 0.07 2.64	(2.21–	3.15) 0.75 0.04

CpG model 2.91 0.77 0.07 2.24	(1.89–	2.66) 0.72 0.04

Integrative model 3.50 0.80 0.06 2.95	(2.45–	3.55) 0.77 0.04

CVD death

Clinical	risk	factor	model 3.74 0.81 0.02 3.51	(2.57–	4.79) 0.81 0.02

CpG model 3.85 0.82 0.02 2.62	(1.56–	3.91) 0.77 0.02

Integrative model 3.90 0.83 0.02 3.65	(2.63–	5.05) 0.80 0.02

Cancer	Death	(excluding	prevalent	cancer	cases)

Clinical	risk	factor	model 1.25 0.57 0.01 2.35	(1.74–	3.18) 0.71 0.02

CpG model 1.71 0.65 0.01 2.22	(1.64–	2.89) 0.73 0.02

Integrative model 1.78 0.68 0.01 2.58	(1.90–	3.50) 0.76 0.02

Abbreviation:	HR,	hazard	ratio	per	standard	deviation;	IBS:	Integrated	brier	score.
Note:	The	clinical	risk	factor	models	were	trained	by	using	clinical	risk	factors	as	the	sole	input	features.	The	CpG	Models	were	trained	by	using	CpGs	
selecting	in	the	discovery	meta-	analysis.	The	integrative	model	was	trained	by	using	both	clinical	risk	factors	and	CpGs	selecting	in	the	discovery	
meta-	analysis.
The	Clinical	Risk	Factor	Model	used	to	predict	all-	cause	mortality	and	CVD	death	was	shown	in	Table	S10,	and	to	predict	cancer	death	(trained	in	
samples	excluding	prevalent	cancer	cases)	was	shown	in	Table	S11.	The	CpG	model	used	to	predict	all-	cause	mortality	and	CVD	death	was	shown	in	
Table S12,	and	to	predict	cancer	death	(trained	in	samples	excluding	prevalent	cancer	cases)	was	shown	in	Table	S13. The integrative model used to 
predict	all-	cause	mortality	and	CVD	death	was	shown	in	Table	S14,	and	to	predict	cancer	death	(trained	in	samples	excluding	prevalent	cancer	cases)	
was shown in Table S15.
aHR,	C-	index	and	IBS	values	in	FHS	reflect	the	average	values	of	10	times	cross-	validation.
bThe	results	were	obtained	from	ARIC	European	ancestry	participants	with	follow-	up	truncated	at	15	years.
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was associated with mortality outcomes after additionally adjusting for 
clinical	risk	factors	(Figure 4).	The	mortality	prediction	models	(both	the	
CpG only model and the integrative model that included the clinical 
risk	factors	and	CpGs)	outperformed	the	GrimAge	model	in	prediction	
of mortality outcomes in terms of HRs and p values. The associations of 
mortality	risk	scores	with	mortality	outcomes	remained	significant	after	
adjusting	for	the	four	DNAm	age	terms	(Table	S18).

2.7  |  Associations of DNAm with genetic 
variants and Mendelian randomization analysis

Among	the	177	all-	cause	mortality-	related	CpGs	 (union	of	EA	and	
AA	results	at	p < 1 × 10−7),	123	CpGs	had	significant	associations	
with	genetic	variants	(i.e.,	cis-		or	trans-	meQTL	variants).	meQTL	vari-
ants	 for	80	CpGs	 could	be	 linked	 to	618	GWAS	Catalog	 (Buniello	
et al., 2019)	 index	SNPs	associated	with	432	complex	traits	or	dis-
eases	(Table	S19).

We	further	performed	multiple	 instrumental	variable	 (IV)	MR	
analysis	for	the	17	CpGs	having	≥3	independent	cis-	meQTL	SNPs	
(pruned	by	LD	 r2 < 0.01, as IVs, to model the causal relations of 
differential	methylation	 at	 these	CpGs	 (as	 the	 exposure)	 in	 rela-
tion	 to	 the	 various	 outcomes,	 including	 longevity	 (Deelen	 et	 al.,	
2019),	CVD,	CVD	risk	factors,	and	cancer	(Evangelou	et	al.,	2018; 
Locke	 et	 al.,	2015;	Michailidou	 et	 al.,	2017; Phelan et al., 2017; 
Schumacher et al., 2018; Scott et al., 2017;	 Wang	 et	 al.,	 2014; 
Willer	et	al.,	2013).	At	pMR <	0.05,	MR	supported	causal	effects	of	
15	CpGs	on	one	or	more	outcome	(Table	S20),	and	4	CpGs	were	
statistically significant at pMR < 0.05/17, including cg06885782 
(within	1500	bases	upstream	of	transcription	start	site	[TSS1500]	
of KCNQ4)	and	cg04907244	(TSS1500	of	SNORD93)	in	relation	to	
prostate	cancer	(Schumacher	et	al.,	2018; Beta = 1.2 and 2.1; and 
pMR =	4.1	× 10−4	and	0.003,	respectively),	cg07094298	(in	the	gene	
body of TNIP2)	in	relation	to	lung	cancer	(Wang	et	al.,	2014; Beta = 
2.2, and pMR =	0.003),	and	cg18241337	(in	the	gene	body	of	SSR3)	
in	relation	to	total	cholesterol	(Willer	et	al.,	2013; Beta = 0.5, and 
pMR =	0.003).	cg06885782	(KCNQ4)	also	was	associated	with	lon-
gevity	(Deelen	et	al.,	2019; Beta =	−1.9,	pMR =	0.02).

2.8  |  Associations of DNAm with gene 
expression and pathway analysis

For	 the	 177	 all-	cause	mortality-	related	CpGs	 at	p < 1 × 10−7, we 
assessed	 associations	 of	 CpGs	 with	 nearby	 gene	 expression	 (i.e.,	

cis gene expression; within ±	1	Mb)	and	 identified	15	cis-		DNAm-	
mRNA	associated	pairs	(13	CpGs	and	15	mRNAs)	at	p < 3 × 10−10. 
The genes located at these CpGs or cis-	eQTM	mRNAs	 were	 not	
enriched	for	any	biological	processes	or	pathways.	For	the	719	all-	
cause	mortality-	related	CpGs	at	p < 1 × 10−5, genes located at CpG 
sites were enriched for multiple immune functions, cellular response 
to organic substance, and negative regulation of cell communica-
tion	 (Gene	 Ontology	 [GO]	 (Ashburner	 et	 al.,	 2000),	 FDR <	 0.05),	
and	pathways	 for	multiple	 types	of	cancer	 (Kyoto	Encyclopedia	of	
Genes	and	Genomes	 [KEGG]	pathway	 (Kanehisa	&	Goto,	2000),	p 
< 0.05, Table S21).	There	were	79	cis-	DNAm-	mRNA	pairs	(63	CpGs	
and	67	mRNAs,	Table	S22).

3  |  DISCUSSION

By	performing	EWAS	using	whole	blood-	derived	DNA	from	15,013	
individuals	from	15	cohorts	with	the	accrual	of	4314	deaths	during	a	
mean	follow-	up	of	more	than	10	years,	we	identified	robust	DNAm	
signatures	of	all-	cause	and	cause-	specific	mortality.	We	developed	
replicable	mortality	predictors	by	integrating	mortality-	related	CpGs	
with	traditional	clinical	risk	factors.	The	integrative	models	that	in-
cluded	clinical	risk	factors	and	CpGs	showed	small	improvements	in	
prediction	of	all-	cause	mortality	and	CVD	death,	and	a	more	sub-
stantial improvement in prediction of cancer death compared to the 
traditional	risk	factor	model.

Our	 study	 is	 one	 of	 the	 largest	 EWAS	 of	 mortality	 to	 date	
(Colicino	et	al.,	2020; Svane et al., 2018;	Zhang	et	al.,	2017),	and	it	
revealed	many	replicable	DNAm	signatures	for	all-	cause	mortality.	
Our	 results	are	consistent	with	 those	 from	previous	EWAS	of	all-	
cause	mortality;	the	vast	majority	of	CpGs	(85%	in	our	study,	84%	
in	 (Zhang	et	al.,	2017),	and	67%	in	 (Colicino	et	al.,	2020))	were	 in-
versely	associated	with	mortality	suggesting	a	greater	mortality	risk	
with	lower	CpG	methylation.	Our	study	identified	more	CpGs	in	EA	
cohorts	(n =	163)	than	in	AA	cohorts	(n =	17).	As	shown	in	Table 2, 
the	effect	 sizes	 (i.e.,	HR)	of	mortality-	related	CpGs	 in	EA	and	AA	
participants	were	quite	similar.	We	speculate	that	our	study	identi-
fied	many	more	CpGs	in	EA	participants	than	AA	participants	due	
the	greater	statistical	power	of	the	larger	EA	sample	size.	Using	dif-
ferent	DNAm	data	normalization	methods	(such	as	Noob	(Triche	Jr	
et al., 2013),	SWAN	(Maksimovic	et	al.,	2012),	BMIQ	(Teschendorff	
et al., 2013),	and	Dasen	(Pidsley	et	al.,	2013),	see	File	S1)	in	different	
cohorts may also affect the reproducibility of the results. For the 
177	all-	cause	mortality-	related	CpGs	 (union	of	EA	and	AA	results	
at p < 1 × 10−7),	we	 examined	 their	 overlap	with	 trait-	associated	

F I G U R E  4 Hazard	ratios	per	standard	deviation	increment	with	95%	confidence	intervals	for	mortality.	(a)	With	respect	to	all-	cause	
mortality;	(b)	with	respect	to	CVD	death;	and	(c)	with	respect	to	cancer	death.	The	results	were	obtained	from	ARIC	European	ancestry	
participants	with	follow-	up	truncated	at	15	years.	For	cancer	death,	samples	who	had	any	type	of	cancer	before	blood	drawn	for	DNA	
methylation measurements were excluded. Cox regression models were used to relate mortality outcomes to inversely transformed 
mortality	risk	scores	computed	by	Integrative	models	(Tables	S12–	S13)	and	CpG	models	(Tables	S10–	S11),	and	inversely	transformed	DNAm	
age	including	GrimAge	(Lu	et	al.,	2019),	PhenoAge	(Levine	et	al.,	2018),	Horvath	Age	(Horvath,	2013),	and	Hannum	Age	(Hannum	et	al.,	
2013).	Adj age and sex indicated the association further adjusted for age and sex. Adj age, sex and risk factors indicated the association further 
adjusted	for	age,	sex	and	the	other	clinical	risk	factors
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CpGs	 in	 the	 EWAS	 catalog	 (Table	S23; Battram et al., 2021).	We	
found	 that	 172	CpGs	 (97%)	 have	 been	 reported	 to	 be	 associated	
with	human	age,	123	with	smoking,	49	with	alcohol	consumption,	
42	with	sex,	and	140	with	the	other	diseases	or	traits.	Many	CpGs	
were associated with multiple traits. For example, the top two 
CpGs,	cg02583484	and	cg18181703,	were	have	been	reported	to	
be	 associated	with	 smoking,	 alcohol	 consumption,	 prenatal	 smok-
ing, healthy diet, forced expiratory volume, C reactive protein, and 
many	other	traits.	We	speculate	that	many	of	the	CpGs	 identified	
by	EWAS	reflect	DNA	methylation	changes	due	to	disease,	human	
aging,	lifestyle,	and	environmental	influences.	By	linking	CpGs	with	
meQTLs	and	performing	MR	analysis,	it	is	possible	to	further	infer	
putatively causal CpGs. However, to identify definitely causal ef-
fects of CpGs on outcomes, functional studies are necessary.

Among	 the	 177	 all-	cause	 mortality-	related	 CpGs,	 123	 CpGs	
had	significant	associations	with	genetic	variants	(i.e.,	cis-		or	trans-	
meQTL	 variants	 identified	 previously;	 Huan	 et	 al.,	2019).	 For	 the	
remaining	44	CpGs,	however,	this	does	not	mean	that	their	methyl-
ation levels have nothing to do with genetic variation. It is possible 
that	 the	previous	meQTL	study	 lacked	sufficient	 statistical	power	
to	 identify	 meQTLs	 for	 those	 CpGs.	 The	 mortality-	related	 CpGs	
are	 linked	to	hundreds	of	human	complex	diseases/traits	via	 their	
cis-	meQTL	SNPs,	which	coincide	with	618	GWAS	Catalog	(Buniello	
et al., 2019)	 index	 SNPs.	 This	 leads	 us	 to	 hypothesize	 that	many	
disease/phenotype-	associated	 SNPs	 may	 contribute	 to	 disease	
processes	 via	 effects	 on	mortality-	related	 CpGs.	 In	 this	 way,	 the	
mortality-	related	CpGs	may	contribute	causally	to	disease.	To	test	
this	hypothesis,	we	conducted	MR	analyses	that	confirmed	several	
putatively	 causal	 associations	of	mortality-	related	CpGs	with	 lon-
gevity	(Deelen	et	al.,	2019),	CVD	(Nikpay	et	al.,	2015),	CVD	risk	fac-
tors,	and	several	types	of	cancer	(Evangelou	et	al.,	2018;	Locke	et	al.,	
2015;	Michailidou	et	al.,	2017; Phelan et al., 2017; Schumacher et al., 
2018; Scott et al., 2017;	Wang	et	al.,	2014;	Willer	et	al.,	2013; Table 
S20).	Among	the	four	CpGs	passing	a	Bonferroni-	corrected	thresh-
old	in	MR	analyses,	cg06885782	in	KCNQ4 was reported to be as-
sociated	with	risk	for	prostate	cancer	(beta	= 1.2, pMR =	4.1	× 10−4)	
and	negatively	associated	with	longevity	(beta	=	−1.9,	pMR =	0.02).	
KCNQ4	 (potassium	voltage-	gated	channel	 subfamily	Q	member	4)	
was	previously	reported	to	be	associated	with	age-	related	hearing	
impairment	(Van	Eyken	et	al.,	2006),	and	it	contains	genetic	variants	
associated	with	all-	cause	mortality	and	survival	 free	of	major	dis-
eases	(Walter	et	al.,	2011).	cg07094298	in	the	gene	body	of	TNIP2 
was	previously	identified	as	causal	for	lung	cancer.	A	recent	study	
reported TNIP2-	ALK	 fusion	 in	 lung	 adenocarcinoma	 (Feng	 et	 al.,	
2019).	 cg04907244	 (in	 TSS1500	 of	 SNORD93)	 was	 identified	 as	
causal	for	prostate	cancer	by	MR.	SNORD93 and its methylation was 
reported to be associated with several cancer types including uveal 
melanoma	(Gong	et	al.,	2017),	breast	cancer	(Patterson	et	al.,	2017),	
and	 renal	 clear	 cell	 carcinoma	 (Zhao	et	 al.,	2020).	Pathway	analy-
sis	further	supported	a	role	of	mortality-	related	CpGs	in	relation	to	
cancer	risk.	The	intragenic	CpGs	were	enriched	for	genes	in	cancer	
pathways, possibly as a consequence of the expression of nearby 
genes	(cis-	eQTMs	analysis,	Table	S21)	related	to	immune	function.

The	14	clinical	risk	factors	for	mortality	were	chosen	based	on	
prior	 knowledge.	 In	 contrast,	 there	 are	 far	 fewer	 established	 risk	
factors	for	cancer	death	other	than	age,	sex,	BMI,	smoking,	and	al-
cohol	consumption.	 It	 is	not	a	surprise	that	the	clinical	risk	factors	
themselves	accurately	predicted	all-	cause	mortality	(C-	index	= 0.80 
in	FHS,	and	0.75	in	ARIC)	and	CVD	death	(0.81	in	FHS	and	0.81	in	
ARIC),	but	not	 cancer	death	 (0.57	 in	FHS	and	0.71	 in	ARIC).	Even	
though	 the	 clinical	 risk	 factors	 are	 important	 for	 stratifying	 CVD	
risk,	clinical	risk	factors	themselves	are	unable	to	reveal	molecular	
mechanism and are thereby unable to highlight causal mechanisms 
or	promising	therapeutic	targets.	After	 integrating	clinical	risk	fac-
tors	with	DNAm	in	the	all-	cause	mortality	prediction	model,	the	C-	
index	only	slightly	 increased	 (<2%)	compared	with	 the	clinical	 risk	
factors	model	with	regard	to	all-	cause	mortality	and	CVD	death.	As	
shown in Table S14,	nine	of	the	14	clinical	risk	factors,	including	age,	
sex, physical activity, prevalent cancer, type II diabetes, hyperten-
sion,	CHD,	heart	failure,	and	stroke,	as	well	as	36	CpGs	that	were	
selected	as	the	representative	features.	Compared	with	clinical	risk	
factors, the individual coefficients of the CpGs are much smaller. 
The	small	 increase	in	the	C-	index	and	the	small	coefficients	of	the	
CpGs suggest that the contribution of CpGs to the prediction of 
death	may	overlap	with	these	clinical	risk	factors.	We	also	found	that	
the	mortality-	related	CpGs	as	the	sole	input	features	were	still	able	
to	predict	mortality	outcomes	after	adjusting	for	clinical	risk	factors.	
This	 suggests	 that	mortality-	related	CpGs	may	 identify	novel	mo-
lecular mechanisms contributing to CVD mortality that cannot be 
captured	by	existing	clinical	risk	factors.

In contrast to CVD and CVD mortality, for which established 
risk	factors	are	highly	predictive	of	risk,	the	prediction	of	cancer	and	
cancer mortality has proved much more challenging. Owing to the 
lower	 prediction	 using	 clinical	 risk	 factors	 alone	 (0.57	 in	 FHS	 and	
0.71	in	ARIC),	the	mortality-	related	CpGs	improved	risk	prediction	
of	cancer	death	over	and	above	the	clinical	risk	factor	model	with	an	
11%	increase	in	the	C-	index	in	FHS	and	a	5%	increase	in	ARIC.	We	
further	tested	whether	the	all-	cause	mortality	prediction	model	can	
be used to predict mortality among all participants in the FHS with 
prevalent	cancer	(n =	389).	During	a	mean	follow-	up	of	9	years,	there	
were 165 deaths in this group. The integrative mortality model pre-
dicted	mortality	risk	among	cancer	cases	(HR	[95%CI]:	4.23	[2.63–	
6.80],	 p = 2.9 × 10−9).	 These	 results	 in	 conjunction	with	MR	 and	
pathway analysis show strong evidence of potential causal relations 
between	mortality-	related	CpCs	and	pathways	in	cancer.	Based	on	
these	results,	we	hypothesize	that	mortality-	related	CpGs	can	shed	
light on the epigenetic regulation of molecular interactions and help 
to	 identify	 novel	 therapeutic	 targets	 to	 reduce	 mortality	 risk	 for	
both CVD and cancer death.

Recent	studies	have	used	DNAm	of	multiple	CpG	sites	to	predict	
chronological	age	(i.e.,	DNAm	age)	and	showed	that	DNAm	age	was	
associated	with	all-	cause	mortality.	We	explored	the	prediction	pro-
vided	by	these	DNAm	age	models	and	show	that	PhenoAge	(Levine	
et al., 2018),	Horvath	Age	 (Horvath,	2013),	Hannum	Age	 (Hannum	
et al., 2013),	and	GrimAge	(Lu	et	al.,	2019)	were	associated	with	mor-
tality	 before	 accounting	 for	 risk	 factors.	 Only	 GrimAge,	 however,	
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remained	associated	with	mortality	after	adjusting	for	clinical	risk	fac-
tors.	In	contrast,	the	other	three	DNAm	age	models	were	no	longer	
associated	with	mortality	(Figure 4).	One	possible	explanation	is	that	
the	 three	DNAm	age	 predictors	 (i.e.,	 PhenoAge,	Horvath	Age,	 and	
Hannum	Age)	identify	CpGs	associated	with	age,	but	are	not	specific	
for	all-	cause	or	cause-	specific	mortality	risk.	Of	note,	the	CpGs	that	
serve	as	DNAm	mortality	predictors	and	 those	 that	predict	DNAm	
age	in	the	three	models	do	not	overlap.	Among	the	top	CpGs	(N =	177)	
associated	with	all-	cause	mortality	 in	our	EWAS,	only	 cg00687674	
in TMEM84	 is	 included	 in	PhenoAge	 (Levine	et	 al.,	2018),	 and	only	
cg19935065 in DNTT	appears	in	Hannum	Age	(Hannum	et	al.,	2013).	
GrimAge	may	have	outperformed	the	other	three	DNAm	age	models	
in predicting mortality because the CpGs that it uses are associated 
with	the	levels	of	80	CVD-	related	blood	proteins,	and	with	lifestyle	
and	 clinical	 risk	 factors	 (such	 as	 smoking),	 and	mortality	 (Ho	et	 al.,	
2018; Shah et al., 2019;	Yao	et	al.,	2018).	However,	because	the	CpGs	
in	 the	GrimAge	model	 are	not	disclosed	 (i.e.,	 they	 are	proprietary),	
we	were	unable	 to	determine	whether	any	of	 the	mortality-	related	
CpGs	in	our	study	overlap	with	CpGs	in	the	GrimAge	model.	Of	note,	
our	mortality	prediction	models	 (both	 the	CpG	only	model	and	the	
integrative	model	that	included	CpGs	and	the	clinical	risk	factors)	out-
performed	GrimAge	in	prediction	of	mortality	outcomes.

We	 tested	 and	 compared	 four	 prediction	 methods	 including	
Elastic-	coxph	(Friedman	et	al.,	2010),	a	regression-	based	method,	and	
three	machine	 learning	methods	 (Ching	et	al.,	2018; Ishwaran et al., 
2008;	Katzman	et	al.,	2018).	The	machine	learning	models	did	not	out-
perform	Elastic-	coxph	 (Table	S9 and Fig. S2).	The	clinical	 risk	 factor	
model trained by machine learning methods did not perform well in 
independent	external	replication.	For	example,	the	C-	index	of	the	clin-
ical	risk	factor	model	for	all-	cause	mortality	was	0.67	using	RSF17 ver-
sus	0.75	using	Elastic-	coxph	in	ARIC	participants.	Based	on	this	metric,	
the	 machine	 learning	 methods	 did	 not	 outperform	 the	 regression-	
based methods when there were relatively few features as inputs.

The	primary	outcome	of	our	study	was	all-	cause	mortality.	We	did	
not train prediction models for CVD death or cancer death, but we 
tested	 the	 prediction	 ability	 of	 the	 all-	cause	mortality	 predictor	 on	
CVD death and cancer death. The CpGs in the model were restricted 
to	 all-	cause	 mortality-	related	 CpGs.	As	 shown	 in	 Figure 1, the top 
DNAm	signatures	for	all-	cause	mortality	showed	the	same	direction	of	
effect for CVD death and cancer death. It is possible that some CpGs 
show opposite directions in relation to CVD death and cancer death, 
but we did not train separate models for these outcomes. Therefore, 
developing separate prediction models for CVD death and cancer 
death with a very large sample size would be an important next step.

4  |  CONCLUSIONS

In	conclusion,	the	ancestry-	stratified	epigenome-	wide	meta-	analyses	
in	15	population-	based	cohorts	 identified	 replicable	DNAm	signa-
tures	of	 all-	cause	 and	 cause-	specific	mortality.	 The	 top	mortality-	
associated	CpGs	were	 linked	with	genes	 involved	 in	 immune-		 and	
cancer-	related	pathways,	and	were	reported	to	be	associated	with	

human	longevity,	CVD	risk	factors,	and	several	types	of	cancer.	We	
constructed	and	validated	DNAm-	based	prediction	models	that	pre-
dicted	mortality	risk	independent	of	established	clinical	risk	factors.	
The	prediction	model	trained	by	integrating	DNAm	with	clinical	risk	
factors	showed	small	improvement	in	prediction	of	all-	cause	mortal-
ity and CVD death, and a more substantial improvement in predic-
tion of cancer death, compared with the model trained by clinical 
risk	factors	alone.	The	mortality-	related	CpG	sites	and	the	DNAm-	
based prediction models may serve as useful clinical tools for assess-
ing	 all-	cause	 and	 cause-	specific	 mortality	 risk	 and	 for	 developing	
new therapeutic strategies.

5  |  METHODS

5.1  |  Study population

This	 study	 included	 15,013	 participants	 from	 15	 population-	
based	 cohorts.	 There	 were	 11,684	 European	 ancestry	 (EA)	 par-
ticipants	 from	 12	 cohorts,	 including	 the	 Atherosclerosis	 Risk	 in	
Communities	(ARIC)	Study,	the	Cardiovascular	Health	Study	(CHS),	
the	 Danish	 Twin	 Register	 sample	 (DTR),	 the	 Epidemiologische	
Studie	zu	Chancen	der	Verhütung,	Früherkennung	und	optimierten	
Therapie	 chronischer	 Erkrankungen	 in	 der	 älteren	 Bevölkerung	
(ESTHER),	 the	 Framingham	Heart	 Study	 (FHS),	 the	 Invecchiare	 in	
Chianti	 (InCHIANTI)	 Study,	 the	 Cooperative	 Health	 Research	 in	
the	Region	of	Augsburg	 (KORA	F4),	 the	Lothian	Birth	Cohorts	of	
1921	(LBC1921)	and	1936	(LBC1936),	 the	Normative	Aging	Study	
(NAS),	 the	 Rotterdam	 Study	 (RS),	 and	Women's	 Health	 Initiative	
(WHI);	and	3329	Africa	ancestry	(AA)	participants	from	3	cohorts,	
including	ARIC,	CHS,	and	WHI.	For	each	participant,	we	calculated	
the	follow-	up	time	between	the	date	of	the	blood	draw	for	DNAm	
measurements	and	the	date	at	death	or	last	follow-	up.	Mean	follow-
	up	was	less	than	15	years	(range	6.2–	13.7)	for	most	cohorts,	except	
for	ARIC	(mean	20.0	for	EA	and	18.6	for	AA).	The	protocol	for	each	
study was approved by the institutional review board of each co-
hort. Further details for each cohort were included in File S1.

5.2  |  Mortality ascertainment and 
clinical phenotypes

Outcomes including death from all causes, deaths from CVD, and 
deaths from cancer were prospectively ascertained in each co-
hort. Survival status and details of death were ascertained using 
multiple strategies, including routine contact with participants for 
health history updates, surveillance at the local hospital, review of 
obituaries in the local newspaper, and National Death Index que-
ries. Death certificates, hospital and nursing home records prior 
to death, and autopsy reports were requested and reviewed. Date 
and cause of death were determined separately for each cohort 
following review of all available medical records and /or were 
register-	based.
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The	clinical	and	lifestyle	risk	factors	(referred	to	as	clinical	risk	fac-
tors	for	simplicity	thereafter)	used	as	covariates	in	this	study	included	
age,	sex,	body	mass	index	(BMI),	smoking,	alcohol	consumption,	phys-
ical activity, educational attainment, and prevalent diseases includ-
ing	hypertension,	coronary	heart	disease	(CHD),	heart	failure,	stroke,	
type	II	diabetes,	and	cancer.	Fourteen	clinical	risk	factors	were	chosen	
based	on	prior	knowledge;	most	of	 these	are	key	CVD	risk	 factors.	
The	clinical	risk	factors	were	ascertained	at	the	time	of	blood	draw	
for	DNAm	measurements.	BMI	was	calculated	as	weight	(kg)	divided	
by	height	squared	(m2).	Educational	attainment	(years	of	educational	
schooling),	 physical	 activity	 (frequency,	 intensity,	 or	 the	 metabolic	
equivalent	of	task	[MET]	scores),	smoking	status	(yes/no,	or	cigs/day),	
and	alcohol	consumption	(drinks	per	day)	were	self-	reported	or	ascer-
tained by an administered questionnaire at routine research clinic vis-
its. Diabetes was defined as a measured fasting blood glucose level of 
>125	mg/dl	or	current	use	of	glucose-	lowering	prescription	medica-
tion. Hypertension was defined as a measured systolic blood pressure 
(BP)	≥140	mm	Hg	or	diastolic	BP	≥90	mm	Hg	or	use	of	antihyperten-
sive prescription medication. Cancer was defined as the occurrence of 
any	type	of	cancer	excluding	non-	melanoma	skin	cancer.

5.3  |  DNA methylation measurements and 
quality control

For	each	cohort,	DNA	was	extracted	from	whole	blood	and	bisulfite-	
converted	using	a	Zymo	EZ	DNA	methylation	kit.	DNAm	was	meas-
ured	 using	 the	 Illumina	 Infinium	 HumanMethylation450	 (450K)	
BeadChip	 platform	 (Illumina	 Inc.,	 San	 Diego,	 CA).	 Each	 cohort	
conducted	 independent	 laboratory	 DNAm	 measurement,	 quality	
control	 (including	sample-	wise	and	probe-	wise	filtering,	and	probe	
intensity	background	correction;	see	File	S1).

5.4  |  Cohort- specific epigenome- wide 
association analysis

The correction of methylation data for technical covariates was co-
hort specific. Each cohort performed an independent investigation to 
select	an	optimized	set	of	technical	covariates	(e.g.,	batch,	plate,	chip,	
row,	and	column),	using	measured	or	imputed	blood	cell	type	fractions,	
surrogate	variables,	and/or	principal	components.	Most	cohorts	had	
previous	publications	using	the	same	dataset	for	EWAS	of	different	
traits,	 such	 as	 EWAS	 of	 alcohol	 drinking	 and	 smoking	 (Mendelson	
et al., 2017;	Michailidou	et	al.,	2017).	In	this	study,	those	cohorts	used	
the same strategies as they did previously for correcting for technical 
variables	including	batch	(see	File	S1).	To	avoid	false	positives	driven	
by	single	CpG	extreme	values,	in	each	cohort,	we	first	performed	rank-	
based	inverse	normal	transformation	(INT)	of	DNAm	β-	values	(the	ratio	
of methylated probe intensity divided by the sum of the methylation 
and	unmethylated	probe	intensity).	We	then	conducted	time-	to-	event	
analyses using Cox proportional hazards models to test for associa-
tions	between	each	CpG	and	mortality	outcomes	including	all-	cause	

mortality, CVD death, and cancer death using the coxph()	function	in	
the	“survival”	R	library,	adjusting	for	clinical	risk	factors	(see	Mortality	
ascertainment	 and	 clinical	 risk	 factors),	 technical	 confounders,	 and	
familial	relatedness.	Because	ARIC	cohorts	had	much	longer	follow-
	up	than	the	other	cohorts,	ARIC	follow-	up	was	truncated	at	15	years	
and results were compared to those before truncation to determine 
whether	results	were	impacted	by	duration	of	follow-	up.

In	 this	 study,	we	 performed	 INT	 of	DNAm	β-	values	 to	 avoid	
false	positives	driven	by	extreme	values	of	single	CpGs.	Using	the	
FHS	EWAS	 results	as	an	example,	Table	S24 shows that the top 
CpGs	 associated	with	 all-	cause	mortality	 (without	 INT)	were	 no	
longer significant after performing INT. This finding suggests that 
if	we	 directly	 use	DNAm	β-	values,	 those	 extreme	outlier	 values	
could	 lead	 to	 false-	positive	 results.	 Clearly,	 the	 distribution	 of	
DNA	β-	values	is	non-	normal,	and	for	this	reason,	we	believe	that	
the	conservative	 INT	approach	we	 took	protected	against	 false-	
positive results.

5.5  |  Meta- analysis

The	 meta-	analysis	 was	 performed	 for	 all-	cause	 mortality,	 CVD	
death,	and	cancer	death	in	EA	(n =	11,684)	and	AA	(n =	3329)	partici-
pants,	respectively,	using	inverse	variance-	weighted	random-	effects	
models implemented in metagen()	function	R	packages	(https://rdrr.
io/cran/meta/man/metag en.html).	 We	 chose	 a	 random-	effects	
model	because	of	the	heterogeneity	in	follow-	up	length	and	popula-
tion	demographics	in	the	different	cohorts	(Table	S1).	We	excluded	
the	EWAS	results	for	a	study	with	<20	deaths.	We	excluded	probes	
mapping to multiple locations on the sex chromosomes or with an 
underlying	SNP	 (MAF	>	 5%	 in	1000	Genome	Project	data)	 at	 the	
CpG site or within 10bp of the single base extension. In addition, the 
meta-	analysis	was	constrained	to	methylation	probes	passing	filter-
ing	criteria	 in	 five	or	more	cohorts	 (see	File	S1),	which	 resulted	 in	
~400,000	CpGs	that	were	included	in	the	final	analyses.	The	statisti-
cal significance threshold was p <	0.05/400,000	≈	1	× 10−7.

Three types of sensitivity analyses were performed including 
(1)	correcting	 for	λ	values	 in	each	cohorts	 (Devlin	et	al.,	2001),	 (2)	
excluding two cohorts with λ >	1.5	from	the	meta-	analysis,	and	(3)	
excluding	 results	of	RS,	because	 the	cohort-	specific	analysis	 in	RS	
having a strange distribution of top hits. There were 157 CpGs iden-
tified at p <	1e-	7	in	the	RS	cohort-	specific	analysis.	The	number	is	
much	more	than	the	number	of	all-	cause	mortality-	associated	CpGs	
identified in the other cohorts.

5.6  |  Mortality prediction models

Mortality	prediction	models	based	on	clinical	risk	factors	and	with	the	
addition	of	DNAm	were	built	and	tested	in	EA	cohorts.	The	analysis	
flowchart is shown in Figure 1. To ensure unbiased validation, we split 
the	EA	cohorts	into	discovery	and	replication	sets.	The	discovery	co-
horts consisted of 8288 participants from 10 cohorts, excluding FHS 
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(n =	2427)	and	ARIC	(n =	969).	Candidate	CpGs	as	input	features	were	
selected	by	meta-	analysis	in	the	discovery	cohorts.	FHS	was	used	to	
train	prediction	models.	ARIC	was	used	to	validate	models.	To	build	
and	replicate	a	prediction	model,	the	DNAm	data	were	preprocessed	
utilizing	the	same	strategy	as	in	the	EWAS	analysis.

5.6.1  |  Input	features

To	evaluate	the	prediction	performance	of	clinical	 risk	factors	and	
DNAm	comprehensively,	we	tested	13	sets	of	features,	Feature	set	1	
(F1)	included	age	(years),	sex	(male	as	1	and	female	as	2),	and	12	other	
clinical	risk	factors	including	BMI	(kg/m2),	smoking	(current	smoker	
as	1,	and	 former	and	never	smoker	as	0),	alcohol	consumption	 (g/
day),	physical	activity	(MET	scores),	educational	attainment	(educa-
tion	years),	and	prevalent	diseases	(yes	as	1	and	no	as	0)	 including	
hypertension,	CHD,	heart	failure,	stroke,	type	2	diabetes,	and	can-
cer. F2- F7	were	mortality-	related	CpGs	selected	by	meta-	analysis	in	
the	discovery	cohorts	by	inverse	variance-	weighted	random-	effects	
models at a series of p value thresholds, including F2 CpGs at p <	1e-	
7, F3 CpGs at p <	1e-	6,	F4 CpGs at p <	1e-	5,	F5 CpGs at p <	1e-	4,	
F6 CpGs at p <	1e-	3,	and	F7 CpGs at p < 0.05. F8- F13 are F1	(age,	
sex,	and	12	clinical	phenotypes)	plus	F2- F7, respectively. In doing so, 
we were able to evaluate the prediction performance based on the 
clinical	risk	factors	(F1)	and	the	DNAm	(F2- F7),	and	test	if	the	com-
bination	of	DNAm	with	clinical	risk	factors	(F8- F13)	could	be	able	to	
improve	the	prediction	performance	by	using	clinical	risk	factors	(F1)	
only	and	DNAm	only	(F2- F7).

5.6.2  | Model	building

We	compared	four	methods	of	building	prediction	models,	 including	
1)	Elastic	net	-		Cox	proportional	hazards	method	(Elastic-	coxph,	using	
glmnet,	a	R	package)	(Friedman	et	al.,	2010);	2)	Random	survival	forest	
(RSF,	using	randomForestSRC,	a	R	package)	(Ishwaran	et	al.,	2008);	3)	
Cox-	nnet	 (https://github.com/lanag	armir	e/cox-	nnet,	 a	 Python	 pack-
age)	 (Ching	 et	 al.,	2018);	 and	4)	DeepSurv	 (https://github.com/jared 
leeka	tzman/	DeepSurv,	a	Python	package)	(Katzman	et	al.,	2018).	The	
first method is a penalized linear regression method, while the other 
three	are	non-	linear	machine	learning	methods.

Elastic-	coxph is a Cox regression model regularized with elastic 
net	penalty	(Friedman	et	al.,	2010).	Performing	this	method	requires	
to identify best values of two parameters, α and λ.	We	tuned	each	
model by iterating over a number of α and λ	 values	 under	 cross-	
validation. α	indicated	linearly	combined	penalties	of	the	lasso	(α=0)	
and	 ridge	 (α=1)	 regression.	 λ	 is	 the	 shrinkage	 parameter,	 when	 λ 
=0	indicated	no	shrinkage,	and	as	λ increases, the coefficients are 
shrunk	ever	more	strongly.	Effectively	this	will	shrink	some	coeffi-
cients close to 0 for optimizing a set of features. The α value was set 
to 0.5, and the λ value was set to lambda.min when training models.

RSF is an ensemble tree model that is based on the random forest 
method	for	survival	analysis	(Ishwaran	et	al.,	2008).	The	optimized	

values of parameters in RSF models, including the number of trees 
(nTrees=100)	 and	 nodeSize	 =15, were chosen by iterating over 
a number of values which maximized the accuracy of RSF models 
tested	in	the	replication	sets	under	cross-	validation.	RSF	can	com-
pute feature importance scores for feature selection.

Cox-	nnet	 is	 an	 artificial	 neural	 network-	based	method	 for	 sur-
vival	analysis	(Ching	et	al.,	2018).	Cox-	nnet	includes	two	layer	neural	
network:	one	hidden	 layer	and	one	output	 layer.	The	output	 layer	
was used to perform Cox regression based on the activation levels 
of	 the	 hidden	 layer.	 Cox-	nnet	 could	 also	 compute	 feature	 impor-
tance scores for feature selection. For each model training, the L2 
regularization parameter is optimized using the L2CVProfile Python 
function	by	iterating	over	a	number	of	values	under	cross-	validation.

DeepSurv	 is	 a	 deep	 learning-	based	 survival	 prediction	method	
(Katzman	 et	 al.,	2018).	 DeepSurv	 uses	 a	multi-	layer	 feed	 forward	
neural	network,	of	which	 the	hidden	 layers	 consist	of	 a	 fully	 con-
nected layer of nodes, followed by a dropout layer, and the output 
is	a	single	node	with	a	linear	activation	which	estimated	the	log-	risk	
function in the Cox model, parameterized by the weight of the net-
work.	The	values	of	hyperparameters	when	using	DeepSurv	were	L2 
regularization =0.8, dropout =0.4,	learning	rate	=0.02, hidden layer 
size	(4	layers	with	nodes	500,	200,	100	and	50),	lr_decay	=0.001, mo-
mentum =0.9	and	the	activation	method	(using	Scaled	Exponential	
Linear	Units),	which	were	optimized	by	 iterating	over	a	number	of	
values	each-	by-	each	and	under	 cross-	validation.	DeepSurv has not 
been used previously for selecting features.

The	2427	FHS	participants	were	randomly	split	into	5	equal	sets	
(n=485	 or	 486	 in	 each	 set),	 and	 each	 set	 included	 approximately	
equal	numbers	of	deaths.	We	 then	used	3	of	 the	5	sets	 (60%)	 for	
model	training	and	the	remaining	2	sets	(40%)	for	model	testing.	In	
doing so, we obtained 10 combinations. In each training / testing 
combination, we constructed a model using the training data, and 
then	 used	 the	model	 to	 generate	 a	mortality	 risk	 score	 based	 on	
the	testing	data.	We	assessed	associations	of	the	predicted	mortal-
ity	risk	score	(after	inversely	normal	transformation)	with	all-	cause	
mortality, CVD death, and cancer death in the testing data using 
time-	to-	event	 proportional	 hazards	models.	 This	 data	 partitioning	
and	cross-	validation	strategy	was	only	used	to	assess	the	robustness	
of prediction models when using different features and methods, 
and to select the optimized parameters for training models. The final 
models reported were built on all FHS participants using the opti-
mized	parameters.	We	also	repeated	the	same	analysis	steps	using	
FHS	participants	without	 cancer	 at	 baseline	 (n=2038; 238 deaths 
from	all	causes,	70	from	CVD,	and	42	from	cancer).

5.6.3  |  Validation

The prediction models built using all FHS participants were tested 
in	ARIC	EA	participants	 for	 the	prediction	of	mortality	outcomes.	
We	 performed	 tests	 on	 all-	cause	mortality	 and	CVD	death	 on	 all	
ARIC	EA	participants	truncated	at	15	years	of	follow-	up,	and	tests	
on	cancer	death	after	excluding	prevalent	cancer.	We	further	tested	
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the	all-	cause	mortality	prediction	model	in	the	CARDIA	study.	The	
CARDIA	study	has	12	years	of	follow-	up,	during	which	there	were	
27	deaths	from	all	causes	in	905	participants	with	DNA	methylation.

5.6.4  |  Evaluation	of	model	performance

We	 used	 four	 evaluation	 metrics	 to	 assess	 model	 performance,	
including	 the	 concordance	 index	 (C-	index)	 (Harrell	 Jr	 et	 al.,	1996),	
hazards	ratio	of	predicted	risk	score	(inversely	transformed)	for	pre-
diction	of	mortality,	the	integrated	brier	score	(IBS)	(Brier,	1950),	and	
Kaplan–	Meier	(KM)	survival	curves	for	high-	,	medium-	,	and	low-	risk	
groups	 (Kaplan	&	Meier,	1958).	 The	 C-	index	 reflects	 the	 percent-
age of individuals whose predicted survival times are correctly 
ordered.	A	C-	index	of	0.50	 reflects	no	 improvement	 in	prediction	
over chance. The brier score measures the mean of the difference 
between the observed and the estimated survival beyond a certain 
time. The brier score ranges between 0 and 1, and a larger score 
indicates higher inaccuracy. The integrated brier score is the brier 
score averaged over the entire time interval.

5.7  |  DNAm Age

We	compared	 the	prediction	performance	of	DNAm	age	with	our	
DNAm-	based	 mortality	 prediction	 model	 in	 relation	 to	 all-	cause	
mortality,	CVD	death,	and	cancer	death	in	the	ARIC	EA	cohort	(trun-
cating	 follow-	up	 at	 15	 years).	 Four	measures	 of	 DNAm	 age	were	
used	in	this	study,	including	PhenoAge	(Levine	et	al.,	2018),	Horvath	
age	 (Horvath,	 2013),	 Hannum	 age	 (Hannum	 et	 al.,	 2013),	 and	
GrimAge	(Lu	et	al.,	2019).	The	Horvath	Age	is	based	on	353	CpGs,	
the	Hannum	age	 is	based	on	71	CpGs,	and	PhenoAge	 is	based	on	
513	CpGs.	DNAm	age	was	calculated	as	the	sum	of	the	beta	values	
multiplied	by	 the	reported	effect	size.	Due	to	 the	GrimAge	model	
was	not	publicly	available,	the	GrimAge	was	calculated	by	uploading	
the	DNAm	data	to	the	website	(http://dnama ge.genet ics.ucla.edu/).	
Proportional hazards regression models were used to test the as-
sociation	between	inversely	rank	transformed	DNAm	age	(all	3	ap-
proaches)	and	mortality	outcomes,	adjusting	for	age,	sex,	and	clinical	
covariates	(see	Mortality ascertainment and clinical phenotypes).

5.8  |  meQTLs

meQTLs	 (SNPs	 associated	 with	 DNA	 methylation)	 were	 identi-
fied	 from	4170	FHS	participants	 as	 reported	 previously,	 including	
4.7	million	cis-	meQTLs	and	630K	trans-	meQTLs	at	p < 2 × 10−11 for 
cis and p < 1.5 × 10−14 for trans	(Huan	et	al.,	2019).	The	genotypes	
were	measured	using	Affymetrix	SNP	500K	mapping	and	Affymetrix	
50K	gene-	focused	MIP	arrays.	Genotypes	were	 imputed	using	the	
1000	Genomes	Project	panel	phase	3	using	MACH	/	Minimac	soft-
ware.	SNPs	with	MAF	> 0.01 and imputation quality ratio >0.3 were 
retained. cis-	meQTLs	were	 defined	 as	 SNPs	 residing	within	 1	Mb	

upstream	or	downstream	of	a	CpG	site.	The	FHS	meQTL	data	 re-
source includes 3.5 times more cis-	,	and	10	times	more	trans-	meQTL	
SNPs	than	the	other	published	studies	to	date	(https://ftp.ncbi.nlm.
nih.gov/eqtl/origi	nal_submi	ssion	s/FHS_meQTL	s/).

5.9  |  Mendelian randomization

Two-	sample	Mendelian	randomization	(MR)	was	used	to	identify	pu-
tatively	causal	CpGs	for	human	longevity,	CVD	and	CVD	risk	factors,	
and	cancer	types	using	a	multi-	step	strategy.	Estimated	associations	
and effect sizes between SNPs and traits were based on the latest 
published	 GWAS	 meta-	analysis	 of	 human	 longevity	 (Deelen	 et	 al.,	
2019),	coronary	heart	disease	(CHD)	(Nikpay	et	al.,	2015);	myocardial	
infarction	(MI)	(Nikpay	et	al.,	2015);	type	II	diabetes	(T2D)	(Scott	et	al.,	
2017);	body	mass	index	(BMI)	(Locke	et	al.,	2015);	lipids	traits	includ-
ing	high-	density	lipoprotein	(HDL)	cholesterol,	low-	density	lipoprotein	
(LDL)	cholesterol,	total	cholesterol	(TC),	and	triglycerides	(TG)	(Willer	
et al., 2013);	 systolic	blood	pressure	 (SBP)	and	diastolic	blood	pres-
sure	(DBP)	(Evangelou	et	al.,	2018),	and	cancer	types	including	breast	
cancer	(Michailidou	et	al.,	2017),	prostate	cancer	(Schumacher	et	al.,	
2018),	 lung	 cancer	 (Wang	 et	 al.,	 2014)	 and	 ovarian	 cancer	 (Phelan	
et al., 2017).	We	were	unable	to	 include	some	other	popular	cancer	
types,	because	their	GWAS	data	were	not	be	accessible	by	us.

Instrumental	variables	(IVs)	for	each	CpG	site	consisted	of	inde-
pendent cis-	meQTLs	pruned	at	linkage	disequilibrium	(LD)	r2 < 0.01, 
retaining only one cis-	meQTL	 variant	with	 the	 lowest	 SNP-	CpG	p 
value	 in	 each	 LD	 block.	 LD	 proxies	 were	 defined	 using	 1000	 ge-
nomes	imputation	in	EA.	Inverse	variance-	weighted	(IVW)	MR	tests	
were performed on CpGs with at least three independent cis-	meQTL	
variants, which is the minimum number of IVs needed to perform 
multiple	 instruments	MR.	 The	multiple	 instruments	 improved	 the	
precision of IV estimates and allowed the examination of underlying 
IV	assumption	(Palmer	et	al.,	2012).	Among	177	all-	cause	mortality-	
related CpGs at p < 1 × 10−7,	MR	tests	were	performed	on	17	CpGs	
having	 ≥3	 independent	 cis-	meQTL	 SNPs.	 To	 test	 the	 validity	 of	
IVW-	MR	results,	we	performed	heterogeneity	and	MR-	EGGER	plei-
otropy	tests	for	all	IVs.	The	statistical	significance	threshold	for	MR	
is pMR < 0.05/17, and both pheter and ppleio were required to be >0.05.

5.10  |  eQTMs

Association	tests	of	DNAm	and	gene	expression	were	performed	in	
3684	FHS	participants	with	 available	DNAm	and	gene	expression	
data.	mRNA	was	extracted	from	whole	blood	(collected	in	PAXgene	
tubes)	 and	 profiled	 using	 the	 Affymetrix	 Human	 Exon	 1.0	 ST	
GeneChip platform. Raw gene expression data were first normalized 
using	the	RMA	(robust	multi-	array	average)	from	Affymetrix	Power	
Tools	(APT,	thermofisher.com/us/en/home/life-	science/microarray-	
analysis/affymetrix.html#1_2)	 with	 quantile	 normalization.	 Then,	
output	 expression	values	of	17,318	genes	were	extracted	by	APT	
based	on	NetAffx	annotation	version	31.
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DNAm	β values were adjusted for age, sex, predicted blood cell 
fraction,	the	two	top	PCs	of	DNAm,	and	25	surrogate	variables	(SVs),	
with	DNAm	as	a	fixed	effect,	and	batch	as	a	random	effect	by	fitting	
LME	models.	Residuals	(DNAm_resid)	were	retained.	The	gene	expres-
sion values were adjusted for age, sex, predicted blood cell fraction, 
a set of technical covariates, the two top PCs and 25 SVs, with gene 
expression	as	a	fixed	effect,	and	batch	as	a	random	effect	by	LME,	and	
residuals	(mRNA_resid)	were	retained.	Then,	linear	regression	models	
were	used	to	assess	pair-	wise	associations	between	DNAm_resid	and	
mRNA_resid.	SVs	were	calculated	using	the	SVA	package	in	R.	A	cis-	
CpG-	mRNA	pair	was	defined	as	a	CpG	residing	±	1	Mb	of	the	TSS	of	
the	corresponding	gene	encoding	the	mRNA	(cis-	eQTM).	The	annota-
tions of CpGs and transcripts were obtained from annotation files of 
the	HumanMethylation450K	BeadChip	and	the	Affymetrix	exon	array	
S1.0	 platforms.	We	 estimated	 that	 there	were	 1.6	× 108 potential 
cis-		CpG-	mRNA	pairs.	We	only	used	cis-	eQTMs	in	this	study	because	
trans-	eQTMs	were	not	replicated	in	independent	external	studies.	The	
statistical significance threshold was p < 3 × 10−10	(0.05/1.6	× 108).

5.11  |  Gene ontology and pathway 
enrichment analysis

Gene ontology and pathway enrichment analyses were performed 
on	the	genes	annotated	 in	 relation	 to	 the	177	all-	cause	mortality-	
related CpGs at p < 1 × 10−7or p < 1 × 10−5 as well as the cis-	eQTM	
genes associated with those CpGs. To improve focus in this study, 
we	only	used	 results	of	KEGG	and	Gene	Ontology–	biological	pro-
cess	(GO-	BP)	terms.	Enrichment	tests	used	gometh function in miss-
Methy	R	package,	which	can	take	into	account	two	types	of	bias	in	
DNA	methylation	study:	(1)	the	differing	number	of	probes	per	gene	
present	on	 the	array,	 and	 (2)	CpGs	 that	 are	 annotated	 to	multiple	
genes	(Maksimovic	et	al.,	2021).
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